17,957 research outputs found

    Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem

    Get PDF
    This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics

    Estimating the weight of metric minimum spanning trees in sublinear time

    Get PDF
    In this paper we present a sublinear-time (1+ε)(1+\varepsilon)-approximation randomized algorithm to estimate the weight of the minimum spanning tree of an nn-point metric space. The running time of the algorithm is O~(n/εO(1))\widetilde{\mathcal{O}}(n/\varepsilon^{\mathcal{O}(1)}). Since the full description of an nn-point metric space is of size Θ(n2)\Theta(n^2), the complexity of our algorithm is sublinear with respect to the input size. Our algorithm is almost optimal as it is not possible to approximate in o(n)o(n) time the weight of the minimum spanning tree to within any factor. We also show that no deterministic algorithm can achieve a BB-approximation in o(n2/B3)o(n^2/B^3) time. Furthermore, it has been previously shown that no o(n2)o(n^2) algorithm exists that returns a spanning tree whose weight is within a constant times the optimum

    Minimum Cuts in Near-Linear Time

    Full text link
    We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a ``semi-duality'' between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a randomized algorithm that finds a minimum cut in an m-edge, n-vertex graph with high probability in O(m log^3 n) time. We also give a simpler randomized algorithm that finds all minimum cuts with high probability in O(n^2 log n) time. This variant has an optimal RNC parallelization. Both variants improve on the previous best time bound of O(n^2 log^3 n). Other applications of the tree-packing approach are new, nearly tight bounds on the number of near minimum cuts a graph may have and a new data structure for representing them in a space-efficient manner

    Combinatorial optimization and the analysis of randomized search heuristics

    Get PDF
    Randomized search heuristics have widely been applied to complex engineering problems as well as to problems from combinatorial optimization. We investigate the runtime behavior of randomized search heuristics and present runtime bounds for these heuristics on some well-known combinatorial optimization problems. Such analyses can help to understand better the working principle of these algorithms on combinatorial optimization problems as well as help to design better algorithms for a newly given problem. Our analyses mainly consider evolutionary algorithms that have achieved good results on a wide class of NP-hard combinatorial optimization problems. We start by analyzing some easy single-objective optimization problems such as the minimum spanning tree problem or the problem of computing an Eulerian cycle of a given Eulerian graph and prove bounds on the runtime of simple evolutionary algorithms. For the minimum spanning tree problem we also investigate a multi-objective model and show that randomized search heuristics find minimum spanning trees easier in this model than in a single-objective one. Many polynomial solvable problems become NP-hard when a second objective has to be optimized at the same time. We show that evolutionary algorithms are able to compute good approximations for such problems by examining the NP-hard multi-objective minimum spanning tree problem. Another kind of randomized search heuristic is ant colony optimization. Up to now no runtime bounds have been achieved for this kind of heuristic. We investigate a simple ant colony optimization algorithm and present a first runtime analysis. At the end we turn to classical approximation algorithms. Motivated by our investigations of randomized search heurisitics for the minimum spanning tree problem, we present a multi-objective model for NP-hard spanning tree problems and show that the model can help to speed up approximation algorithms for this kind of problems

    Distributed Approximation of Minimum Routing Cost Trees

    Full text link
    We study the NP-hard problem of approximating a Minimum Routing Cost Spanning Tree in the message passing model with limited bandwidth (CONGEST model). In this problem one tries to find a spanning tree of a graph GG over nn nodes that minimizes the sum of distances between all pairs of nodes. In the considered model every node can transmit a different (but short) message to each of its neighbors in each synchronous round. We provide a randomized (2+ϵ)(2+\epsilon)-approximation with runtime O(D+lognϵ)O(D+\frac{\log n}{\epsilon}) for unweighted graphs. Here, DD is the diameter of GG. This improves over both, the (expected) approximation factor O(logn)O(\log n) and the runtime O(Dlog2n)O(D\log^2 n) of the best previously known algorithm. Due to stating our results in a very general way, we also derive an (optimal) runtime of O(D)O(D) when considering O(logn)O(\log n)-approximations as done by the best previously known algorithm. In addition we derive a deterministic 22-approximation
    corecore