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INTRODUCTION
Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a
statistical model of a real system. These algorithms are executed by computer programs.
Variance reduction techniques (VRT) are needed, even though computer speed has been
increasing dramatically, ever since the introduction of computers. This increased computer
power has stimulated simulation analysts to develop ever more realistic models, so that the net
result has not been faster execution of simulation experiments; e.g., some modern simulation
models need hours or days for a single 'run' (one replication of one scenario or combination
of simulation input values). Moreover there are some simulation models that represent rare
events which have extremely small probabilities of occurrence), so even modern computer
would take 'for ever' (centuries) to execute a single run�were it not that special VRT can
reduce theses excessively long runtimes to practical magnitudes.

Preliminaries
In this contribution the focus is to estimate a quantity

`= E(H(Y)); (1)

where H(Y) is the performance function driven by an input vector Y with probability density
function f (y). To estimate ` through simulation, one generates a random sample Yi with
i= 1; : : : ;N from f (y), computes the sample function H(Yi), and the sample-average
estimator

�̀N =
1
N

N

∑
i=1
H(Yi):

This is called crude Monte Carlo sampling (CMC). The resulting sample-average estimator is
an unbiased estimator for `. Furthermore, as N gets large, laws of large numbers may be
invoked (assuming simple conditions) to verify that the sample-average estimator
stochastically converges to the actual quantity to be estimated. The ef�ciency of the estimator
is captured by its relative error (RE), i.e., the standard error divided by the mean:
RE=

q
Var( �̀N)=E( �̀N). Applying the Central Limit Theorem, one easily gets that
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z1�α=2RE< ε , where z1�α=2 is the (1�α=2)th quantile of the standard normal distribution
(typically one takes α = 0:05 so z1�α=2 = 1:96) if and only if

P
���� �̀N� `

`

���< ε

�
> 1�α: (2)

When (??) holds, the estimator is said to be (1�α;ε)-ef�cient.

To illustrate, consider the one-dimensional version of (??):

`=
Z
h(y) f (y)dy:

Monte Carlo integration is a good way to estimate the value of the integral when the
dimension is much higher than one, but the concept is still the same. Monte Carlo integration
has become an important tool in �nancial engineering for pricing �nancial products such as
options, futures, and swaps (Glasserman, 2003). This Monte Carlo estimate samples Y1; : : : ;YN
independently from f and calculates

�̀N =
1
N

N

∑
i=1
h(Yi):

Then �̀N is an unbiased estimator for `, and the standard error isq
Var
� �̀N�=r 1

N
Var(h(Y )) =

r
1
N
E (h(Y )� `)2 =

r
1
N

Z
(h(y)� `)2 f (y)dy:

Hence, the relative error (or ef�ciency) of the estimator is proportional to 1=
p
N. This is a

poor ef�ciency in case of high-dimensional problems where the generation of a single output
vector is costly and consumes large computing time and memory. VRT improve ef�ciency if
they indeed require smaller sample sizes. To be more speci�c, consider again the performance
measure (??), and assume that besides the CMC-estimator �̀N , a VRT results in another
unbiased estimator, denoted �̀�N , also based on a sample of N independent and identical
observations. The VRT-estimator is said to be statistically more ef�cient than the
CMC-estimator if

Var( �̀�N)< Var( �̀N):
Then one usually computes the reduction factor for the variance:

Var( �̀N)�Var( �̀�N)
Var( �̀N)

� 100%:

Notice that this factor does not depend on the sample size N. Suppose that the reduction factor
is 100r%, so r = 1� (Var( �̀�)=Var( �̀)), and suppose that (1�α;ε)-ef�ciency is desired. The
required sample size for the CMC-estimator is N, given by z1�α=2RE= ε , which holds iff

`2ε2

z21�α=2
= Var( �̀N) =

1
N
Var( �̀1) , N =

z21�α=2

`2ε2
Var( �̀1):

The same reasoning holds for the VRT-estimator with a required sample size N�.
Consequently, the reduction in sample size becomes

N�N�
N

=
Var( �̀1)�Var( �̀�1)

Var( �̀1)
= r;
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which is the same reduction as for the variance.

Generating samples under a VRT consumes generally more computer time (exceptions are
antithetic and common random numbers; see next section). Thus to make a fair comparison
with CMC, the computing time should be incorporated when assessing ef�ciency
improvement. Therefore, denote the required time to compute �̀N by TM( �̀N). Then the effort
of an estimator may be de�ned to be the product of its variance and its computing time:
EFFORT= Var�TM( �̀N). Notice that the effort does not depend on the sample size, if the
computing time of N samples equals N times the computing time of a single sample. Then the
estimator �̀�N is called more ef�cient than estimator �̀N if the former requires less effort:

EFFORT( �̀�N)< EFFORT( �̀N):

Again, a reduction factor for the effort can be de�ned, and one can analyze the reduction in
computer time needed to obtain (1�α;ε)-ef�ciency.

