
Combinatorial Optimization
and the Analysis of

Randomized Search Heuristics

Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

(Dr. Ing.)
der Technischen Fakultät

der Christian-Albrechts-Universität

zu Kiel

Frank Neumann

Kiel
2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250312862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter: Prof. Dr. Rudolf Berghammer

2. Gutachter: Prof. Dr. Ingo Wegener

3. Gutachter: Priv.-Doz. Dr. Benjamin Doerr

Tag der mündlichen Prüfung: 19. Juli 2006

3

Abstract

Randomized search heuristics have widely been applied to complex engineering problems
as well as to problems from combinatorial optimization. We investigate the runtime be-
havior of randomized search heuristics and present runtime bounds for these heuristics
on some well-known combinatorial optimization problems. Such analyses can help to un-
derstand better the working principle of these algorithms on combinatorial optimization
problems as well as help to design better algorithms for a newly given problem. Our anal-
yses mainly consider evolutionary algorithms that have achieved good results on a wide
class of NP-hard combinatorial optimization problems. We start by analyzing some easy
single-objective optimization problems such as the minimum spanning tree problem or the
problem of computing an Eulerian cycle of a given Eulerian graph and prove bounds on
the runtime of simple evolutionary algorithms. For the minimum spanning tree problem
we also investigate a multi-objective model and show that randomized search heuristics
find minimum spanning trees easier in this model than in a single-objective one. Many
polynomial solvable problems become NP-hard when a second objective has to be opti-
mized at the same time. We show that evolutionary algorithms are able to compute good
approximations for such problems by examining the NP-hard multi-objective minimum
spanning tree problem. Another kind of randomized search heuristic is ant colony opti-
mization. Up to now no runtime bounds have been achieved for this kind of heuristic. We
investigate a simple ant colony optimization algorithm and present a first runtime analysis.
At the end we turn to classical approximation algorithms. Motivated by our investigations
of randomized search heurisitics for the minimum spanning tree problem, we present a
multi-objective model for NP-hard spanning tree problems and show that the model can
help to speed up approximation algorithms for this kind of problems.

4

Contents

1 Introduction 7

I Basics 13

2 Combinatorial Optimization 15
2.1 Single-objective optimization . 15
2.2 Multi-objective optimization . 19

3 Randomized Search Heuristics 23
3.1 Evolutionary algorithms . 24
3.2 Ant colony optimization . 29
3.3 Other randomized search heuristics . 31

II Algorithms and Basic Methods for the Analysis 35

4 Algorithms to be analyzed 37
4.1 Single-objective optimization problems . 37
4.2 Multi-objective optimization problems . 43

5 Basic Methods for the Analysis 47
5.1 Fitness-based partitions . 48
5.2 Chernoff bounds and coupon collectors . 49
5.3 Expected multiplicative weight decrease 50

III Single-Objective Optimization Problems 53

6 Eulerian Cycles 55
6.1 The problem . 56
6.2 Analysis of RLSp . 57
6.3 Analysis of (1+1) EAp . 61
6.4 Mutation using exchange operations . 64

5

6 CONTENTS

6.5 Conclusions . 66

7 Minimum Spanning Trees 67
7.1 The problem . 68
7.2 Properties of local changes of spanning trees 69
7.3 The analysis of RLSb and (1+1) EAb . 71
7.4 Generalizations . 77
7.5 Conclusions . 78

8 A Simple ACO Algorithm 79
8.1 1-ANT and (1+1) EAb . 80
8.2 Exponential lower bounds for OneMax . 82
8.3 Polynomial upper bounds for OneMax . 85
8.4 Conclusions . 87

IV Multi-Objective Optimization Problems 89

9 Multi-Objective Minimum Spanning Trees 91
9.1 The problem . 92
9.2 The extremal points of the convex hull . 93
9.3 Analysis of GSEMO . 95
9.4 Conclusions . 101

10 Minimum Spanning Trees Made Easier 103
10.1 A two-objective model . 104
10.2 The analysis of the expected optimization time 105
10.3 Experimental results . 107
10.4 Conclusions . 110

11 NP-hard Spanning Forest Problems 113
11.1 Minimizing the maximum degree . 114
11.2 Nonuniform degree bounds . 119
11.3 Conclusions . 126

12 Summary and Future Work 127

A Mathematical Background 129
A.1 Probability distributions . 129
A.2 Deviation inequalities . 130
A.3 Other useful formulas . 131

B ACO Algorithms 133
B.1 Modifications of the Hoeffding Lemma . 133

Chapter 1

Introduction

The subject of this thesis is the runtime analysis of randomized search heuristics on dif-
ferent combinatorial optimization problems. Randomized search heuristics are general-
purpose algorithms which often yield good solutions for problems whose structure is not
known very well. Evolutionary algorithms (EAs) belonging to this class of algorithms
have become quite popular since the ’60s of the last century. Their main advantage is the
fast application to different problem domains. Using an appropriate encoding for a given
problem and some standard variation operators together with a fitness function for the
considered problems, one can often come up with good solutions for the problem. Evo-
lutionary algorithms have widely been applied to complex engineering problems as well
as to problems from combinatorial optimization. In the case of a complex engineering
problem the structure of the problem is often not known. Then the quality of a certain
parameter setting can often only be evaluated by experiments or simulations. Such prob-
lems are considered in the field of black-box optimization, where the value of a parameter
setting can only be given after having executed some experiments or simulations. EAs
have shown to be very successful on many problems from black-box optimization. In the
case of combinatorial optimization, often much more is known about the structure of a
given problem and the function to be optimized can be given and analyzed. Nevertheless
it is often difficult to obtain good solutions for such problems, especially if the problem is
new and there are not enough resources (such as time, knowledge, money) to design spe-
cific algorithms for the given problem. In this case, the application of randomized search
heuristics often yields satisfying results. Evolutionary algorithms and all other randomized
search heuristics investigated in this thesis have shown to be very successful in obtaining
good solutions, especially for new NP-hard optimization problems.

In contrast to the work done in the classical algorithm community, the work on evo-
lutionary computation is mainly driven by experiments. A lot of work has been done in
considering different encodings for some popular problems like NP-hard variants of the
minimum spanning tree problem. The advantage of the newly created algorithm is then
shown by reporting the results of experiments done on random graphs or some benchmark
instances. Until the ’90s of the last century the theoretical work in the area of evolution-

7

8 CHAPTER 1. INTRODUCTION

ary computation was concentrated on showing that an algorithm converges to an optimal
solution after a finite number of steps. On the other hand it has been considered what
happens in one iteration of the algorithms. Although these are interesting investigations,
both aspects do not allow to give upper or lower bounds on the runtime of an evolutionary
algorithm for a considered problem.

Runtime analyses of randomized search heuristics have to consider problems where the
function to be optimized can at least be covered analytically. As explained before, this is
often not possible for complex engineering problems. Therefore, we consider combinatorial
optimization problems, which seem to be natural, but non-trivial examples where evolu-
tionary algorithms have been applied. The rigorous analysis of evolutionary algorithms
with respect to their runtime behavior is a relatively new research area. The first theo-
retical result on the runtime of an evolutionary algorithm has been given by Mühlenbein
(1992). He has presented an upper bound on the expected runtime of the simplest evolu-
tionary algorithm, called the (1+1) EA. The function considered is the simplest non-trivial
pseudo-boolean function called OneMax which counts the number of ones in a given bit-
string.

Since the mid ’90s more rigorous results on the runtime of the (1+1) EA for differ-
ent kinds of pseudo-boolean functions have been obtained. The first step was a much
simpler proof for the Mühlenbein result and a generalization of the given bound to linear
pseudo-boolean functions done by Droste, Jansen, and Wegener (2002). Considering differ-
ent pseudo-boolean functions, the main aim was to show the behavior of EAs in different
situations. Together with these results, many techniques have been developed that are
very useful to analyze more complicated EAs as well as the behavior of randomized search
heuristics on more natural problems.

In 2002, Scharnow, Tinnefeld and Wegener (2002) obtained the first results on the run-
time of evolutionary algorithms on combinatorial optimization problems. Other, hopefully
interesting, results are the subject of this thesis. We study the runtime behavior of simple
randomized search heuristics on such well-known problems as the problem of computing
Eulerian cycles, or easy and difficult spanning tree problems. To get an understanding
how these heuristics work on combinatorial optimization problems, in a first step some of
the best-known polynomially solvable problems have to be considered. We can not hope
to beat the best problem-specific algorithms for such problems. But it is interesting to
examine the runtime of these randomized search heuristics on these natural problems and
such analyses can give hints on the behavior of EAs on NP-hard problems. Other impor-
tant results have been achieved by Giel and Wegener (2003, 2004) and Witt (2005). Giel
and Wegener have considered the (1+1) EA for the computation of maximum matchings.
Witt (2005) has given a worst-case and an average-case analysis for the NP-hard partition
problem.

The mentioned combinatorial optimization problems are single-objective ones. EAs

9

have especially shown to be successful to obtain good results for multi-objective problems.
In contrast to single-objective optimization, here one searches for a set of solutions instead
of a single one. Multi-objective combinatorial optimization problems have not been such
extensively studied as single-objective ones in the algorithm community. Therefore, less
is known about the structure of such problems and general search heuristics often obtain
satisfying results. In particular, EAs seem to be, in a natural way, a good choice as they
evolve the population, which is a set of possible solutions, during the optimization process.
The first result on the runtime of a multi-objective evolutionary algorithm (MOEA) has
been given by Laumanns, Thiele, Zitzler, Welzl, and Deb (2002). They considered a MOEA
that searches locally. Later, Giel (2003) investigated a MOEA which has the opportunity
to sample each search point of the search space with a positive probability. Both analyses
are on artificial functions. We will analyze simple MOEAs for combinatorial optimization
problems.

In Chapter 2, we introduce some preliminaries for considering combinatorial optimiza-
tion problems. Here, we first take a view on single-objective optimization and discuss after-
wards the basic issues for considering multi-objective optimization problems. In Chapter 3
we give an introduction to different kinds of randomized search heuristics. The investiga-
tions in this thesis will mainly consider evolutionary algorithms, so we start by presenting
the different approaches developed in this field. Another kind of randomized search heuris-
tic that has become quite popular especially for combinatorial optimization problems is
ant colony optimization (ACO). We discuss the important issues of ACO. To give a more
complete picture we present other popular variants of randomized search heuristics after-
wards. In Chapter 4, we introduce the randomized search heuristics that are subject to the
analyses throughout this thesis and discuss some popular methods for the runtime analysis
in Chapter 5.

In Chapter 6, we consider the Eulerian cycle problem, presented by Euler in 1736,
which can be seen as the first problem in graph theory. In the Eulerian cycle problem an
undirected graph is given and one searches for a permutation of the edges such that a tour
is created where each edge is used exactly once. Graphs for which such a tour exist are
called Eulerian. We investigate simple EAs that work with different mutation operators
and show that they are able to compute an Eulerian cycle of a given Eulerian graph in
expected polynomial time if a jump operator is used for mutation. Altering the mutation
operator from jumps to exchanges, we present an example, where the expected runtime
increases drastically i. e. from polynomial to exponential.

In Chapter 7, we investigate the minimum spanning tree problem. A main part of this
thesis will deal with considerations for different kinds of spanning tree problems. The well-
known problem of computing minimum spanning trees can be solved in polynomial time
using the greedy approaches due to Kruskal and Prim (see e. g. Cormon, Leiserson, Rivest,
and Stein (2001)). We do not hope to beat such special-purpose algorithms by random-
ized search heuristics. Nevertheless, evolutionary algorithms have obtained good results

10 CHAPTER 1. INTRODUCTION

on NP-hard variants of the minimum spanning tree problem. Therefore, we think that it
is important to get an understanding how these heuristics work on this basic problem and
analyze simple randomized search heuristics with respect to their runtime behavior. We
give upper and lower bounds on the runtime of simple EAs until they have computed a
minimum spanning tree.

In Chapter 8, we switch to ant colony optimization. In contrast to many successful
applications, the theoretical foundation of this randomized search heuristic is rather weak.
Building up such a theory is demanded to understand how these heuristics work as well as
to come up with better algorithms for certain problems. Up to now, only convergence re-
sults have been obtained showing that optimal solutions can be reached in a finite amount
of time. We present the first runtime analysis of a simple ACO algorithm that transfers
many rigorous results with respect to the runtime of a simple evolutionary algorithm, in-
cluding the ones presented in Chapter 7, to the considered algorithm. In addition, we
examine the choice of the evaporation factor, which is a crucial parameter in such an al-
gorithm, in greater detail and analyze its effect with respect to the runtime.

In Chapter 9, we return to evolutionary algorithms and consider a simple MOEA for a
multi-objective combinatorial optimization problem. Many classical polynomially solvable
problems become NP-hard when a second objective has to be optimized at the same time.
In this case one is interested in good approximations. In the case of minimum spanning
trees, the problem gets NP-hard if at least two weight functions have to be optimized si-
multaneously. This is the problem of computing multi-objective minimum spanning trees.
Here one searches for spanning trees such that the weight with respect to one objective
function can only be decreased by increasing the weight of another objective function. Such
solutions are called Pareto optimal and the set of objective vectors belonging to the set of
all Pareto optimal solutions is called the Pareto front. We give upper bounds until a sim-
ple MOEA has achieved a good approximation of the Pareto front for the multi-objective
minimum spanning tree problem.