Estimating the Probability of Rare Events
An important class of statistical problems assesses probabilities of risky or undesirable events.
These problems have become an important issue in many �elds; examples are found in
reliability systems (system failure), risk management (value-at-risk), �nancial engineering
(credit default), insurance (ruin), and telecommunication (packet loss); see Juneja and
Shahabuddin (2006); Rubino and Tuf�n (2009). These problems can be denoted in the format
of this contribution by assuming that a set A contains all the risky or undesirable input vectors
y, so that (??) becomes

`= P(A) = P(Y 2 A) = E(IA(Y));
where IA is the indicator function of the set A (and thus in (??) H = IA). The standard error of
the Monte Carlo estimator is easily computed as

p
`(1� `)=N. Hence, the relative error

becomes

RE=
p
`(1� `)
`
p
N

=

p
(1� `)p
`N

: (3)

This equation implies that the sample size is inverse proportional to the target probability `
when requiring a prespeci�ed ef�ciency; for instance, to obtain (95%,10%)-ef�ciency, the
sample size should be N � 385(1� `)=`. This leads immediately to the main issue of this
contribution; namely ` << 1 so A is called a rare event. To illustrate, suppose Y= (Y1; : : : ;Yn),
where Yj ( j = 1; : : : ;n) are identically and independently distributed (IID) with �nite mean
µ = E(Y1) and standard deviation σ =

p
Var(Y1). Denote their sum by S(Y) = Y1+ � � �+Yn,

and let the rare event be A= fS(Y)> n(µ+δ )g for a positive δ . A normal approximation
results for n= 500;δ = 0:5;σ = 1 that `� 2:5E-29. A (95%,10%)-ef�cient CMC-estimator
would need sample size N � 1:5E+31; which is impossible to realize. For example, the
practical problem might require the daily simulation of a �nancial product for a period of two
years in which a single normal variate needs to be generated per simulated day. Fast
algorithms for normal variate generation on standard PCs require about 20 seconds for E+9
samples. This gives only E+5 vector samples Y per second. Note that the number of calls of
the random number generator (RNG) is at least N�n, which in our numerical example equals
7.5E+33; this number is large, but modern RNGs can meet this requirement (L'Ecuyer, 2006).

In conclusion, the desired level of ef�ciency of the CMC estimator for rare event problems
requires sample sizes that go far beyond available resources. Hence, researchers have looked
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for ways to reduce the variance of the estimator as much as possible for the same amount of
sampling resources. Traditional VRTs are common random numbers, antithetic variates,
control variates, conditioning, strati�ed sampling and importance sampling (Law, 2007;
Rubinstein and Kroese, 2008). Modern VRTs include splitting techniques, and quasi-Mont
Carlo sampling (Asmussen and Glynn, 2007; Glasserman, 2003).

ANTITHETIC AND COMMON RANDOM NUMBERS
Consider again the problem of estimating `= E(H(Y)) de�ned in (??). Now let Y1 and Y2 be
two input samples generated from f (y). Denote Xi = H(Yi) with i= 1;2. Then
�̀= (X1+X2)=2 is an unbiased estimator of ` with variance

Var( �̀) =
1
4
�
Var(X1)+Var(X2)+2Cov(X1;X2)

�
:

If X1;X2 would be independent (as is the case in CMC), then Var( �̀) would be
1
4(Var(X1)+Var(X2)). Obviously, variance reduction is obtained if Cov(X1;X2)< 0. The
usual way to make this covariance negative is as follows. Whenever the uniform random
numberU is used for a particular purpose (for example, the second service time) in generating
Y1, use the antithetic number 1�U for the same purpose to generate Y2. BecauseU and
1�U have correlation coef�cient �1, it is to be expected that Cov(X1;X2)< 0. This can be
formalized by the following technical conditions.

1.

(b). The sample vector Y= (Y1; : : : ;Yn) has components Y j that are one-dimensional,
independent random variables with distribution functions Fj that are generated by the
inverse transformation method; i.e., Yj = F�1j (U j), for j = 1; : : : ;n.

(c). The performance function H is monotone.

Under these conditions, negative correlation can be proved (Rubinstein and Kroese, 2008). In
condition (a) the inverse transformation requirement can be replaced by the assumption that
all Yj-components are Gaussian: when Y � N(µ;σ2), then �Y = 2µ�Y � N(µ;σ2), and
clearly Y and �Y are negatively correlated. This alternative assumption is typically applied in
�nancial engineering for option pricing (Glasserman, 2003).

The method of common random numbers (CRN) is often applied in practice, because
simulationists �nd it natural to compare alternative systems under `the same circumstances';
for example, they compare different queueing disciplines (such as First-In-First-Out or FIFO,
Last-In-First-Out or LIFO, Shortest-Jobs-First or SJF) using the same sampled arrival and
service times in the simulation.

To be more speci�c, let Y be an input vector for two system performances E(H1(Y)) and
E(H2(Y)), and the performance quantity of interest is their difference

`= E(H1(Y))�E(H2(Y)):

To estimate `, two choices produce an unbiased estimator:

1.
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2. Generate one sequence of IID input vectors Y1; : : : ;YN , and estimate ` by

�̀(1)
N =

1
N

N

∑
i=1
(H1(Yi)�H2(Yi)) :

3. Generate two independent IID sequences of input vectors Y(1)1 ; : : : ;Y
(1)
N , and

Y(2)1 ; : : : ;Y
(2)
N , and estimate ` by

�̀(2)
N =

1
N

N

∑
i=1
H1(Y

(1)
i )�

1
N

N

∑
i=1
H2(Y

(2)
i ):

The �rst method is the CRN method, and is intuitively prefered because it reduces variability:

Var( �̀(1)N )< Var( �̀
(2)
N ):

To prove this inequality, denote Xi = Hi(Yi). Then �̀= X1�X2 is an unbiased estimator of `
with variance

Var( �̀) = Var(X1)+Var(X2)�2Cov(X1;X2): (4)

If X1 and X2 are independent (as is the case in the second method), then (??) becomes
Var(X1)+Var(X2). Hence, variance reduction is obtained if Cov(X1;X2)> 0 in (??). This
requirement is precisely the opposite of what was needed in antithetic variates. To force the
covariance to become positive through CRN, the uniform random numberU used for a
particular purpose in generating Y1, is used for the same purpose to generate Y2. This can be
formalized by the technical conditions completely analogous to those for antithetic variates.

CRN is often applied not only because it seems 'fair' but also because CRN is the default in
many simulation software systems; e.g., Arena compares different scenarios using the same
seed�unless, the programmer explicitly selects different seeds to initialize the various
sampling processes (arrival process, service time at work station 1, etc.) for different
scenarios. Detailed examples are given in Law (2007), pp. 582-594.

So while the simulation programmers need to invest little extra effort to implement CRN, the
comparisons of various scenarios may be expected to be more accurate; i.e., the what-if or
sensitivity analysis gives estimators with reduced variances. However, some applications may
require estimates of the absolute (instead of the relative) responses; i.e., instead of sensitivity
analysis the analysis aims at prediction or interpolation from the observed responses for the
scenarios that have already been simulated. In these applications, CRN may give worse
predictions; also see Chen, Ankenman, and Nelson (2010).

The analysis of simulation experiments with CRN should go beyond (??), which compares
only two scenarios. The simplest extension is to compare a �xed set of (say) k scenarios using
(??) combined with the Bonferroni inequality so that the type-I error rate does not exceed (say)
α; i.e., in each comparison of two scenarios the value α is replaced by α=m where m denotes
the number of comparisons (e.g., if all k scenarios are compared, then m= k(k�1)=2).
Multiple comparison and ranking techniques are discussed in Chick and Gans (2009).

However, the number of interesting scenarios may be not �xed in advance; e.g., the scenarios
differ in one or more quantitative inputs (e.g., arrival speed, number of servers) and the

5



optimal input combination is wanted. In such situations, regression analysis is useful; i.e., the
regression model is then a metamodel that enables validation, sensitivity analysis, and
optimization of the simulation model; see Kleijnen (2008). The estimated regression
coef�cients (regression parameters) may have smaller variances if CRN is used�because of
arguments based on (??)�except for the intercept (or the 'grand mean' in Analysis of
Variance or ANOVA terminology). Consequently, CRN is not attractive in prediction, but it is
in sensitivity analysis and optimization.

A better metamodel for prediction may be a Kriging or Gaussian Process model, assuming the
scenarios correspond with combinations of quantitative inputs; e.g., the scenarios represent
different traf�c rates in a queuing simulation. Kriging implies that the correlation between the
responses of different scenarios decreases with the distance between the corresponding input
combinations; i.e., the Gaussian process is stationary (Kleijnen, 2008). In random simulation
(unlike deterministic simulation, which is popular in engineering) the Kriging metamodel also
requires the estimation of the correlations between the 'intrinsic' noises of different scenarios
caused by the use of random numbersU ; see Chen, Ankenman, and Nelson (2010).