In Chapter 10, we consider another important question. Is it possible that a randomized
search heuristic works better in a multi-objective model than in a single-objective one for a
given single-objective optimization problem? Usually multi-objective optimization is con-
sidered as more (at least as) difficult as single-objective optimization. But one should not
forget that the fitness vector of the different objectives to optimize can give better hints
for the optimization process of evolutionary algorithms. We consider a multi-objective
model of the minimum spanning tree problem and show that this model leads to a better
optimization process than in the case of the single-objective model examined in Chapter 7.

In Chapter 11, we switch to classical approximation algorithms and examine whether
the approach of using a multi-objective model for a single-objective optimization problem
can also lead to faster approximation algorithms. We consider spanning tree problems with
additional degree constraints. These problems are NP-hard as they include the problem of

11

finding a Hamiltonian path in a given graph. We extend the multi-objective model used
for evolutionary algorithms and the minimum spanning tree problem in Chapter 10 and
show that this view on the considered problems gives new insights to come up with faster
approximation algorithms than the up to now best ones.

Many people have supported me during my work on this thesis. First, I want to
thank Rudolf Berghammer for supporting my research on randomized search heuristics
within his group. I am grateful to Ingo Wegener for many discussions on the analysis of
evolutionary algorithms and for his cooperation during the last years. I am in debt to
Marco Laumanns for many conversations on evolutionary algorithms as well as on multi-
objective optimization, and to Carsten Witt for several discussions on ACO algorithms as
well as for proof-reading. For the good working atmosphere and proof-reading I want to
thank Britta Kehden. Last but not least, I thank my wife Aneta and our daughter Michelle
for their support and love.

12 CHAPTER 1. INTRODUCTION

Part I

Basics

13

Chapter 2

Combinatorial Optimization

In this chapter we introduce the basic questions that are considered in the field of com-
binatorial optimization. Often problems are investigated where the function value of one
single goal function has to be optimized. We refer to such problems as single-objective
optimization problems. In the case of single-objective optimization one searches for one
single solution that should be an optimal one or in the case of difficult problems has a
certain approximation quality. As most of the results on combinatorial optimization prob-
lems refer to single-objective problems, we discuss the basic concepts and approaches to
solve these problems in Section 2.1. In the case that at least two goal functions have to be
optimized at the same time we are dealing with multi-objective optimization problems. In
this case one has to apply other techniques as one usually searches for a set of solutions
instead of a single one. We discuss this situation in Section 2.2.

2.1 Single-objective optimization

Typical textbooks on algorithms (see e. g. Cormen, Leiserson, Rivest, and Stein (2001))
focus on single-objective optimization problems. Here one single goal function is considered
whose function value should be optimized. Optimization problems can be divided naturally
in two categories. The first category consists of problems with continuous variables. In
the case of discrete variables we call an optimization problem combinatorial. Speaking of
combinatorial optimization problems most people have “natural” examples in mind such
as the computation of minimum spanning trees or a shortest path between two vertices in
a given graph.

In a combinatorial optimization problem one either aims at minimizing or maximizing
a given objective function. A problem is a general question to be answered such as finding
a shortest path in a given graph. Such a problem has usually a set of input parameters. In
the case of the shortest path problem there is a set of vertices and a set of weighted edges
that tell whether two vertices are connected and give the cost of such a connection. An
instance of a problem is given by the problem together with a specified parameter setting.

15

16 CHAPTER 2. COMBINATORIAL OPTIMIZATION

More formally a combinatorial optimization problem can be defined as a triple (S, f, Ω),
where S is a given search space, f is the objective function which should be either maxi-
mized or minimized and Ω is the set of constraints that have to be fulfilled to obtain feasible
solutions. The goal is to find a globally optimal solution which is in the case of a maxi-
mization problem a solution s∗ with the highest objective value that fulfills all constraints.
Similarly in the case of minimization problems one tries to achieve a smallest objective
value under the condition that all constraints are fulfilled. In contrast to the description of
the problem which is usually short, the search space is most of the time exponential in the
problem dimension. In addition for a lot of combinatorial optimization problems one can
not hope to come up with an algorithm that produces for all problem instances an optimal
solution within a time bound that is polynomial in the problem dimension.

Throughout this work we consider combinatorial optimization problems on graphs. A
directed graph G is a pair G = (V, E), where V is a finite set and E is a binary relation
on V . The elements of V are called vertices. E is called the edge set of G and its elements
are called edges. We use the notation e = (u, v) for an edge in a directed graph. Note that
self-loops that are edges of the kind (u, u) are possible. In an undirected graph G = (V, E)
no self-loops are possible. The edge set E consists of unordered pairs of vertices in this
case, and an edge is a set {u, v} consisting of two distinct vertices u, v ∈ V . Note that one
can think of an undirected edge {u, v} as two directed edges (u, v) and (v, u).

If (u, v) is an edge in a directed graph G = (V, E) we say that v is adjacent to vertex u.
This leads to the representation of graphs by adjacency matrices and will be discussed later
in greater detail. A path of length k from a vertex v0 to a vertex vk in a graph G = (V, E)
is a sequence v0, v1, . . . , vk of vertices such that (vi−1, vi) ∈ E, 1 ≤ i ≤ n, holds. Note that
a path implies a sequence of directed edges. Therefore, it is sometimes useful to denote a
path (v0, v1, . . . , vk) by its sequence of directed edges (v0, v1), (v1, v2), . . . , (vk−1, vk).

The performance measure most widely used to analyze algorithms is the time an al-
gorithm spends until it presents its final answer. Time is expressed in terms of number
of elementary operations such as comparisons or branching instructions (see e. g. Pa-
padimitriou and Steiglitz (1998)). The time an algorithm needs to give the final answer
is analyzed with respect to the input size. The input of a combinatorial optimization
problem is a graph, a set of integers, and so on. To submit it to a computer it has to be
encoded or represented as a sequence of symbols of a finite alphabet. The size of the input
is the length of this sequence, that is, the number of symbols in it. In this work we are
dealing with combinatorial optimization problems where the task is to optimize different
properties for a given undirected graph. Consider an undirected graph G = (V, E) with n
vertices and m edges. This graph can be represented by an adjacency matrix AG = [aij]
where aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. Note that the adjacency matrix of a
given undirected graph is symmetric. An undirected graph may have up to

(

n
2

)

= Θ(n2)
edges. However if we are considering sparse graphs the number of edges is far less than

(

n
2

)

.
Therefore the representation as adjacency lists seems to be more suitable in this case. For
each vertex v ∈ V we record a set A(v) ⊆ V of vertices that are adjacent to it. The size

2.1. SINGLE-OBJECTIVE OPTIMIZATION 17

of the representation is given by the sum of the length of lists. As each edge contributes 2
to this total length we have to write down 2m elements. Another factor which effects the
total length of the representation is how to encode the vertices. Our alphabet has finite
size. Assume the alphabet is the set {0, 1}. Therefore we need Θ(log n) bits to encode
one single vertex. This implies that we need Θ(m log n) bits (or symbols) to represent the
graph G. In practice we say that a graph G can be encoded in Θ(m) space which seems
to be a contradiction to the previous explanation. The reason is that computers treat all
integers in their range the same. Here the same space is needed to store small integers as
for example 5 or big integers as for example 312. We assume that graphs are considered
where the number of vertices is within the integer range of the computer. This range is
is in most cases 0 to 231 which means that integers are represented by 32 bits. Therefore
Θ(m) is a reasonable approximation of the size of a graph and analyzing graph algorithms
with respect to m is accepted in practice. In most cases both parameters n and m are
taken into account when analyzing the complexity of a graph algorithm.

Another issue that has to be considered when representing the input of a given prob-
lem is that some combinatorial optimization problems such as the traveling salesperson
problem or the minimum spanning tree problem have parameters that consist of integers.
Then these problems involve operations such as addition and comparison of integers. It
may be the case that the integers are so large that such operations can not be handled
by the finite work length of our hypothetical computer. Then special techniques have to
be used to carry out such operations. Such techniques usually require an amount of time
that grows approximately as the logarithm of the integers. For simplicity each of such an
operation is often considered as an elementary step.

An important issue that comes up when considering combinatorial optimization prob-
lems is the classification of difficult problems (see e. g. Papadimitriou (1994) or We-
gener (2005a)). To distinguish between easy and difficult problems one considers the
class of problems that are solvable by a deterministic Turing machine in polynomial time
and problems that are solvable by a nondeterministic Turing machine in polynomial time.
The complexity class belonging to the first kind of problems is called P and the other one
is called NP . It is easy to see that P ⊆ NP holds, and widely assumed that P 6= NP .
For a lot of important combinatorial optimization problems it has been shown that they
are at least as difficult as the most difficult problems in NP . Such problems are called
NP -hard. As we assume that P 6= NP holds, we can not hope to come up with an algo-
rithm that finds for each instance of such a problem an optimal solution in polynomial time.

Considering graph algorithms where we can bound the runtime by a polynomial in n
and m we obviously get a polynomial time algorithm. We have to be careful when the input
includes numbers. Let N(I) be the largest integer that appears in the input. An algorithm
A is called pseudo-polynomial if it is polynomial in the input size |I| and N(I). Note that
N(I) can be encoded by Θ(log(N(I))) bits. Therefore a function that is polynomial in |I|
and N(I) is not necessarily polynomial in the input size. Often the input consists of small

18 CHAPTER 2. COMBINATORIAL OPTIMIZATION

integers. In the case that N(I) is bounded by a polynomial in |I|, A is a polynomial time
algorithm.

The classical approach to deal with NP-hard problems is to search for good approxi-
mation algorithms (see e. g. Hochbaum (1997) or Vazirani (2003)). These are algorithms
that run in polynomial time but guarantee that the produced solution is within a given
ratio of an optimal one. Such approximation algorithms can be of a totally different kind
for different optimization problems. In the case of the NP-hard bin packing problem even
simple greedy heuristics work very well whereas in the case of more complicated schedul-
ing problems often methods based on linear programming are used. In Chapter 8 we will
consider approximation algorithms that are based on local search procedures. The analysis
of one of these algorithms is based on a linear programming formulation of the considered
problem.

Another approach to solve NP-hard problems is to use sophisticated exact methods
that have in the worst case an exponential runtime. The hope is that such algorithms
produce for interesting problem instances good results in a small amount of time. A class
of algorithms that tries to come up with exact solutions is branch and bound. Here the
search space is shrunk during the optimization process by computing lower bounds on the
value of an optimal solution in the case that we are considering maximization problems.
The hope is to come up in a short period of time with a solution that matches such a lower
bound. In this case an optimal solution has been obtained.

A crucial point when considering combinatorial optimization problems and randomized
search heuristics that search more or less locally is the consideration of the neighborhood
of the current search point. Let s ∈ S be a search point in a given search space. The
neighborhood is defined by a mapping N : S → 2S. In the case that we are considering
combinatorial optimization problems from the search space {0, 1}n the neighborhood can
be naturally defined by all solutions having at most Hamming distance k to the current
solution s. The parameter k determines the size of the neighborhood from which the next
solution is sampled. Choosing a small value k, e. g. k = 1, such a heuristic may get stuck
in local optima. If the value of k is large (in the extreme case k = n) and all search
points of the neighborhood are chosen with the same probability, the next solution will be
somehow independent of s. This leads to randomized search heuristics that nearly behave
as choosing in each step a search point uniformly at random from {0, 1}n. In this case
the randomized search heuristic do not take the previously sampled function values into
account and the search can not be directed into “good” regions of the considered search
space.

2.2. MULTI-OBJECTIVE OPTIMIZATION 19

2.2 Multi-objective optimization

Many problems in computer science ask for solutions with certain attributes or properties
that can be expressed as functions mapping possible solutions to scalar numeric values.
The usual optimization approach is to take these attributes as constraints to determine the
feasibility of a solution, while one of them is chosen as an objective function to determine
the preference order of the feasible solutions. In the minimum spanning tree problem, as
a simple example, constraints are imposed on the number of connected components (one)
and the number of cycles (zero) of the chosen subgraph, while the total weight of its edges
is the objective to be minimized. A more general approach is multi-objective optimiza-
tion (see, e.g. Ehrgott (2005) or Papadimitriou and Yannakakis (2000)), where several
attributes are employed as objective functions and used to define a partial preference order
of the solutions, with respect to which the set of minimal (maximal) elements is sought.
Most of the best known single-objective polynomial solvable problems like shortest path
or minimum spanning tree become NP-hard when at least two weight functions have to be
optimized at the same time. In this sense, multi-objective optimization is considered as
more (at least as) difficult than (as) single-objective optimization.