An important issue in the implementation of Antithetics and CRN is synchronization, which is
a controlling mechanism to ensure that the same random variables are generated by the same
random numbers from the random number generator. As an example, consider comparing a
single-server queue GI=GI=1 with a two-server system GI=GI=2. The two systems have
statistically similar arrivals and service times, but the single server works twice as fast. The
performance measure is the expected waiting time per customer (which is conjectured to be
less in the two-server system). In a simulation study, the two simulation models with CRN
should have the same arrival variates, and the same service-time variates. Suppose that
A1;A2; : : : are the consecutive interarrival times in a simulation run of the GI=GI=1 model, and
S1;S2; : : : are their associated service-time requirements. Then, in the corresponding
simulation run of the GI=GI=2 model, these same values are used for the consecutive
interarrival times, and their associated service times; see Kelton, Sadowski, and Sturrock
(2007); Law (2007).

Antithetic and common random numbers can be combined. Their optimal combination is the
goal of the Schruben-Margolin strategy; i.e., some blocks of scenarios use CRN, whereas
other blocks use antithetic variates, etc.; see Song and Chiu (2007).

CONTROL VARIATES
Suppose that �̀ is an unbiased estimator of ` in the estimation problem (??); for example,C is
the arrival time in a queueing simulation. A random variable C is called a control variate for �̀
if it is correlated with �̀ and its expectation γ is known. The linear control random variable
�̀(α) is de�ned as

�̀(α) = �̀�α(C� γ);

where α is a scalar parameter. It is easy to prove that the variance of �̀(α) is minimized by

α
� =�Cov(

�̀;C)
Var(C)

:

The resulting minimal variance is

Var( �̀(α�)) =
�
1�ρ

2
�̀C

�
Var( �̀); (5)
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where ρ �̀C denotes the correlation coef�cient between �̀ andC. Since Cov( �̀;C) is unknown,
the optimal control coef�cient α� must be estimated from the simulation. Estimating both
Cov( �̀;C) and Var(C) means that linear regression analysis is applied to estimate α� .
Estimation of α� implies that the variance reduction becomes smaller than (??) suggests, and
that the estimator may become biased. The method can be easily extended to multiple control
variables (Rubinstein and Marcus, 1985).

A well-known application of control variates is pricing of Asian options. The payoff of an
Asian call option is given by

H(Y) =max
�
0;
1
n

n

∑
j=1
Yj�K

�
;

where Yj = S jT=n, the expiration date T is discretized into n time units, K is the strike price,
and St is the asset price at time t, which follows a geometric Brownian motion. Let r be the
interest rate; then the price of the option becomes

`= E
�
e�rTH(Y)

�
:

As control variate may beC = e�rT max(0;ST �K) whose expectation is readily available
from the Black-Scholes formula. Alternative control variates are ST , or 1n ∑nj=1 S jT=n.

CONDITIONING
The method of conditional Monte-Carlo is based on the following basic probability formulas.
Let X and Z be two arbitrary random variables, then

E(E(X jZ)) = E(X) and Var(X) = E(Var(X jZ))+Var(E(X jZ)): (6)

Because the last two terms are both nonnegative, variance reduction is obvious:

Var(E(X jZ))� Var(X):

The same reasoning holds for the original problem (??), setting X = H(Y). Also Z is allowed
to be a vector variable. These formulas are used in a simulation experiment as follows. The
vector Z is simulated, and the conditional expectationC = E(H(Y)jZ) is computed.
Repeating this N times gives the conditional Monte-Carlo estimator

�̀�N =
1
N

N

∑
i=1
Ci:

A typical example is a level-crossing probability of a random number of variables:

`= P
� R

∑
j=1
Yj > b

�
;

where Y1;Y2; : : : are IID positive random variables, R is a nonnegative integer-valued random
variable, independent of the Y j variables, and b is some speci�ed constant. Such problems are
of interest in insurance risk models for assessing aggregate claim distributions (Glasserman,
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2003). CMC can be improved by conditioning on the value of R for which level crossing
occurs. To be more speci�c, denote the event of interest by A, so `= E(IA(Y)). De�ne

M =min
�
r :

r

∑
j=1
Y j > b

�
:

Assume that the distribution of Y can be easily sampled, and that the distribution of R is
known and numerically available (for instance, Poisson). Then it is easy to generate a value of
M. Suppose that M = m. Then E(IA(Y)jM = m) = P(R� m), which can be easily computed.

STRATIFIED SAMPLING
Recall the original estimation problem `= E(H(Y)), and its crude Monte Carlo estimator �̀N .
Suppose now that there is some �nite random variable Z taking values from fz1; : : : ;zmg, say,
such that

1.

(ii). the probabilities pi = P(Z = zi) are known;

(iii). for each i= 1; : : : ;m, it is easy to sample from the conditional distribution of Y given
Z = zi.