In the case of multi-objective optimization the objective function f = (f1, . . . , fk) is
vector-valued, i. e., f : S → R

k. Since there is no canonical complete order on R
k, one

compares the quality of search points with respect to the canonical partial order on R
k,

namely f(s) ≤ f(s′) iff fi(s) ≤ fi(s
′) for all i ∈ {1, . . . , k}. A Pareto optimal search point

s is a search point such that (in the case of minimization problems) f(s) is minimal with
respect to this partial order and all f(s′), s ∈ S. Again there can be many Pareto optimal
search points but they do not necessarily have the same objective vector. The Pareto
front, denoted by F , consists of all objective vectors y = (y1, . . . , yk) such that there exists
a search point s where f(s) = y and f(s′) ≤ f(s) implies f(s′) = f(s). The Pareto set
consists of all solutions whose objective vector belongs to the Pareto front. The problem
is to compute the Pareto front and for each element y of the Pareto front one search point
s such that f(s) = y. We sometimes say that a search point s belongs to the Pareto front
which means that its objective vector belongs to the Pareto front.

As in any case of optimization problems one may be satisfied with approximate solu-
tions. This can be formalized as follows. For each element y of the Pareto front we have
to compute a solution s such that f(s) is close enough to y. Close enough is measured
by an appropriate metric and an approximation parameter. In the single-objective case
one switches to the approximation variant if exact optimization is too difficult. The same
reason may hold in the multi-objective case. There may be another reason. The size of
the Pareto front may be too large for exact optimization.

The Pareto front F may contain exponentially many objective vectors. Papadimitriou
and Yannakakis (2000) have examined how to approximate the Pareto front for different
multi-objective combinatorial optimization problems. W. l. o. g. they have considered the

20 CHAPTER 2. COMBINATORIAL OPTIMIZATION

task to maximize all objective functions. Given an instance I and a Parameter ǫ > 0 they
have examined how to obtain an ǫ-approximate Pareto set. This is a set of solutions X with
the property that there is no solution s′ such that for all s ∈ X fi(s

′) ≥ (1+ ǫ) · fi(s) holds
for at least one i. Their results show that there exists for each multi-objective optimization
problem an ǫ-approximate Pareto set X of solutions that is polynomially bounded in |I|
and 1/ǫ.

Papadimitriou and Yannakakis show that there exists an algorithm which constructs
such a set X which is polynomially bounded in |I| and 1/ǫ if and only if the corresponding
gap problem problem can be solved. Given an instance I of the considered problem and a
vector (b1, . . . , bk) the gap problem consists of either presenting a solution s with fi(s) ≥ bi,
1 ≤ i ≤ k, or answering that there is no solution s′ with fi(s

′) ≥ (1 + ǫ) · bi, 1 ≤ i ≤ k. In
the case of some multi-objective optimization problems (e. g. the multi-objective variants
of the minimum spanning tree problem and the shortest path problem) such a set can
also be computed within a time bound that is polynomial in |I| and 1/ǫ. Algorithms with
such properties constitute a multi-objective fully polynomial time approximation scheme
(FPTAS) which is the best we can hope for when dealing with NP-hard problems.

Especially in the case of multi-objective optimization, EAs seem to be a good heuristic
approach to obtain a good set of solutions. EAs have the advantage that they work at each
time step with a set of solutions called the population. This population is evolved to obtain
a good approximation of the Pareto front. In most cases the quality of a newly designed EA
is evaluated by experiments. In Chapter 9 we will consider the multi-objective minimum
spanning tree problem and examine which parts of the Pareto front can be obtained by a
simple EA in expected pseudo-polynomial time.

The question arises whether working in the more general framework of multi-objective
optimization can lead to better understanding of a given problem or help to design more
efficient algorithms for single-objective problems. Note that many single objective prob-
lems have additional constraints that classify feasible and unfeasible solutions of the given
search space. Such constraints can be relaxed such that additional objectives have to be
optimized. Then the set of minimal elements contains the solution of the corresponding
constrained single-objective problem. This has already been considered in the average case
analysis of a well-known algorithm for the 0/1 knapsack problem. Beier and Vöcking (2003)
have considered different input distributions for this problem and shown that the number
of minimal elements in the objective space is polynomially bounded. This implies that the
well-known algorithm of Nemhauser and Ullmann (1969) has an expected polynomial run-
time for these distributions. In Chapter 7 and 10 we will analyze the runtime of randomized
search heuristics for the computation of minimum spanning trees. Our results show that
randomized search heuristics find minimum spanning trees more easier in a multi-objective
model than in a single-objective one. A welcome byproduct of a successful multi-objective
approach is to obtain more information (a set of minimal elements instead of only one
specific element in it) with even less computational effort. This approach can also be used

2.2. MULTI-OBJECTIVE OPTIMIZATION 21

to obtain faster approximation algorithms for NP-hard problems. In Chapter 11 we will
show that a multi-objective formulation of NP-hard spanning tree problems can help to
come up with faster approximation algorithms for these problems.

22 CHAPTER 2. COMBINATORIAL OPTIMIZATION

Chapter 3

Randomized Search Heuristics

In this chapter, we give an introduction into the field of randomized search heuristics.
Mainly we will consider randomized heuristics belonging to the field of evolutionary com-
putation throughout this work. These algorithms are inspired by the evolution process in
nature and follow Darwin’s principle of the survival of the fittest. We take a closer look at
the different approaches developed in this field in Section 3.1. Another kind of bio-inspired
randomized search heuristic is ant colony optimization (ACO), which will be introduced
in Section 3.2. Here solutions for a given problem are constructed by walks of ants on a
so-called construction graph. To give a more complete picture we describe other popular
variants in Section 3.3.

A randomized search heuristic is a problem-independent algorithm to solve problems
from a considered search space although it might have modules that are adjusted to the con-
sidered problem or are combined with problem-dependent algorithms. The independence
from the considered problem distinguishes randomized search heuristics from problem-
dependent algorithms developed and analyzed in the classical algorithm community. In
contrast to the classical approach to algorithms where one designs an algorithm with the
task to prove bounds on the runtime and/or approximation quality in mind, randomized
search heuristics are general purpose algorithms. Assuming that one considers different
problems from the same search space, e.g. {0, 1}n, a randomized search heuristic is usually
applicable to each of these problems. Their easy adaptation to different problems usually
has to be paid by the disadvantage that the algorithm is often not rigorously analyzed with
respect to its runtime and/or approximation quality. Due to the No Free Lunch Theorem
(Wolpert and Macready (1997)) each algorithm behaves on average the same on all possible
functions f : S → R where S is an arbitrary finite search space and R is the finite set of
possible function values. This also implies that no randomized search heuristic behaves
on the average better than blind random search, where in each step a solution is drawn
uniformly at random from the considered search space. This should make clear that an
analysis of these algorithms with respect to their runtime makes only sense for specific
classes of functions or specific classes of problems.

23

24 CHAPTER 3. RANDOMIZED SEARCH HEURISTICS

In the general approach the only problem-dependent component of the algorithm is
the fitness function that guides the search. This function is the only part of such an al-
gorithm that has to be adjusted to the considered problem. Therefore, we get algorithms
that can be implemented very easily and adjusted quickly to similar problems. As already
mentioned randomized search heuristics are not designed to prove special properties on
the runtime or approximation quality. This makes a rigorous analysis of such algorithms
somehow more difficult than the analysis of an algorithm that has been designed in a spe-
cial way to prove properties such as the runtime or approximation quality of the algorithm.

We start with a general description of randomized search heuristics. Given a search
space S the aim is to optimize a considered function f : S → R where R is the set of all
possible function values. A randomized search heuristic working in a given search space
S under the consideration of a function f chooses the first search point s1 with respect
to a probability distribution on S that may be determined by a heuristic. After that
the function value f(s1) is computed. The search point st is chosen due to a probability
distribution that can depend on the previous sampled search points s1, . . . , st−1 and their
function values. The process is iterated until a stopping criterion has been fulfilled.

This description covers all important approaches such as evolutionary algorithms, ant
colony optimization, randomized local search, the Metropolis algorithm, and simulated
annealing.

3.1 Evolutionary algorithms

Evolutionary algorithms (EAs) have become quite popular since the mid ’60s of the last
century. Inspired by the evolution process in nature they try to solve problems by evolving
sets of search points such that satisfying results are obtained. A lot of tasks that have
been solved by EAs lie in the field of real-world applications. In real-world applications
the function to be optimized is often unknown and function values can only be obtained
by experiments. Often these experiments cause high costs or need a large amount of time.
Therefore, the main aim is to minimize the number of function evaluations until a satisfy-
ing result has been obtained.

The main difference between evolutionary algorithms and local search procedures or
simulated annealing is that evolutionary algorithms usually work at each time step with a
set of solutions which is called the population of an EA. This population produces a set of
solutions called the offspring population by some variation operators such as crossover or
mutation. After that a new population is created by selecting individuals from the parent
and offspring population due to the fitness function f . We consider discrete search spaces
throughout this work. In this case another important issue is that evolutionary algorithms
often have a positive probability of sampling each search point of the given search space
in the next step. In the case of local search and simulated annealing this is usually not

3.1. EVOLUTIONARY ALGORITHMS 25

the case. Here the search points that can be constructed in the next step depend on the
current solution and the neighborhood defined for the search process.

We want to take a look at the different modules of an EA. The first important issue
is representation. Solutions can be represented in different ways. A good example are the
different representations of spanning trees. For a given undirected connected graph with n
vertices and m edges the most natural representation seems to be a set of n−1 edges such
that the graph is connected. This is known as the representation of spanning trees by edge
sets (see Raidl and Julstrom (2003)). More general is to represent them as bitstrings of
length m, where each bit corresponds to an edge which is included in the solution if the bit
is set to 1 and excluded otherwise. In this case information to obtain a connected graph or
a spanning tree has to be included into the fitness function. We will use this representation
later for the analysis of EAs on the minimum spanning tree problem. There it turns out
that guiding such an algorithm to compute connected graphs or spanning trees is a minor
term in the overall complexity.

Spanning trees can also be represented by Prüfer numbers. A Prüfer number consists
of n−2 node identifiers which determine a spanning tree. This number can be decoded by
an algorithm into a corresponding spanning tree and a spanning tree can be encoded into a
Prüfer number using a complementary algorithm. The disadvantage is that small changes
in the Prüfer number can result in a totally different spanning tree. Therefore Prüfer num-
bers are a poor representation of spanning trees when using an EA (see Gottlieb, Julstrom,
Raidl, and Rothlauf (2001)). This is not the case when edge sets are considered. If the set
of edges is changed by one edge then the two spanning trees have of course n − 2 edges in
common. It should be clear that this point of locality is important for the success of an
EA. If only small changes lead to a completely different solution with also a fitness value
that does not depend on the last sampled search point, the search cannot be directed into
“good” regions of the search space.

An other issue of representation has recently been examined by Kehden and Neu-
mann (2006). They have investigated whether representing the population of an EA by
relations can speed up the computation time of an EA. It turns out that the computation
time for one generation can be reduced for some problems from Θ(n3) to O(n2.376) using
relational algebra if the population size is Θ(n) which is often the case. For larger popula-
tion sizes it is also possible to obtain this speed-up and save a factor of n0.624. The result
is obtained by a relation-algebraic view on the evaluation process for some of the most im-
portant graph problems such as minimum vertex covers, maximum cliques, and maximum
independent sets and makes use of the matrix multiplication algorithm by Coppersmith
and Winograd (1990). In a recent work of Cohn, Kleinberg, Szegedy, and Umans (2005)
it is conjectured that matrix multiplication can be done in time O(n2) which would imply
this upper bound for the computation time for one generation when working with relations
and populations of size Θ(n) for the mentioned problems.

26 CHAPTER 3. RANDOMIZED SEARCH HEURISTICS

Variation operators are important to construct new solutions. They have to be ad-
justed to the chosen representation. The most popular variation operators are mutation
and crossover. In the case of mutation one single individual is altered, in a crossover oper-
ation at least two individuals produce new solutions. Often in a first step crossover is used
to produce offsprings and these offsprings are additionally altered by a mutation operator.
Throughout this work we will analyze EAs that use only mutation to obtain new solutions.

Nevertheless, to give a more complete picture, we also present some popular crossover
operators for the search space {0, 1}n and the representation of permutations. Crossover
operators produce new search points by combining search points of the current population.
We first take a look at the case where solutions are represented as bitstrings of length n.
The most important crossover operators for individuals that are bitstrings of length n are
uniform and k-point crossover, where usually k ∈ {1, 2} is chosen. Consider two individuals
x = (x1, . . . , xn) and y = (y1, . . . , yn) that should produce a new solution z = (z1, . . . , zn) by
a crossover operator. In the case of uniform crossover Prob(zi = xi) = Prob(zi = yi) = 1/2
if xi 6= yi holds. Otherwise zi = xi = yi holds for the created child z. In the case of k-point
crossover k positions in the two bitstrings are selected at random. Due to these positions
the individuals are partitioned into different intervals, where the intervals are numbered due
to their appearance in the bitstrings. The new individual z is formed by taking all entries
of intervals with odd numbers from x and all entries of intervals with even numbers from y.

In the case of the representation of permutations it is a little bit more difficult to obtain
sensible crossover operators. We assume that we are working with permutations consisting
of n elements. Most crossover operators are applied to two parents P1 and P2 and produce
two offspring O1 and O2. To give an impression how crossover operators for permutation
problems are designed we consider the order crossover operator (OX-operator), which gets
two parameters i and j, 1 ≤ i, j ≤ n. W. l. o. g. we assume i < j. In a first step the
elements of P1 at positions i + 1, . . . , j − 1 are copied into O1 to the same positions. After
that the remaining elements of P2 are placed into O1. This is done by examining P2 from
position j on in a circular way and placing the elements that up to now do not occur in O1

at the next position where the positions j, . . . , n, 1, . . . , i are considered one after another.
In the same way the offspring O2 is constructed starting by copying the elements between
the positions i and j of P2 into O2.

We describe important mutation operators for the search space of binary strings and
permutations of elements in the following. In the case of bitstrings of length n each bit
is often flipped with a certain probability p, where p = o(1) usually holds. It is necessary
to choose p not too large to prevent the algorithm from sampling the next solution nearly
uniformly at random from a very large neighborhood of the parent solution. In a lot of
algorithms p = 1/n is used such that on average 1 bit is flipped. In the case of permuta-
tions with n elements often jumps or exchange operations are used. Both operations get
two parameters i and j, 1 ≤ i, j ≤ n. Then a jump(i, j) places the element at position
i at position j and shifts the elements between i and j, including j, into the appropriate

3.1. EVOLUTIONARY ALGORITHMS 27

direction. If i < j the elements are shifted to the left and shifted to the right if i > j.
An exchange(i, j) places the element at position i to position j and the element at po-
sition j to position i. W. l. o. g. assume that i < j holds for exchange(i, j). Then this
operation can be simulated by executing sequentially the two jump operations jump(i, j)
and jump(j − 1, i). In contrast to this ⌊k/2⌋ exchange operations are needed to simulate
jump(i, j) if |i − j| = k holds. Therefore the jump operator seems to be the more flexible
one. We will see later that this can make the difference between a polynomial and an
exponential expected runtime.

Selection methods are used to decide which individuals of the current population are
used to produce offsprings. In addition they are used to decide which individuals from
the parent and offspring population constitute the population of the next generation. A
widely used selection method is fitness-proportional selection. We assume that the func-
tion f should be maximized and that all function values are positive. If the population
contains µ individuals x1, . . . , xµ, then xi has probability f(xi)/(

∑µ
i=1 f(xi)) of being cho-

sen in each selection step. Note, that this selection method allows to choose individuals
more than once for a certain purpose. Therefore the population of the next generation
may include duplicates even if the parent and offspring population before have contained
only individuals that were pairwise distinct from each other. Another important method
is tournament selection. Here tournaments of size q ∈ {1, . . . , µ} are chosen. In each
tournament q individuals compete against each other. The individuals that take place in a
certain tournament are chosen uniformly at random from the population. In each tourna-
ment the individual with the highest fitness value wins the competition and is chosen for
reproduction respectively the next generation. Two other important selection methods are
(µ + λ)- and (µ, λ)-selection. These two methods have their main application in evolution
strategies. We will discuss the different approaches in evolutionary computation together
with these two methods in the following.

The class of evolutionary algorithms covers historically different approaches to solve
problems inspired by the evolution process in nature. The approaches differ by the search
spaces that are considered and the variation operators used to produce new search points.

Evolution strategies (ES) (see Rechenberg (1973) or Schwefel (1981, 1995)) are used
to solve continuous optimization problems. There usually a real-valued search space is
considered. Mutation is the variation operator that is mainly used in ES. The most impor-
tant strategies are called (µ, λ)- and (µ + λ)-ES and differ from each other by the chosen
selection method. In the case of a (µ, λ)-ES, the parent population has size µ and λ chil-
dren are produced in one generation. The next parent population is created by choosing
µ individuals from the offspring population. Note that in this case λ >> µ should hold as
the parent population is not involved in the selection process. In contrast to this a (µ + λ)
strategy considers both populations for the next parent population. After having created λ
children, individuals from the parent and the offspring population are chosen due to their
fitness values to build the parent population of the next generation.

28 CHAPTER 3. RANDOMIZED SEARCH HEURISTICS

Genetic algorithms (GAs) introduced by Holland (1975) work in discrete search spaces.
Here bitstrings of length n are used to represent possible solutions. The other main differ-
ence to evolution strategies is that crossover is seen as the variation operator that has the
main effect to get good solutions. Working with a population of size µ in each iteration µ
children are produced by using crossover. Mutation is seen as the minor variation operator.
If it takes place it is often applied to each child that has been produced by crossover. Then
each bit is flipped with a certain probability p where often p = 1/n is chosen. The major
selection method for GAs is fitness proportional selection. This method is used to select
the individuals that are used to obtain new solutions as well as to select the individuals
from the parents and children to form the population of the next generation. Another
variant is to produce only a few children in each iteration. In the extreme case one child
is produced. This is known as the steady state GA. A lot of theoretical work for GAs
has been concentrated on schemata. A schema fixes some positions in the bitstrings such
that a search space of a smaller dimension is obtained. It is assumed that genetic algo-
rithms combine schemata to obtain better ones. This implicitly assumes that the function
which should be optimized is separable and leads to the building block hypothesis. This
hypothesis says that functions are optimized by separating the variables and optimizing
functions that depend on these partitions. It is assumed that such a partitioning is found
by a GA and that the different blocks can be optimized in parallel. The problem is that
even simple functions are not separable. Despite the fact that the schema theorem con-
siders the behavior of a GA only in one step, the major lack is that the building block
hypothesis has no clear formulation that can be verified or falsified.

Evolutionary programming (EP) (see e. g. Fogel, Ownes, and Walsh (1966)) consid-
ers a representation that is fit to the problem. This means that the different parameters
that have to be optimized can have different codomains. The main variation operator is
mutation which can be handled very flexibly, and EP makes usually no use of crossover
operators. In a standard approach a parent population of size µ produces µ children by
mutation. The new parent population consists of µ individuals from the parents and chil-
dren that have been selected by a probabilistic selection method (e.g. fitness proportional
selection). In the selection step it is important to ensure that a best individual of the
parents and the children is integrated into the new parent population such that the best
solution found will not get lost during the optimization process.

Genetic programming (GP) developed by Koza (1990) is an evolutionary computation
approach that has become very popular in recent years. Instead of searching the considered
search space one tries to construct good computer programs that solve the given task.
Therefore, individuals are possible computer programs, usually represented as trees that
represent expressions. These trees are evolved during the evolution process. Similar to
the other approaches a set of computer programs constitutes a population, and a parent
population creates an offspring population using crossover and mutation. The fitness of a
given program is given by its performance with respect to the evaluation of some test cases.

3.2. ANT COLONY OPTIMIZATION 29

To select individuals from the parents and the children for the new parent population often
fitness-proportional selection is used.

3.2 Ant colony optimization

Ant colony optimization (ACO) is another bio-inspired approach to solve optimization
problems. Introduced by Dorigo, Maniezzo, and Colorni (1991) it has especially shown
to be successful to solve combinatorial optimization problems. A good overview over the
different techniques used in this field is given in the book of Dorigo and Stützle (2004).
In contrast to EAs where solutions are constructed from the current set of solutions, solu-
tions are in this case obtained by random walks on a so-called construction graph which
is usually a directed graph. ACO algorithms are inspired by the search of an ant colony
for a common source of food. It has been noticed that ants find very quickly a shortest
path to a source of food. The information about which way to take to get to the food is
distributed between the ants by leaving an information, called pheromone, on the way an
ant has taken. As longer paths to the source take much more time than shorter paths,
shorter paths are more often visited. This implies larger pheromone values on shorter paths
after a small amount of time.

These ideas are used to solve optimization problems. Solutions of a given problem are
obtained by random walks of ants on a construction graph that has positive values, the
pheromone values, on the edges. These values influence the random walks in the way that
edges with large values have a larger probability of being traversed. In addition the model
of ACO algorithms allows to include heuristic information to guide the random walks.
This information additionally influences the probability which vertex to visit next in the
random walk.

In an ACO algorithm each ant of the colony exploits the construction graph to search
for an optimal solution. We assume that the ant colony is a set A = {a1, . . . , ak} of k ants.
Each ai has a memory that can be used to store information about the path it has followed
so far. This memory can be used to build feasible solutions, compute a heuristic value η,
evaluate the solution that has been found, and retrace the path backwards. An ant has a
start state and one or more termination conditions. In a single step the ant moves from
a current vertex v of the construction graph to one of its successors. This move is chosen
due to a probabilistic rule and depends on the pheromone values on the edges, heuristic in-
formation associated with components and connections in the neighborhood of v, the ant’s
private memory, and the problem constraints. When adding a component to the solution
the ant builds up, it may update the pheromone value of the connection that corresponds
to this solution. This is not always done. Usually the pheromone values are updated after
the complete solution has been build. Here the ant retraces the path it has gone to build
up the solution and increases the pheromone values along these edges.

30 CHAPTER 3. RANDOMIZED SEARCH HEURISTICS

Let C = (V, E) be the construction graph of a given problem. The pheromone value of
an edge e = (u, v) ∈ E is denoted by τ(u,v). In addition it is possible to assign to each edge
(u, v) ∈ E a heuristic information η(u,v). We assume that an ant is at vertex u and denote
the set of allowed successors by N(u). Due to the problem constraints this set may be a
subset of the successors of u in C. The probability that the ant visits the vertex v ∈ N(u)
in the next step is given by

pv =
[τ(u,v)]

α · [η(u,v)]
β

∑

w∈N(v)[τ(u,w)]α · [η(u,w)]β
.

Here α, β ≥ 0 are parameters that determine the importance of the pheromone values
respectively the heuristic information. In the algorithm we consider for the analysis we will
use α = 1 and β = 0. This means that no heuristic information is taken into account and
that the probability of choosing a specific vertex v ∈ N(u) is proportional to the values of
all edges going from u to vertices of N(u).

In the update procedure of an ACO algorithm, the pheromone values are usually de-
creased by an amount that depends on the value before the update and the evaporation
factor ρ, 0 ≤ ρ ≤ 1. Let τ(u,v) be the pheromone value on edge (u, v) ∈ E before the update.
The value is decreased to (1 − ρ)τ(u,v) in a first step. This implies that information about
which paths are gone so far gets lost during the run of the algorithm and helps to escape
from local optima. In addition the pheromone values on edges an ant ai has traversed
are increased by a value ∆i that may depend on ρ as well as on the function value of the
solution the ant ai has constructed. Hence, the pheromone value τ ′

(u,v) of edge (u, v) after
the update is given by

τ ′
(u,v) = (1 − ρ)τ(u,v) +

k
∑

i=1

∆i.

There are different possibilities which ants to take into account for the update. If all
ants of the colony leave pheromone values on the edges this is known as the AS-update
rule. This is the update rule of the Ant System (AS) which was the first ACO algorithm
proposed in the literature (see Dorigo, Maniezzo, and Colorni (1991)). Using the AS-
update the amount by which an ant increases a pheromone value should depend on the
function value of the constructed solution as otherwise the pheromone values are totally
independent of the function f that should be optimized. Therefore, it would not be possible
to direct the search. In the case of the IB-update rule, where IB stands for iteration best,
the ants that have constructed the best solutions of the last iteration update the pheromone
values along the edges they have taken. Such an update introduces a much stronger bias
towards the best solutions found so far. In the case of the best so far update, BS-update
for short, the pheromone values on the edges are only increased if there has been a solution
constructed in the last iteration that is at least as good as the best solution constructed
since the first iteration of the algorithm. For our analysis in Chapter 8 we will consider a
simple ACO algorithm that uses the BS-update rule.

3.3. OTHER RANDOMIZED SEARCH HEURISTICS 31

3.3 Other randomized search heuristics

In this section we describe other import randomized heuristics that have been proposed.
One important method is randomized local search (RLS). This can be seen as a simplifi-
cation of the perhaps simplest evolutionary algorithms called (1+1) EA. In the case of a
runtime analysis for the (1+1) EA, RLS is often considered in a first step and the results
are later adjusted to the EA. Local search procedures work with a predefined neighbor-
hood and have problems if there is no better solution in this neighborhood than the current
one. Then they get stuck in local optima. To escape from local optima the Metropolis
algorithm (MA) allows to accept worsenings with a certain probability that depends on a
parameter that is called the temperature. It has been shown to be useful in an approach
called simulated annealing (SA) to vary this temperature over the time starting with a
high temperature and cooling it down during the run of the algorithm.

3.3.1 Randomized local search

Apart from sampling in each iteration a search point from the given search space uniformly
at random, randomized local search seems to be the simplest randomized search heuristic
that can be considered. RLS works in each iteration with one single solution s. A new
solution s′ is constructed from s by choosing one individual from the neighborhood of s.
s is replaced by s′ if s′ is not inferior to s. The definition of the neighborhood is a crucial
parameter. If it is too small RLS often gets stuck in local optima. If the neighborhood is
too large even individuals that are close to the current solution may only get a too small
probability of being chosen in the next step and RLS behaves like random sampling search
points from the search space independently of s. Considering problems from the search
space {0, 1}n RLS often uses a neighborhood that is defined by all search points that have
Hamming distance 1 or 2 to the current solution s.