Because
`= E(E(H(Y))) =

m

∑
i=1
piE(H(Y)jZ = zi);

the strati�ed sampling estimator of ` may be

�̀�N =
m

∑
i=1
pi
1
Ni

Ni
∑
j=1
H(Yi j);

where Ni IID samples Yi1; : : : ;YiNi are generated from the conditional distribution of Y given
Z = zi, such that N1+ � � �+Nm = N. Notice that the estimator is unbiased. To assess its
variance, denote the conditional variance of the performance estimator by
σ2i = Var(H(Y)jZ = zi). The variance of the strati�ed sampling estimator is then given by

Var( �̀�N) =
m

∑
i=1

p2i σ2i
Ni

:

Because of (??)

Var(H(Y))� Var(H(Y)jZ) =
m

∑
i=1
piσ2i :

Selecting proportional strata sample sizes Ni = piN gives variance reduction:

Var( �̀�N) =
m

∑
i=1

piσ2i
N

� 1
N
Var(H(Y)) = Var( �̀N):

It can be shown that the strata sample sizes Ni that minimize this variance are

Ni = N
piσ i

∑mj=1 p jσ j
;
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see Rubinstein and Kroese (2008). A practical problem is that the standard deviations σ i are
usually unknown, so these variances are estimated by pilot runs. Strati�ed sampling is used in
�nancial engineering to get variance reductions in problems such as value-at-risk, and pricing
path-dependent options (Glasserman, 2003).

IMPORTANCE SAMPLING
The idea of importance sampling is explained best in case of estimating the probability of an
event A. The underlying sample space is (Ω;F ) for which A 2F , and the probability
measure P on this space is given by the speci�c simulation model. In a simulation experiment
for estimating P(A), the CMC estimator would be �̀N = ∑Ni=1 I

(i)
A , where I

(1)
A ; : : : ; I

(N)
A are IID

indicator functions of event A generated under P. On average in only one out of 1=P(A)
generated samples the event A occurs, and thus for rare events (where P(A) is extremely
small) this procedure fails. Suppose that there is an alternative probability measure P� on the
same (Ω;F ) such that (i) A occurs much more often, and (ii) P is absolutely continuous with
respect to P�, meaning

8F 2F : P(F)> 0 ) P�(F)> 0:

Then according to the Radon-Nikodym theorem, it holds that there is a measurable function L
on Ω such that

R
F dP=

R
F LdP� for all F 2F . The function L is called likelihood ratio and

usually written as L= dP=dP�; the alternative probability measure P� is said to be the
importance sampling probability measure, or the change of measure. Thus, by weighting the
occurrence IA of event A with the associated likelihood ratio, simulation under the change of
measure yields an unbiased importance sampling estimator

�̀�N =
N

∑
i=1
L(i)I(i)A :

More importantly, variance reduction is obtained when the change of measure has been
chosen properly, as will be explained below. Importance sampling has been applied
successfully in a variety of simulation areas, such as stochastic operations research, statistics,
Bayesian statistics, econometrics, �nance, systems biology; see Rubino and Tuf�n (2009).
This section will show that the main issue in importance sampling simulation is the question
which change of measure to consider. The choice is very much problem dependent, however,
and unfortunately, it is dif�cult to prevent gross misspeci�cation of the change of measure P�,
particularly in multiple dimensions.

Exponential change of measure
As an illustration, consider the problem of estimating the level-crossing probability

`n = P(An) with An = fY1+ � � �+Yn > nag; (7)

where Y1; : : : ;Yn are IID random variables with �nite mean µ = E(Y )< a and with a
light-tailed PDF f (y;v), in which v denotes a parameter vector, such as mean and variance of
a normal density. It is well-known from Cramér's Theorem that P(An)! 0 exponentially fast
as n! ∞. Suppose that under the importance sampling probability measure the random
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variables Y1; : : : ;Yn remain IID, but with an exponentially tilted PDF (also called exponentially
twisted), with tilting factor t:

ft(y;v) =
f (y;v)etyR
f (y;v)ety dy

:

Thus, in the importance sampling simulations the Yk-samples are generated from ft(y;v).
Because of the IID assumption, the likelihood ratio becomes

L(Y1; : : : ;Yn) =
n

∏
k=1

f (Yk;v)
ft(Yk;v)

= exp
�
nψ(t)� t

n

∑
k=1
Yk
�
; (8)

with ψ(t) = log
R
f (y;v)ety dy. Variance reduction is obtained if

Vart( �̀�N)� Var( �̀N) , Vart( �̀�1)� Var( �̀1)
, Et [( �̀�1)2]� E[( �̀1)2] , Et [(IAL(Y1; : : : ;Yn))2]� E[(IA)2]:

Because of (??), it is easy to show that the variance is minimized for t = (ψ 0�1(a). In that
case the importance sampling estimator is logarithmically ef�cient (also called asymptotically
optimal; see Rubino and Tuf�n (2009; Chapter 4)):

lim
n!∞

logEt [( �̀�N)2]
logEt [ �̀�N ]

= 2;

where the subscript t means that the underlying probability is the change of measure.
Asymptotic optimality implies that RE( �̀�N) grows subexponentially as n! ∞, whereas for
CMC the relative error grows exponentially (see (??)).