In the case of local search procedures the complexity class PLS (polynomial local
search) has been introduced by Johnson, Papadimitriou, and Yannakakis (1988). Some
important problems that are PLS-complete can be found in Papadimitriou, Schäffer, and
Yannakakis (1990). For each instance I of a given problem P we have a set of feasible
solutions FI , such that given I and FI , it is easy to decide for a solution s whether s ∈ FI

holds. Then we can produce in polynomial time a feasible solution s0 ∈ FI , which is usually
called the initial solution of a local search heuristic. Evaluating s with respect to the fitness
function f should be possible in polynomial time. In addition the test whether s is local
optimal should be possible in polynomial time. If there is a better s′ in the neighborhood
of s such a solution is produced. We denote by A the following computational problem:
Given an input I, find a locally optimal solution s ∈ FI . A PLS-reduction from problem
A to another problem B is defined in terms of two polynomial computable functions g and
h. Given an instance I of A, g computes an instance g(I) of B such that for any local
optimum s of g(I), h(s, I) is a local optimum of I. The functions g and h should not only
be polynomial, but also logspace-computable.

32 CHAPTER 3. RANDOMIZED SEARCH HEURISTICS

The first problem that has been shown to be PLS-complete is FLIP. In this problem
a circuit with many binary inputs and outputs is given. A solution is an input to the
circuit and the fitness is the output read as a binary integer. The neighborhood of an
input is defined by all solutions s′ that have Hamming distance 1 to the current solution
s. In the case that we are not only interested in finding a local optimal solution, but a
local optimum reachable by local improvements from a given feasible solution, FLIP and
many PLS-complete problems (including the following two problems) become PSPACE-
complete. Problems defined in this way are called the standard local optimum version of
the given problem. 2SAT is PLS-complete with a neighborhood defined by solutions of
Hamming distance 1. Here a Boolean formula in CNF with two literals per clause is given.
In addition weights are assigned to the clauses. The aim is to maximize the sum of weights
of clauses that are satisfied. In the case of the MAXCUT problem a weighted graph is
given. A solution is a set of nodes and the aim is to maximize the sum of weights of edges
leaving this set of nodes. In the case of the SWAP-neighborhood, where the symmetric
difference of two solutions contains exactly one node, the problem is known to be PLS-
complete.

One of the best-known examples for local search is the Lin-Kernighan algorithm (see
Lin and Kernighan (1973)) for the traveling salesperson problem (TSP). In the traveling
salesperson problem a complete graph with positive edge weights is given and one searches
for a tour of minimum cost which visits all nodes exactly once and returns to the start
node. The Lin-Kernighan algorithm relies on the 2-exchange neighborhood for the TSP. A
tour T ′ is a neighbor of a tour T if T and T ′ differ exactly by 2 edges. The Lin-Kernighan
algorithm allows changes of arbitrarily many edges. It has been shown that a variant of the
Lin-Kernighan algorithm is PLS-complete and that the standard local optimum version of
the problem is PSPACE-complete.

Despite these negative results local search is a technique that has been used in many
different applications and produced good results. Papadimitriou, Schäffer, and Yannaka-
kis (1990) state that there are many empirically fast algorithms for the mentioned problems
and remark that there is no family of PSPACE-complete problems that behaves empirically
in such a positive way.

Despite its simplicity RLS is not easy to analyze. RLS sampling in each iteration solu-
tions defined by sampling solutions that have Hamming distance 1 or 2 from the current
solution s has been considered by Giel and Wegener (2003) for the maximum matching
problem as a starting point for the analysis of a simple evolutionary algorithm called
(1+1) EA. They have shown that RLS finds a maximum matching for graphs that consist
of one single path with m edges in expected time O(m4). In the case that the input graph
is a tree the expected time of RLS to obtain an optimal solution is O(m6) which has been
shown by Giel and Wegener (2004) in an extension of their previous work.

3.3. OTHER RANDOMIZED SEARCH HEURISTICS 33

Another important analysis for RLS has been done by Witt (2005). He has considered
an NP-hard scheduling problem with n jobs on two identical machines and shown that
RLS finds a factor 4/3-approximation of an optimal solution in expected time O(n2). By
presenting an example instance he has shown the RLS can not achieve a better approxima-
tion ratio in expected polynomial time as there is a constant probability that RLS needs
an exponential optimization time. As randomized search heuristics often use multi-starts
to cope with small failure probabilities, he has investigated whether multi-starts can help.
His analysis shows that multi-starts of RLS lead to a polynomial-time randomized approx-
imation scheme (PRAS). In addition he has analyzed RLS on random instances of the
partition problem. Witt also uses RLS as a starting point for the analysis of the (1+1) EA
on the partition problem and the mentioned results transfer to the (1+1) EA.

3.3.2 Metropolis algorithm

In contrast to RLS the following two approaches accept worsenings during the optimization
process. The acceptance of a worsening depends on the difference of the fitness values of s
and s′ and a so-called temperature T . In the case of the Metropolis algorithm (MA) this
temperature is a fixed parameter and therefore constant during the optimization process.
We assume that we are considering a function f that should be maximized. In the case
that f(s′) ≥ f(s) holds, s is replaced by s′. In the other case s is replaced by s′ with

probability M(s, s′, T) = e−
f(s)−f(s′)

T where M is called the Metropolis function.

MA has been subject to the rigorous analysis with respect to its runtime for the NP-hard
graph bisection problem (Jerrum and Sorkin (1998)). Let G = (V, E) be an undirected
graph where |V | is even. A bisection of G is a partitioning of V into sets L and R with
|L| = |R| = n/2. The cut-width of a bisection is defined as the number of edges that
have exactly one endpoint in L and one endpoint in R. One is interested in finding a
bisection with minimum cut-width. Jerrum and Sorkin have considered MA for finding an
optimal bisection of a random graph G = (V, E) where an edge between vertices of the
same partition occurs with probability p and an edge between vertices of L and R occurs
with probability r. In the case that p− r = Θ(n∆−2) for a parameter ∆ with 3/2 < ∆ ≤ 2,
such a random graph specifies with high probability a planted bisection of density r which
separates L and R that have a slightly higher density p (see Bui, Chaudhuri, Leighton,
and Sipser (1984)). Then it can be shown that MA for an appropriate choice of T finds
the optimal solution in about O(n2) steps with high probability if ∆ ≥ 11/6.

3.3.3 Simulated annealing

Simulated annealing (SA) can be seen as MA that uses different temperatures during the
run of the algorithm. Starting with a temperature T0 the temperature is decreased during
the optimization process according to a cooling schedule. Such a cooling schedule can be
adaptive or non-adaptive. In the case of a non-adaptive cooling schedule the tempera-
ture Ti is known in advance for all time steps i. In the case of adaptive cooling schedules

34 CHAPTER 3. RANDOMIZED SEARCH HEURISTICS

...

m
21 1

m

1 1

m

m
2

m
3 m

3

m
2

m
2

Figure 3.1: Connected triangles with two different weight profiles

the temperature for a given time step i may depend on the history of sampled search points.

For a long time there were only artificial example functions (Sorkin (1991)) where it
could be proven that a cooling schedule can be useful to reduce the runtime significantly.
Recently, Wegener (2005b) has presented the first “natural” example where this is the
case. He has shown that SA can outperform MA for each fixed temperature on a class
of instances of the minimum spanning tree problem. Wegener has investigated connected
triangles (see Figure 3.1) with m = 6n edges and 4n + 1 vertices. The structure of this
graph is the same as the triangle part of the graph we will investigate in Chapter 7 for
the analysis of evolutionary algorithms until they have computed a minimum spanning
tree. The number of triangles equals 2n. Each triangle gets a weight profile (w1, w2, w3)
which is the ordered vector of the three edge weights. The basic idea is to construct weight
profiles such that for each fixed temperature it is hard to optimize all triangles while an
appropriate cooling scheduling is able to optimize all triangles. Wegener uses n triangles
with the weight profile (1, 1, m) and n triangles with the weight profile (m2, m2, m3). Then
he distinguishes between high temperatures (T ≥ m) and low temperatures (T < m). He
shows that high temperatures are not able to optimize the triangles with the weight profile
(1, 1, m) and low temperatures are not able to optimize the triangles with weight profile
(m2, m2, m3) in a polynomial number of steps. Hence, different temperatures are necessary
to find an optimal solution solution quickly. An optimal solution can be obtained in a
polynomial number of steps by using an appropriate cooling scheduling in SA.

Part II

Algorithms and Basic Methods for
the Analysis

35

Chapter 4

Algorithms to be analyzed

In this chapter we introduce the randomized search heuristics that will be subject to
the analysis throughout this work. We start by describing algorithms for single-objective
optimization problems in Section 4.1. There we consider different variants of RLS and
variants of a well-known evolutionary algorithm called (1+1) EA. After that we introduce
a simple ACO algorithm where in each iteration one ant performs a random walk on the
construction graph. In Section 4.2 we take a look at the multi-objective randomized search
heuristics that will be analyzed. These heuristics can be seen as a generalization of RLS
and the (1+1) EA to the multi-objective case.

4.1 Single-objective optimization problems

In this section we want to introduce the randomized search heuristics that we will consider
for single-objective optimization problems. We investigate heuristics for discrete search
spaces. Most of the problems we examine in this work are graph problems where one
searches for a good set of edges or a good permutation of the edges. For a given graph
with n vertices and m edges the dimension of the search space is m. We consider three
variants of randomized local search. One is working with bitstrings of length m and two are
working with permutations of m elements which distinguish from each other by the chosen
operator to produce new solutions. After having defined these algorithms we extend them
to evolutionary algorithms. In the case of ACO algorithms we consider a simple algorithm
where one ant produces solutions that are bitstrings. We will see later that this algorithm
can be seen as a generalization of the (1+1) EA when considering the binary case.

4.1.1 Randomized local search

Randomized local search in the binary case produces from a current solution s ∈ {0, 1}m

a new one s′ using the following operator:

• Choose i ∈ {1, . . . , m} randomly and flip the ith bit of s.

37

38 CHAPTER 4. ALGORITHMS TO BE ANALYZED

Here we use the notion “choose randomly” for a choice according to the uniform distribu-
tion.

We will sometimes also call the operator of RLS that produces new solutions mutation
operator. Flipping one single bit is not useful for most graph problems. Often the number
of ones (or edges) is the same for all good search points, e. g. for TSP or minimum span-
ning trees. Then all Hamming neighbors of good search points are bad implying that we
have many local optima. Therefore, we work with the larger neighborhood of Hamming
distance 2. This mutation operator has already been discussed for maximum matchings
by Giel and Wegener (2003).

We will investigate the runtime of randomized local search for spanning tree prob-
lems and consider the following variant of RLS for the binary case, which we describe for
minimizing a fitness function f .

Algorithm 4.1.1 (RLSb)

1. Choose s ∈ {0, 1}m randomly.

2. Choose b ∈ {0, 1} randomly. If b = 0, choose i ∈ {1, . . . , m} randomly and define s′

by flipping the ith bit of s. If b = 1, choose (i, j) ∈ {(k, l) | 1 ≤ k < l ≤ m} randomly
and define s′ by flipping the ith and the jth bit of s.

3. Replace s by s′ if f(s′) ≤ f(s).

4. Repeat Steps 2 and 3 forever.

For all the randomized search heuristics we consider no stopping criterion is defined.
In applications this is, of course, necessary. Often such an algorithm is stopped after a
predefined number of iterations or if no progress has been made for a certain number of
steps. We consider the algorithms we analyze as infinite stochastic processes and are in-
terested in the number of fitness evaluations until a given task has been achieved. In the
case of exact optimization the number of fitness evaluations until an optimal solution has
been produced is investigated. Often the expectation of this value is analyzed and called
the expected optimization time of the considered algorithm. Especially in the case where
one can not hope to compute optimal solutions in a polynomial number of steps, e.g. for
NP-hard problems, one is interested in the number of fitness evaluations until the algo-
rithm has produced a good approximation of an optimal solution.

In the case that we are searching for a good permutation of the input elements, jumps
and exchanges (see Section 3.1) are popular operators that lead to new solutions. Both
operators have been integrated into one mutation operator by Scharnow, Tinnefeld, and
Wegener (2002, 2004) for the sorting problem. We consider these two operators separately
from each other and introduce two algorithms that search for good permutations of given
input elements. The algorithm RLSp executes in one mutation step exactly one jump

4.1. SINGLE-OBJECTIVE OPTIMIZATION PROBLEMS 39

operation. This jump is chosen according to the uniform distribution among all possible
jumps which means that the positions i and j are chosen uniformly at random from the set
{1, . . . , m}. Our algorithm starts with a permutation π which is chosen randomly from the
set Sm that consists of all permutations of m elements. We will analyze such randomized
search heuristics until they have found a good permutation of the edges of a given graph
for the Eulerian cycle problem. The underlying fitness function should be maximized.
Therefore, we describe RLSp as follows.