The cross-entropy method
A general heuristic for constructing an importance sampling algorithm is to consider only a
parameterized family of changes of measures. Consider again problem (??), with PDF
f = f (y;v) where v is the parameter vector. Thus, let Θ be all feasible parameter vectors for
f . For any θ 2Θ, the change of measure Pθ induces the (single-run) importance sampling
estimator

�̀�
θ = H(Y)

dP
dPθ

(Y) = H(Y)
f (Y;v)
f (Y;θ)

:

The optimal change of measure is found by variance minimization. Since the estimators are
unbiased, it suf�ces to minimize the second moment:

min
θ2Θ

Eθ

h�
H(Y)

f (Y;v)
f (Y;θ)

�2i
:

Generally, this problem is hard. A successful approach is based on cross-entropy
minimization as explained in Rubinstein and Kroese (2004). First, consider the optimal
change of measure, resulting in a zero-variance estimator:

dPopt(Y) =
H(Y)dP(Y)

`
: (9)

This change of measure is not implementable as it requires knowledge of the unknown
quantity `. The cross-entropy method �nds Pθ by minimizing the Kullback-Leibler distance
(or cross-entropy) within the class of feasible changes of measure:

min
θ2Θ

D(dPopt;dPθ );
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where the cross-entropy is de�ned by

D(dPopt;dPθ ) = Eopt
h
log
�dPopt
dPθ

(Y)
�i
= Ev

hdPopt
dP

(Y) log
�dPopt
dPθ

(Y)
�i
:

Substituting expression (??), and canceling constant terms and factors, the equivalent
cross-entropy problem becomes

max
θ2Θ

Ev[H(Y) logdPθ (Y)]:

There are several ways to solve this stochastic optimization problem. The original description
of the cross-entropy method for such problems proposes to solve the stochastic counterpart
iteratively, see Rubinstein and Kroese (2004). This approach has been applied successfully to
a variety of estimation and rare-event problems.

State-dependent importance sampling
The importance sampling algorithms described above were based on a static change of
measure; i.e, the samples are generated by a �xed alternative statistical law; see (??). In
speci�c problems, such as (??), the static importance sampling algorithm yields an ef�cient
estimator. However, for many problems it is known that ef�cient estimators require an
adaptive or state-dependent importance sampling algorithm (Juneja and Shahabudding, 2006).
To illustrate this concept, consider again the problem of estimating the level-crossing
probability (??). The Yk-variables are called jumps of a random walk (Sk)nk=0, de�ned by
S0 = 0, and for k � 1: Sk = ∑kj=1Yj = Sk�1+Yk. Under a state-dependent change of measure,
the next jump Yk+1 might be generated from a PDF f (yjk+1;Sk); i.e., it depends on jump
time k+1 and current state Sk. Hence, under the change of measure, the process (Sk)nk=0
becomes an inhomogeneous Markov chain. Given a generated sequence Y1; : : : ;Yn, the
associated likelihood ratio is

L(Y1; : : : ;Yn) =
n

∏
k=1

f (Yk;v)
f (Ykjk;Sk�1)

:

The next question is: Which time-state dependent PDFs should be chosen for this kind of
change of measure? The criterion could be (i) variance minimization, (ii) cross-entropy
minimization, or (iii) ef�ciency.

1.

(ii). A small set of rare-event problems are suited to �nd so-called zero-variance approximate
importance sampling algorithms, notably level-crossing problems with Gaussian jumps,
reliability problems, and certain Markov chains problems; see L'Ecuyer et al. (2010).

(iii). A cross-entropy minimization is applied after each state Sk for determining the PDF of
the next jump (Ridder and Taimre, 2009). The result is that when the level-crossing at
time n can be reached from state Sk just by following the natural drift, no change of
measure is applied. Otherwise, the next jump is drawn from an exponentially tilted PDF
with tilting factor t = (ψ 0�1((an�Sk)=(n� k)). This would be the static solution given
before when starting at time k = 0. This approach gives logarithmic ef�ciency.

11



(iv). The method developed by Dupuis and Wang (2007) considers the rare-event problem as
an optimal control problem in a differential game. Applying dynamic programming
techniques while using large-deviations expressions, the authors develop logarithmically
ef�cient importance sampling algorithms. This approach works also for rare events in
Jackson networks (Dupuis, Sezer, and Wang, 2007).

Markov chains
Many practical estimation problems in statistical systems (e.g., reliability, production,
inventory, queueing, communications) can be reformulated as a Markov model to estimate a
quantity `= P(YT 2F ). Let fYt : t = 0;1; : : :g denote a discrete-time Markov chain with a
state spaceX with transition probabilities p(x;y);F �X is a subset of states, and T is a
stopping time. A typical example is a system of highly reliable components where the
response of interest is the probability of a break down of the system.