Algorithm 4.1.2 (RLSp)

1. Choose π ∈ Sm randomly.

2. Choose i und j randomly and define π′ by executing jump(i, j) on π.

3. Replace π by π′ if f(π′) ≥ f(π).

4. Repeat Steps 2 and 3 forever.

In a similar way we define the algorithm RLS∗
p which uses exchange operations instead

of jumps. As already discussed in Section 3.1 exchange operations do not seem to be as
flexible as jump operations. We will see later that this can make the difference between a
polynomial and an infinite expected optimization time for randomized local search.

Algorithm 4.1.3 (RLS∗
p)

1. Choose π ∈ Sm randomly.

2. Choose i und j randomly and define π′ by executing exchange(i, j) on π.

3. Replace π by π′ if f(π′) ≥ f(π).

4. Repeat Steps 2 and 3 forever.

4.1.2 Simple evolutionary algorithms

The evolutionary algorithms that we consider for single-objective optimization problems
use a population of size one and produce at each time step one single child. They can
be seen as variants of RLS which we have introduced in the last section with a more
flexible mutation operator. Usually, a mutation operator in this scenario should be able to
search globally. Here each search point of the considered search space should get a positive
probability of being chosen in the next step. Again we consider the algorithm for the search
space {0, 1}m first. The perhaps simplest evolutionary algorithm that can be considered
in this case is (1+1) EAb. Starting with a randomly chosen bitstring s of length m the
algorithm produces in each iteration a child by flipping each bit of s with probability 1/m.
We can describe (1+1) EAb for minimizing a fitness function f as follows.

40 CHAPTER 4. ALGORITHMS TO BE ANALYZED

Algorithm 4.1.4 ((1+1) EAb)

1. Choose s ∈ {0, 1}m randomly.

2. Produce s′ by flipping each bit of s independently of the other bits with probability
1/m.

3. Replace s by s′ if f(s′) ≤ f(s).

4. Repeat Steps 2 and 3 forever.

(1+1) EAb has been the subject of the first analyses of evolutionary algorithms with
respect to their expected optimization time. In the beginning the behavior of this algo-
rithm on pseudo-boolean functions that depend on n variables has been considered. Some
of first main results have been obtained by Droste, Jansen, and Wegener (2002). It has
been shown that the expected time to reach an optimal search point by this algorithm in
the considered search space is always bounded above by nn as the probability to choose
an optimal search point in the next step is at least n−n. More detailed analyses consider
pseudo-boolean functions with different properties. One major result is that the expected
optimization time on linear functions is O(n log n). The class of functions of degree two is
too huge to get a polynomial upper bound on the runtime for each function as optimizing
polynomials of degree at least two is NP-hard.

Similar to (1+1) EAb we define the EAs for permutation problems. For large m the
binomial distribution can be approximated very well by the Poisson distribution. In addi-
tion we assure that at least one operation is executed in each mutation step. We consider
the EAs that search for good permutations with respect to the Eulerian cycle problem and
define them for maximizing a fitness function f . The algorithm (1+1) EAp which uses
jumps for mutation can be described as follows.

Algorithm 4.1.5 ((1+1) EAp)

1. Choose π ∈ Sm randomly.

2. Define π′ in the following way. Choose l according to a Poisson distribution with
parameter λ = 1 and perform sequentially l + 1 randomly chosen jump operations to
produce π′ from π.

3. Replace π by π′ if f(π′) ≥ f(π).

4. Repeat Steps 2 and 3 forever.

For RLSp and RLS∗
p we will show that switching from jumps to exchanges can turn

a polynomial expected optimization time into an infinite one. In the case of the EAs we
consider, each search point has a positive probability of being chosen in the next step.
Nevertheless we will show in Chapter 6 that switching from jumps to exchanges can make

4.1. SINGLE-OBJECTIVE OPTIMIZATION PROBLEMS 41

the difference between a polynomial and an exponential expected optimization also for
simple EAs. We define the algorithm (1+1) EA∗

p which uses exchanges instead of jumps
similar to the previous one.

Algorithm 4.1.6 ((1+1) EA∗
p)

1. Choose π ∈ Sm randomly.

2. Define π′ in the following way. Choose l according to a Poisson distribution with
parameter λ = 1 and perform sequentially l+1 randomly chosen exchange operations
to produce π′ from π.

3. Replace π by π′ if f(π′) ≥ f(π).

4. Repeat Steps 2 and 3 forever.

4.1.3 A simple ant colony optimization algorithm

Gutjahr (2003) has considered a graph-based ant system and investigated under which
conditions such an algorithm converges to an optimal solution. We consider a simple
graph-based ant system metaheuristic that has been inspired by this algorithm. Such a
heuristic produces solutions by random walks on a construction graph. Let C = (V, E)
be the directed construction graph with a designated start vertex s and pheromone values
τ on the edges. Starting at s, an ant traverses the construction graph depending on the
pheromone values using Algorithm 4.1.7. Assuming that the ant is at vertex v, it moves to a
successor w of v, where w is chosen proportional to the pheromone values of all non-visited
successors of v. The process is iterated until a situation is reached where all successors of
the current vertex v have been visited.

Algorithm 4.1.7 (Construct(C, τ))

1. v:=s, mark v as visited.

2. While there is a successor of v in C that has not been visited:

(a) Let Nv be the set of non-visited successors of v and T :=
∑

w∈Nv
τ(v,w).

(b) Choose one successor w of v where the probability of selection of any fixed u ∈ Nv

is τ(v,u)/T .

(c) Mark w as visited, set v := w and go to 2..

3. Return the solution x and the path P (x) constructed by this procedure.

Based on this construction procedure, solutions of our simple ACO algorithm (see
Algorithm 4.1.8) called 1-ANT are constructed. In the initialization step, each edge gets a
pheromone value of 1/|E| such that the pheromone values sum up to 1. After that, an initial

42 CHAPTER 4. ALGORITHMS TO BE ANALYZED

solution x∗ is produced by a random walk on the construction graph and the pheromone
values are updated with respected to this walk. In each iteration, a new solution x is
constructed and the pheromone values are updated if this solution is not inferior to the
currently best solution x∗. We formulate our algorithm for maximization problems although
it can be easily adapted to minimization.

Algorithm 4.1.8 (1-ANT)

1. Set τ(u,v) = 1/|E| for all (u, v) ∈ E.

2. Compute x (and P (x)) using Construct(C, τ).

3. Update(τ, P (x)) and set x∗ := x.

4. Compute x (and P (x)) using Construct(C, τ).

5. If f(x) ≥ f(x∗), Update(τ, P (x)) and set x∗ := x.

6. Go to 4.

Again we are interested in the optimization time. In this case it equals the number of
constructed solutions until the algorithm has produced an optimal search point.

We take a general view and consider optimization for pseudo-boolean goal functions
f : {0, 1}n → R for n ≥ 3. We investigate the construction graph Cbool = (V, E) (see
Figure 4.1) with s = v0. In the literature this graph is known as Chain (Gutjahr (2006)).
Optimizing bitstrings of length n, the graph has 3n + 1 vertices and 4n edges. The de-
cision whether a bit xi, 1 ≤ i ≤ n, is set to 1 is made at node v3(i−1). In case that
the edge (v3(i−1), v3(i−1)+1) is chosen, xi is set to 1 in the constructed solution. Other-
wise xi = 0 holds. After this decision has been made, there is only one single edge
which can be traversed in the next step. In case that (v3(i−1), v3(i−1)+1) has been chosen,
the next edge is (v3(i−1)+1, v3i), and otherwise the edge (v3(i−1)+2, v3i) will be traversed.
Hence, these edges have no influence on the constructed solution and we can assume
τ(v3(i−1) ,v3(i−1)+1) = τ(v3(i−1)+1 ,v3i) and τ(v3(i−1) ,v3(i−1)+2) = τ(v3(i−1)+2,v3i) for 1 ≤ i ≤ n. We call
the edges (v3(i−1), v3(i−1)+1) and (v3(i−1)+1, v3i) 1-edges and the other edges 0-edges. The
edges (v3(i−1), v3(i−1)+1) and (v3(i−1), v3(i−1)+2) as well as (v3(i−1)+1, v3i) and (v3(i−1)+2, v3i)
are called complementary to each other.

The pheromone values are chosen such that at each time
∑

(u,v)∈E τ(u,v) = 1 holds. In

addition, it seems to be useful to have bounds on the pheromone values (see e. g. Dorigo and
Blum (2005)) to ensure that each search point has a positive probability of being chosen in
the next step. We restrict each τ(u,v) to the interval

[

1
2n2 ,

n−1
2n2

]

and ensure
∑

(u,·)∈E τ(u,·) = 1
2n

for u = v3i, 0 ≤ i ≤ n−1, and
∑

(·,v) τ(·,v) = 1
2n

for v = v3i, 1 ≤ i ≤ n. This can be achieved
by normalizing the pheromone values after an update and replacing the current value by

1
2n2 if τ(u,v) < 1

2n2 and by n−1
2n2 if τ(u,v) > n−1

2n2 holds. Depending on whether the edge (u, v) is

4.2. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 43

. . .v0

v1

v2

v3

v4

v5

v6

v3(n−1)+1

v3n

x1 x2 xn

v3(n−1)

v3(n−1)+2

Figure 4.1: Construction graph Cbool for pseudo-boolean optimization

contained in the path P (x) of the accepted solution x, the pheromone values are updated
to τ ′ in the procedure Update(τ, P (x)) as follows:

τ ′
(u,v) = min

{

(1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
,
n − 1

2n2

}

if (u, v) ∈ P (x)

and

τ ′
(u,v) = max

{

(1 − ρ) · τ(u,v)

1 − ρ + 2nρ
,

1

2n2

}

if (u, v) /∈ P (x).

Due to the bounds on the pheromone values, the probability of fixing xi as in an
optimal solution is at least 1/n. Hence, 1-ANT finds an optimum for each pseudo-boolean
function fregardless of ρ in expected time at most nn.

4.2 Multi-objective optimization problems

The rigorous analysis of the expected optimization time of evolutionary algorithms is not
easy. Most of such results are on simple evolutionary algorithms like the (1+1) EAb. This
is even more true for multi-objective optimization. Therefore, we investigate and analyze
a simple algorithm called SEMO (Simple Evolutionary Multi-Objective Optimizer) due to
Laumanns, Thiele, Zitzler, Welzl, and Deb (2002).

The fitness of a search point s is given by a vector f(s) = (f1(s), . . . , fk(s)). W. l. o. g.
we assume that each function fi should be minimized and write f(s) ≤ f(s′) iff fi(s) ≤
fi(s

′) holds for all i, 1 ≤ i ≤ k. A solution s domintates a solution s′ iff f(s) ≤ f(s′)
and f(s) 6= f(s′) holds. If s dominates s′ we also say that f(s) dominates f(s′). We will
analyze the multi-objective evolutionary algorithms (MOEAs) until they have achieved
certain goals for spanning tree problems. In the case of polynomially solvable problems we
are interested in the time until for each Pareto optimal objective vector a solution has been
produced whereas in the case of NP-hard problems we are interested in the time to achieve
a good approximation of the Pareto front. We search for a set of edges that is described
by a bitstring of length m. The algorithm starts with an initial solution s ∈ {0, 1}m. All
non-dominated solutions are stored in the population P . In each step a search point from
P is chosen uniformly at random and one bit is flipped to obtain a new search point s′.

44 CHAPTER 4. ALGORITHMS TO BE ANALYZED

The new population contains for each non-dominated fitness vector f(s), s ∈ P ∪{s′}, one
corresponding search point and in the case that f(s′) is not dominated s′ is chosen.

In the case of multi-objective optimization we are interested in the number of rounds
until a desired goal has been achieved. In the case where we consider exact optimization,
we are interested in the number of rounds until f(P) := {f(s)|s ∈ P} equals the Pareto
front. As even simple single-objective problems get NP-hard when an additional objective
has to be optimized at the same time, we are also interested in approximating the Pareto
front for difficult problems.

Algorithm 4.2.1 (SEMO)

1. Choose an initial solution s.

2. Determine f(s) and initialize P := {s}.

3. Repeat

(a) Choose s ∈ P randomly.

(b) Choose i ∈ {1, . . . , m} randomly.

(c) Define s′ by flipping the ith bit of s.

(d) Determine f(s′),

(e) Let P unchanged, if there is an s′′ ∈ P such that f(s′′) ≤ f(s′) and f(s′′) 6= f(s′)

(f) Otherwise, exclude all s′′ where f(s′) ≤ f(s′′) from P and add s′ to P .

Note that the described algorithm differs from the original version of SEMO by replac-
ing an individual s′′ of P by s′ if f(s′′) = f(s′) holds. Applying our version of SEMO to
a single-objective optimization problem, we obtain RLS where in each step a single bit is
flipped. All results obtained in this work also hold for the original version of SEMO but it
seems to be more typical for search heuristics to replace search points by other ones with
the same quality (e.g., simulated annealing works this way). If SEMO starts with a search
point s that is a local optimum, then P = {s} forever.