Assume that the importance sampling is restricted to alternative probability measures P� such
that the Markov chain property is preserved with transition probabilities p�(x;y) satisfying

p(x;y)> 0 , p�(x;y)> 0:

This constraint ensures the absolute continuity condition. Furthermore, assuming that the
initial distribution remains unchanged, the likelihood ratio of a simulated path of the chain
becomes simply

L=
T�1
∏
t=0

p(Yt ;Yt+1)
p�(Yt ;Yt+1)

:

Thus, it suf�ces to �nd the importance-sampling transition-probabilities p�(x;y). Considering
these probabilities as parameters, the method of cross-entropy is most convenient; Ridder
(2010) gives suf�cient conditions to guarantee asymptotic optimality. However, many realistic
systems are modeled by Markov chains with millions of transitions, which causes several
dif�culties: the dimensionality of the parameter space, the danger of degeneracy of the
estimation, and numerical under�ow in the computations. Several approaches are proposed to
reduce the parameter space in the cross-entropy method (de Boer and Nicola, 2002; Kaynar
and Ridder, 2010).

Another approach to importance sampling in Markov chains approximates the zero-variance
probability measure Popt. It is known that this Popt implies transition probabilities of the form

popt(x;y) = p(x;y)
γ(y)
γ(x)

;

where γ(x) = P(YT 2F jY0 = x). As these quantities are unknown (and in fact the subject of
interest), these zero-variance transition probabilities cannot be implemented. However,
approximations of the γ(x) probabilities may be considered (L'Ecuyer et al., 2010). Under
certain conditions this approach leads to strong ef�ciency of the importance sampling
estimator.

SPLITTING
The splitting method may handle rare-event probability estimation. Unlike importance
sampling, the probability laws remain unchanged, but a drift to the rare event is constructed by
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splitting (cloning) favorable trajectories, and terminating unfavorable trajectories. This idea
may be explained as follows. Consider a discrete-time Markov chain fYt : t = 0;1; : : :g on a
state spaceX . Suppose that the chain has a regeneration state or set 0, a set of failure states
F , and a starting state y0. The response of interest is the probability that the chain hitsF
before 0. More formally, if T denotes the stopping time

T = infft : Yt 2 0[Fg;

then
`= P(YT 2F ):

The initial state y0 62 0[F may have either some initial distribution, or be �xed and known.
The assumption is that ` is so small that CMC in impractical. Suppose that the state space is
partitioned into sets according to

X �X1 �X2 � �� � �Xm =F ; (10)

with 0 2X nX1. Usually these sets are de�ned through an importance function φ :X ! R,
such that for each k,Xk = fy : φ(y)� Lkg for certain levels L1 � L2 � �� � � Lm, with
φ(0) = L0 < L1. Now de�ne stopping times Tk and associated events Ak by

Tk = infft : X(t) 2 0[Xkg; Ak = fYTk 2Xkg:

Because of (??), clearly A1 � A2 � �� � � Am = A= fYT 2Fg. Thus the rare-event
probability `= P(A) can be decomposed as a telescoping product:

`= P(A1)
m

∏
k=2
P(AkjAk�1):

To estimate `, one might estimate all conditional probabilities P(AkjAk�1) separately (say) by
�̀k, which gives the product estimator

�̀� =
m

∏
k=1

�̀k; (11)

where �̀1 estimates P(A1). The splitting method implements the following algorithm for
constructing the �̀k estimators in a way that the product estimator is unbiased. In the initial
stage (k = 0), run N0 independent trajectories of the chain starting at the initial state y0. Each
trajectory is run until either it entersX1 or it returns to 0, whatever come �rst. Let R1 be the
number of �successful� trajectories; i.e., trajectories that reachX1 before 0. Then set
�̀1 = R1=N0. Consider stage k � 1, and suppose that Rk trajectories have entered setXk in
entrance states Y(k)1 ; : : : ;Y

(k)
Rk (not necessarily distinct). Replicate (clone) these states, until a

sample of size Nk has been obtained. From each of these states, run a trajectory of the chain,
independently of the others. Each trajectory is run until either it entersXk+1 or it returns to 0,
whatever come �rst. Let Rk+1 be the number of successful trajectories, i.e., trajectories that
reachXk+1 before 0. Then set �̀k+1 = Rk+1=Nk. This procedure is continued until all
trajectories have entered eitherF or returned to 0.

Recently this form of the splitting method has attracted a lot of interest (see the reference list
in Rubino and Tuf�n (2009; Chapter 3)), both from a theoretical point of view analyzing the
ef�ciency, and from a practical point of view describing several applications. The analysis
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shows that the product estimator (??) is unbiased. Furthermore, the analysis of the ef�ciency
of the splitting technique depends on the implementation of (a) selecting the levels, (b) the
splitting (cloning) of successful trajectories, and (c) the termination of unsuccessful
trajectories. Generally, the problem of solving these issues optimally is like choosing an
optimal change of measure in importance sampling. In fact, Dean and Dupuis (2008)
discusses this relationship when the model satis�es a large deviations principle.

Concerning issue (c), the standard splitting technique terminates a trajectory that returns to the
regeneration state 0, or�in case of an importance function�when the trajectory falls back to
level L0. This approach, however, may be inef�cient for trajectories that start already at a high
level Lk. Therefore, there are several adaptations such as truncation (L'Ecuyer, Demers, and
Tuf�n, 2007), RESTART (Villen-Altamirano, and Villen-Altamirano, 1994), and Russian
roulette principle (Melas, 1997).

Concerning issue (b), there are numerous ways to clone a trajectory that has entered the next
level, but the two ways implemented mostly are (i) �xed effort, and (ii) �xed splitting. Fixed
effort means that the sample sizes Nk are predetermined, and thus each of the Rk entrance
states at setXk is cloned ck = bNk=Rkc times. The remaining NkmodRk clones are selected
randomly. An alternative is to draw Nk times at random (with replacement) from the Rk
available entrance states. Fixed splitting means that the splitting factors ck are predetermined,
and each of the Rk entrance states at setXk is cloned ck times to give sample size Nk = ckRk.

For a certain class of models, Glasserman et al. (1999) has shown that �xed splitting gives
asymptotic optimality (as `! 0) when the number of levels m�� ln(`)=2, with setsXk such
that P(AkjAk�1) are all equal (namely, roughly equal to e�2) and splitting factors such that
ckP(Ak+1jAk) = 1. However, since ` and the P(Ak+1jAk) are unknown in practice, this result
can only be approximated. Moreover, one should take into account the amount of work or
computing time in the analysis; for example, Lagnoux (2006) determines the optimal setting
under a budget constraint of the expected total computing time.

Application to counting
Recently, counting problems have attracted the interest of the theoretical computer science and
the operations research communities. A standard counting problem is model counting, or
#SAT: how many assignments to boolean variables satisfy a given boolean formula consisting
of a conjunction of clauses? The related classical decision problem is: does there exist a true
assignment of the formula? Because exact counting is impracticable due to the exponential
increase in memory and running times, attention shifted to approximate counting�notably by
applying randomized algorithms. In this randomized setting, the counting problem is
equivalent to rare event simulation: letX � be the set of all solutions of the problem, whose
number jX �j is unknown and the subject of study. Assume that there is a larger set of points
X �X � with two properties:

1.

2. the number of points jX j is known;

3. it is easy to generate uniformly points x 2X .
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Because
jX �j= jX

�j
jX j jX j;

it suf�ces to estimate
`=

jX �j
jX j = P(U 2X �);

where U is the uniform random vector onX . Typically ` is extremely small, and thus rare
event techniques are required. Splitting techniques with Markov chain Monte Carlo (MCMC)
simulations have been developed in Botev and Kroese (2008) and Rubinstein (2010) to handle
such counting problems.

QUASI MONTE-CARLO
Suppose that the performance function H in (??) is de�ned on the d-dimensional unit
hypercube [0;1)d , and the problem is to compute its expectation with respect to the uniform
distribution:

`= E(H(U)) =
Z
[0;1)d

H(u)du:

As was shown in the introduction, the variance of the CMC estimator �̀Nm using a sample size
N�m equals σ2=(N�m), where

σ
2 =

Z
[0;1)d

H2(u)du� `2:

Let PN = fu1; : : : ;uNg � [0;1)d be a deterministic point set that is constructed according to a
quasi-Monte Carlo rule with low discrepancy, such as a lattice rule (Korobov), or a digital net
(Sobol', Faure, Niederreiter); see Lemieux (2006). The quasi-Monte Carlo approximation of `
would be

N

∑
j=1
H(u j):

This deterministic approach is transformed into Monte Carlo simulation by applying a
randomization of the point set. A simple randomization technique is the random shift:
generate m IID random vectors vi 2 [0;1)d , i= 1; : : : ;m, and compute the quasi-Monte Carlo
approximations

�̀i =
N

∑
j=1
H(u j+vi mod1):

Then the randomized quasi-Monte Carlo estimator using sample size N�m is de�ned by

�̀� =
1
m

m

∑
i=1

�̀i:

The scrambling technique is based on permuting the digits of the coordinates u j�. Other
techniques of randomizing quasi-Monte Carlo point sets are less used. The main property is
that when the performance function H is suf�ciently smooth, these randomized quasi-Monte
Carlo methods give considerable variance reduction (Lemieux, 2006).
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