As in the case of RLSb and (1+1) EAb this local mutation operator is motivated by
the fact that this choice simplifies the analysis. Giel (2003) has considered an algorithm
called Global SEMO (GSEMO) which uses the usual mutation operator of evolutionary
algorithms.

4.2. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 45

Algorithm 4.2.2 (Global SEMO (GSEMO))

1. Choose an initial solution s.

2. Determine f(s) and initialize P := {s}.

3. Repeat

(a) Choose s ∈ P randomly.

(b) Define s′ by flipping each bit of s independently of the other bits with probability
1/m.

(c) Determine f(s′),

(d) Let P unchanged, if there is an s′′ ∈ P such that f(s′′) ≤ f(s′) and f(s′′) 6= f(s′)

(e) Otherwise, exclude all s′′ where f(s′) ≤ f(s′′) from P and add s′ to P .

Global SEMO applied to single-objective optimization problems equals (1+1) EAb if
the initial solution is chosen uniformly at random. In Chapter 10 we will compare SEMO
and GSEMO with RLSb and (1+1) EAb for the computation of minimum spanning trees.

46 CHAPTER 4. ALGORITHMS TO BE ANALYZED

Chapter 5

Basic Methods for the Analysis

Until the early ’90s of the last century theory on evolutionary algorithms has mainly been
dealt with the consideration of convergence of EAs or results that show the behavior of
an EA in one single iteration. The first runtime analysis of an EA has been given by
Mühlenbein (1992). Evolutionary algorithms are randomized search heuristics but for a
long time they have not been analyzed in the way people from the classical algorithm
community would normally do. The main reason for that is that the people that have
worked on theoretical aspects of evolutionary computation have had another background
than people from theoretical computer science or discrete mathematics have. Regarding
evolutionary algorithms as a class of randomized algorithms a lot of strong methods are
available. Such methods have already been applied in the field of randomized algorithms
(see e. g. Motwani and Raghavan (1995)). A very important issue when analyzing the run-
time of EAs is the application of large deviation inequalities such as Chernoff bounds or
Markov’s inequality. Another useful method is to follow the considerations for the coupon
collectors problem. Since the mid ’90s, a lot of new methods for analyzing the runtime of
EAs have been obtained. In this chapter, we want to discuss some important methods that
have been used. These methods will be applied in our analysis of evolutionary algorithms
for combinatorial optimization problems.

To show how to apply different methods that have been developed, we consider the
class of linear pseudo-boolean functions. A linear pseudo-boolean function f : {0, 1}n → R

is defined by

f(x) = w1x2 + w2x2 + . . . + wnxn,

where wi ∈ Z.

W. l. o. g. we assume that all wi attain non-negative values. The case of (partially)
negative weights can be handled analogously to the following investigations as a weight
wi 6= 0 determines independently of the other weights whether the bit xi has to be set to
1 or 0 in an optimal solution. In the case that some weights are 0 the function value does
not depend on the corresponding bits. The upper bound given in Theorem 5.3.1 also holds

47

48 CHAPTER 5. BASIC METHODS FOR THE ANALYSIS

in this case, but the lower bound given in Theorem 5.2.1 needs the condition that there
are Θ(n) weights which are distinct from 0.

5.1 Fitness-based partitions

This simple method has been used for a wide class of problems. We assume that we are
considering a randomized search heuristic that works in each iteration with one solution
that produces one offspring. All variants of RLS and the (1+1) EA we have discussed in
Section 4.1 fit into this scenario. Assume that we are working in a search space S and
consider w.l.o.g. a function f : S → R that should be maximized. S is partitioned into
disjoint sets A1, . . . , Am such that A1 <f A2 <f . . . <f Am holds, where Ai <f Aj means
that f(a) < f(b) holds for all a ∈ Ai and all b ∈ Aj . In addition Am contains only optimal
search points. We denote for a search point x ∈ Ai by p(x) the probability that in the next
step a solution x′ ∈ Ai+1 ∪ . . . ∪ Am is produced. Let pi = mina∈Ai

p(x) be the smallest
probability of producing a solution with a higher partition number.

Lemma 5.1.1 The expected optimization time of a randomized search heuristic that works
at each time with a population of size 1 and produces at each time step a new solution from
the current solution is upper bounded by

∑m−1
i=1 (1/pi).

Proof: The expected time of a success for independent Bernoulli trials with probability p
is 1/p. Hence the expected time to produce from a search point x ∈ Ai a search point x′

with x′ ∈ Aj, j > i, is upper bounded by 1/pi. This implies that the expected time until
an optimal search point has been produced is upper bounded by

∑m−1
i=1 (1/pi). 2

To come up with good upper bounds using this method one has to use a good parti-
tioning of the search space such that there are not too many partitions and that there is a
high probability of leaving the current partition and producing a search point in a better
one.

We consider a simple example. OneMax: {0, 1}n → R is a simple linear pseudo-boolean
function where wi = 1, 1 ≤ i ≤ n, holds. It is defined by OneMax(x) =

∑n
i=1 xi and should

be maximized. The function returns for a bitstring x of length n the number of ones in x.
We consider (1+1) EAb for maximization problems, where a new solution is accepted if its
fitness value is not smaller than the value of the up to now best solution.

Theorem 5.1.2 The expected optimization time of (1+1) EAb on OneMax is O(n logn).

Proof: The search space is partitioned into n + 1 sets A0, . . . , An where Ai contains all
solutions x with OneMax(x) = i. Assume that the currently best solution x belongs to
An−k. Then there are exactly k 0-bits that can be flipped to obtain an improvement. The
probability for an improvement in the next step is at least k

n
(1 − 1

n
)n−1 ≥ k

en
. Hence, the

5.2. CHERNOFF BOUNDS AND COUPON COLLECTORS 49

expected waiting time for an improvement is upper bounded by en/k. Summing up the
waiting times for the different values of k we get

n
∑

k=1

en

k
= en ·

n
∑

k=1

1

k
= O(n logn). 2

In the case that one works with a larger population often an individual with the highest
partition number in the population is considered. Then one can analyze the time until this
individual has become an optimal one. The method works nearly the same as in the case
of a population of size 1 but one often has to add an additional factor to choose the right
individual in the next step. We will apply the method of fitness-based partitions in this way
for multi-objective problems where we have to consider the population size. The MOEAs
introduced in Section 4.2 have a population that is determined by the number of solutions
that do not dominate each other and have different fitness vectors.

5.2 Chernoff bounds and coupon collectors

Large deviation inequalities have widely been used in the analysis of randomized algo-
rithms. In the case of randomized search heuristics they are often useful to show the
typical behavior of such a heuristic. We consider (1+1) EAb which chooses the initial
solution x uniformly at random from {0, 1}n by setting each bit with equal probability to
0 or 1. Hence, n Bernoulli trials are considered where Prob(xi = 1) = Prob(xi = 0) = 1/2,
1 ≤ i ≤ n, holds. The expected number of ones in the initial solution is therefore n/2
and there are at most 2n/3 ones in the initial bitstring with probability 1 − e−Ω(n) using
Chernoff bounds (see Appendix A.2.2).

In the coupon collector’s problem (see e. g. Motwani and Raghavan (1995)) n different
coupons are given and at each time step a coupon is chosen uniformly at random among
all coupons. Let t be the number of trials. Then one studies the number of trials until each
of the n coupons has been chosen at least once. The expected number of trials until each
coupon has been chosen at least once is Θ(n log n) (see Appendix A.3.4). Using Chernoff
bounds and the ideas of the coupon collectors problem, it is easy to obtain a lower bound
of Ω(n log n) on each linear pseudo-boolean function with non-zero weights. To show how
to use Chernoff bounds and the ideas of the coupon collectors problem we present the proof
which can be found in Droste, Jansen, and Wegener (2002). W. l. o. g. we assume that all
weights attain positive values. Hence, the only optimal solution is the bitstring (1, . . . , 1).

Theorem 5.2.1 The expected optimization time of (1+1) EAb on each linear pseudo-
boolean function with non-zero weights is Ω(n log n).

Proof: Using Chernoff bounds the expected number of zeros in the initial bitstring is at
least n/3 with probability 1− e−Ω(n). To obtain the proposed lower bound, we analyze the

50 CHAPTER 5. BASIC METHODS FOR THE ANALYSIS

expected time until each of the 0-bits has been flipped at least once under the condition
that there are at least n/3 0-bits after initialization. This is done in a similar fashion as
in the case of the coupon collector’s theorem.

Let t be a specific number of steps. The probability that a specific 0-bit has not been
flipped at least once in t steps is (1 − 1/n)t. Hence, the probability that it has flipped
at least once in t steps is 1 − (1 − 1/n)t and the probability that each of the n/3 0-
bits has flipped at least once is (1 − (1 − 1/n)t)n/3. The probability that at least one
of the n/3 0-bits has never flipped during t steps is 1 − (1 − (1 − 1/n)t)n/3. Hence, the
probability that at least one 0-bit has not been flipped during t = (n − 1) lnn steps is
1 − (1 − (1 − 1/n)(n−1) lnn)n/3 ≥ 1 − e−1/3.

Altogether, the optimization time of (1+1) EAb is Ω(n log n) with probability at least
1 − e−1/3 − e−Ω(n) = Ω(1) which proves the theorem. 2

5.3 Expected multiplicative weight decrease

The method of the expected multiplicative weight decrease has been developed to ana-
lyze the runtime behavior of randomized search heuristics until they compute a minimum
spanning tree of a given graph. In the case of the minimum spanning tree problem, one
considers the time until the weight of an arbitrary spanning tree has been decreased such
that a minimum spanning tree has been achieved. The application of this method to the
problem of computing minimum spanning trees can be found in Chapter 7. In this section
we want to discuss the method and describe how to apply it. We show how to obtain
in a simple way a polynomial upper bound on the optimization of linear pseudo-boolean
function which is optimal in the case that the weights are polynomially bounded in n.

The method of the expected multiplicative weight decrease can be applied to prob-
lems where we are able to transfer each solution s into an optimal solution sopt by a set
O = {o1, . . . , or} consisting of r operations that all have the same probability to happen
in the next step. We assume that this probability can be lower bounded by α and that
the set of possible fitness values contains only integers. For simplicity the value of r does
not change in all considerations. Note that the number of operations until sopt has been
reached, depends on the solution s. W. l. o. g. we assume that O′ = {o1, . . . , or1}, O′ ⊆ O,
is the set of operations that is necessary to turn s into sopt. Then r − r1 operations are
added such that one can work at each time step with the same value of r. It is important
that the application of each of the operations of O′ leads to a solution s′ that is not inferior
to s. This implies that each operation of O′ applied to s is accepted. W. l. o. g. we assume
that the considered fitness function f should be maximized. Let d = f(sopt) − f(s) be
the distance (measured in the difference of the function values) of s to an optimal one.
As all operations have the same probability the expected decrease of the distance when
producing a solution s′ by an operation that is chosen uniformly at random from the set
O is at least f(sopt)−f(s)

r
. Note that non-accepted operations of O \ O′ contribute a dis-

tance decrease of 0. The expected distance of s′ to sopt is (1 − 1/r) · (f(sopt) − f(s)) after

5.3. EXPECTED MULTIPLICATIVE WEIGHT DECREASE 51

1 step, and the expected distance after t such steps is (1 − 1/r)t · (f(sopt) − f(s)). Let
dmax = maxs∈{0,1}n(f(sopt) − f(s)) be the maximum distance of any search point in the
search space to an optimal one. After having executed t randomly chosen operations of
O the expected distance to an optimal solution is at most (1 − 1/r)t · dmax. Choosing
t = c · r · log dmax, c an appropriate constant, the expected distance is at most 1/2. Using
Markov’s inequality (see Appendix A.2.1) the probability that the distance is at least 1
is upper bound by 1/2. As the set of possible fitness values contains only integers the
probability of having achieved an optimal solution (i. e. the distance is 0) is at least 1/2.
This implies that the expected number of operations belonging to the set O until an op-
timal solution has been achieved is at most 2t = O(r · log dmax). The probability of an
operation belonging to the set O is at least r · α. Using this the expected optimization
time is O((r · α)−1r · log dmax) = O(α · log dmax).

We consider linear pseudo-boolean functions and define wmax = maxi |wi|. Applying the
method of the expected multiplicative weight decrease, we show in a simple way an upper
bound on the expected optimization time of (1+1) EAb on each linear pseudo-boolean
function which is due to Theorem 5.2.1 optimal as long as the weights are polynomially
bounded in n. W. l. o. g. we assume that wi ≥ 0, 1 ≤ i ≤ n, holds.

Theorem 5.3.1 The expected optimization time of (1+1) EAb on linear functions is upper
bounded by O(n(log n + log wmax)).

Proof: The set of operations O contains all steps where only one single bit flips. Hence,
O contains r = n operations. The set O′ contains all operations flipping one single 0-bit.
As wi ≥ 0, 1 ≤ i ≤ n, each operation of O′ is accepted. The probability for one specific
operation of O is 1/n · (1 − 1/n)n−1 ≥ 1/(en) := α and dmax ≤ 2 · n · wmax holds. Using
the method of the expected multiplicative weight decrease the expected optimization time
is upper bounded by O(n log dmax) = O(n(log n + log wmax)). 2

Note that the given upper bound is O(n logn) as long as all weights are polynomially
bounded in n. It is possible to obtain a more general upper bound of O(n logn) even if
the weights are not polynomially bounded. This proof is much more complicated than the
one presented here and can be found in Droste, Jansen, and Wegener (2002).

52 CHAPTER 5. BASIC METHODS FOR THE ANALYSIS

Part III

Single-Objective Optimization
Problems

53

Chapter 6

Eulerian Cycles

The aim of this chapter is to start the analysis of randomized search heuristics on arc
routing problems with respect to the expected time until they consider an optimal search
point. We consider the well-known problem of computing an Eulerian cycle of a given
undirected connected graph with n vertices and m edges (see Skiena (1990) for example).
This is the simplest problem belonging to the wide class of arc routing problems. It can
be solved in worst case run time of O(m + n) by the algorithm of Hierholzer (1873).

As already argued, we do not and cannot hope to compete with the best algorithms
for the Eulerian cycle problem. This can be different for generalizations of the problem.
For example the problem of finding the largest Eulerian subgraph of a given graph and
the mixed chinese postman problem (see Edmonds and Johnson (1973)) are NP-hard and
evolutionary algorithms have a good chance to be competitive on these problems. For
other NP-hard variants like the capacitated arc routing problem evolutionary algorithms
have been developed and successfully applied (see e. g. Lacomme, Prins, and Ramdane-
Chérif (2001)). Before we are able to analyze evolutionary algorithms on such problems,
we think that it is important to understand evolutionary algorithms that work on simple
arc routing problems.

In this chapter we consider two simple randomized search heuristics that use a per-
mutation of the edges of the given graph to find an Eulerian cycle. The representation of
permutations has successfully been applied to difficult combinatorial optimization problems
like the traveling salesperson problem (see Michalewicz and Fogel (2004) for an overview).
It is important to understand how evolutionary algorithms, using this encoding, work on
simple problems. This is one step in the direction to analyze more complicated problems
and algorithms using such an encoding. Starting with the first edge in the permutation,
we can build up a path. One goal is to estimate the expected time until a path found by
the algorithm is lengthened. If the current path is a cycle there may be Θ(m) operations
necessary to lengthen this path. In such a case the algorithm has to walk on a plateau
of constant fitness. Jansen and Wegener (2001) have studied how evolutionary algorithms
can cope with plateaus in the binary search space. In the search space of permutations

55

56 CHAPTER 6. EULERIAN CYCLES

plateaus have a different structure. Our analysis of the considered algorithms, using jumps
in the mutation step, points out the structure of plateaus for the Eulerian cycle problem
in the search space of permutations and how evolutionary algorithms can leave such a
plateau. Changing the operator used for mutations, we point out that such a plateau can
change to a local optimum with a large inferior neighborhood.

After having motivated to analyze randomized search heuristics on the Eulerian cycle
problem, we describe in Section 6.1 our model of the problem. In Section 6.2, we show
that RLSp is able to compute an Eulerian cycle in expected polynomial time. The analysis
is extended to (1+1) EAp in Section 6.3. In Section 6.4 we consider algorithms using
exchanges instead of jumps in the mutation step and prove that the expected optimization
time in this case can be infinite or exponential. We finish with concluding remarks.

6.1 The problem

Euler initiated the study of graph theory in 1736 with the famous seven bridges problem.
The generalization of the seven bridges problem can be described as follows and is known as
the Eulerian cycle problem. Given an undirected connected graph G = (V, E) on n vertices
and m edges, the task is to compute a cycle such that every edge is used exactly one time.
Euler proved that a tour of all edges in a connected undirected graph without repetition is
possible iff the degree of each vertex is even. Such graphs are known as Eulerian graphs.
If an Eulerian cycle exists we call G Eulerian. In the rest of this chapter we assume that G
is Eulerian. To find such a cycle we use a permutation of the edges of G. The fitness of a
permutation π is the length of the path implied by π when we start with the first edge of it.

The search space Sm contains all permutations of the edges of G. A search point π ∈ Sm

corresponds to the order to use the edges for the Eulerian tour. Usually a permutation
does not correspond to an Eulerian tour. It normally describes a path p which is part of
such a tour. The ideas can be used to define the fitness function path which is appropriate
for the Eulerian cycle problem.

We will investigate the fitness function

path(π) := length of the path implied by π,

where we start with the first edge in π and extend the path, if the edge on the second
position has one vertex with the first edge of π in common. This path can be further
extended if the third edge has one vertex which is equal to the ”free” vertex of the second
edge. We can extend the procedure to build up a path of length l implied by π. In the rest
of this chapter the path will be named by p and the part of π consisting of the positions
l + 1, . . . , m will be named by q. Usually a path p is written as a sequence of vertices
and denoted by p = v0, v1, . . . , vl. This implies a set of edges that are a subset of the
edge set E. To make the connection to the fitness function path more precise we write

6.2. ANALYSIS OF RLSP 57

1. Find a cycle C in G

2. Delete the edges of C from G

3. If G is not empty go to step 1.

4. Construct the Eulerian cycle from the cycles produced in Step 1.

Figure 6.1: The algorithm of Hierholzer for the computation of Eulerian cycles

a path p by a sequence of directed edges and denote it by p = (v0, v1), (v1, v2), . . . , (vl−1, vl).

To our opinion the proposed fitness function is the most intuitional one that can be
described for the Eulerian cycle problem. The fitness function describes the processing
order to use the edges for a tour starting with the edge on position 1. Another advantage
of this fitness function is that it can be easily evaluated. If the resulting path is short most
of the edges in the permutation do not have to be considered.

For the Eulerian cycle problem algorithms have been designed that compute an Eule-
rian cycle in linear time. To analyze randomized search heuristics we use the knowledge
that has been put into these algorithms. The algorithm (see Figure 6.1) proposed by Hier-
holzer (1873) computes an Eulerian cycle of a given Eulerian graph G and contains ideas
which will be later used in the analysis of our algorithms.

Randomized search heuristics do not have the knowledge that the problem can be solved
by computing cycles and building up the solution by putting the cycles together. We will
see that they are able to compute a single cycle and integrate another cycle if the solution
is not optimal. Hence, they follow the idea of the algorithm without having this global
knowledge.

6.2 Analysis of RLSp

In the following we show an upper bound of O(m5) on the expected optimization time for
RLSp on the proposed fitness function.

Theorem 6.2.1 The expected time until RLSp working on the fitness function path con-
structs an Eulerian cycle is O(m5).

Proof: The fitness path(π) of a search point π can take values from {1, . . . , m}, where
the optimum is reached if path(π) equals m. W.l.o.g. the path p implied by π is of the
form (v0, v1), . . . , (vl−1, vl) and has length l ∈ {1, . . .m − 1}. If v0 6= vl holds there is an

58 CHAPTER 6. EULERIAN CYCLES

C ′

vk

C

v0

Figure 6.2: Situation in which p is a cycle C which does not include all edges of G. Then
there is another cycle C ′ which has one vertex vk with C in common.

edge incident to vl which can be placed after {vl−1, vl}. Such a jump lengthens the path
and has probability Ω(1/m2). In this case the expected time for an improvement of π is
bounded by O(m2).

If v0 and vl are equal the analysis for an improvement is more complicated. In this case
p is a cycle C. If the graph is Eulerian and p is not an Eulerian tour there is at least one
vertex vk on C which is also a vertex on another cycle C ′ having vk with C in common
(see Figure 6.2). We want to show that a path p with length l can be lengthened to a path
of length at least l + 1 in expected time O(m4).

Claim 6.2.2 Let p be a cycle described by π of length l ∈ {1, . . . , m − 1}. The expected
time to produce a path of length at least l + 1 is O(m4).

Proof: We consider cm4 steps of RLSp, where c is a constant large enough. If we can
lower bound the probability to produce a path of length at least l + 1 in cm4 steps by a
positive constant α, the expected time for an improvement is at most cm4

α
= O(m4).

We inspect the case where p is a cycle which corresponding permutation π does not
start with the vertex vk. Jumps that do not affect the positions 1, . . . , l + 1 in π do not
change the fitness value. Jumps which affect the positions 1 or l + 1 have the possibility
to lengthen the path and are essential for an improvement. If we have jumps that place
elements of p, not at position 1 or l, at another position we get a shorter path. These
steps are not accepted by the algorithm. The jump of the edge at position 1 to a position
j, j 6= l, shortens the path by at least one and is also not accepted. The same holds for
the jump of an edge at position i ∈ {l + 1, . . . , m} to a position j ∈ {1, . . . , l}. Hence,
the algorithm only accepts the two jump operations jump(1, l) and jump(l, 1) if we do not
have the possibility to reach an improvement by jumping to position 1 or l + 1.

We call a mutation step relevant, if the current path p is changed and accepted. As
we have exactly 2 jumps which are relevant we get a probability of 2

m(m−1)
for a relevant

step. The expected number of relevant steps in cm4 steps is therefore 2cm4

m(m−1)
. Thus, we

can bound the probability to have less than c′m2, c′ a positive constant depending on c,
relevant steps in cm4 steps by e−Ω(m2).

We estimate the probability to construct a permutation in M = c′m2 relevant steps,
which starts with the edge {vk, vk+1}. To reach an improvement our aim to construct a
path p∗ = (vk, vk+1), . . . , (vl−1, v0), . . . , (vk−1, vk). If we have not reached such a path there

6.2. ANALYSIS OF RLSP 59

C ′

vk

C

Figure 6.3: Instance Gm: Two cycles of length Θ(m) sharing one vertex

is exactly one jump which places {vk, vk+1} one position further to the left and one which
places {vk, vk+1} one position further to the right. The probability to place {vk, vk+1}
further to the left is in each relevant step 1

2
. Let X be the number of steps to the left in

M steps, and let b be an appropriate constant. The probability of exactly r steps to the
left in M relevant steps equals

Pr(X = r) =

(

M

r

)(

1

2

)r (

1 − 1

2

)M−r

≤
(

M

M/2

)

2−M

≤
√

3πe−MMM+ 1
2 2−M

(
√

2πe−
M
2 (M/2)M/2+1/2)2

(Stirling)

= b · M−1/2

≤ 1

2m

The probability to have less than M
2

+m
2

steps to the left is bounded above by 1
2
+m

2
· 1
2m

=
3
4
. Hence, we get a probability of at least 1

4
to produce p∗.

As vk is also a vertex in another cycle C ′ there are two edges {vk, vs} and {vk, vt} in
C ′. If we place one of these edges at position l + 1 we have lengthened the path and
achieved an improvement. On the other hand there are exactly two relevant jumps which
place {vk, vk+1} at a position other than position 1. This yields a probability of at least 1

2

for an improvement in the next relevant step. Altogether we get a probability of at least
α = 1 −

(

3
4

+ 1
4
· 1

2
+ o(1)

)

= 1
8
− o(1) to lengthen the path in cm4 steps which implies an

expected time for an improvement of O(m4). 2

As there are at most m − 1 improvements we get an upper bound of O(m5) for the
expected optimization time of RLSp. 2

The most costly improvements are improvements where a cycle has to be revolved.
There are instances of the problem where such an operation is essential for an improvement.
We consider the graph Gm = (V ′, E ′) (see Figure 6.3) consisting of n vertices and m = n+1
edges. The edge set consists of two cycles C und C ′, both of length Θ(m), having only
the vertex vk in common. Gm has the property that it leads for jump operations to large

60 CHAPTER 6. EULERIAN CYCLES

plateaus of constant fitness and for exchange operations to local optima with large inferior
neighborhoods.

Theorem 6.2.3 Running RLSp on the instance Gm an improvement revolving a cycle by
Θ(m) operations is necessary with probability at least 1

3
− o(1).

Proof: After random initialization each edge of Gm has probability 1/m to be on the first
position of π. As there are o(m) edges which have a distance of o(m) to vk, the probability
to have an edge with distance o(m) to vk is bounded above by o(1). Hence, with probability
1 − o(1) we have at position 1 an edge which has a distance Ω(m) to vk. W. l. o. g. we
assume that the edge on the first position is part of the cycle C = {e1, . . . , er}, where
ei ∩ ei+1 6= ∅, 1 ≤ i ≤ r − 1, and e1 ∩ er 6= ∅ holds.

Each edge of Gm has at most 4 edges with which it has a vertex in common. The
probability that the edges at position 1 und 2 have after initialization one vertex in common
is bounded by O(1/m). The probability to have a path of length at least 2 is therefore
bounded by O(1/m). Hence, we start with probability 1 − o(1) with a path of length 1
that has a distance Ω(m) to vk. If we start with a path of length 1 we accept in the next
step each jump operation. The expected time to produce a path p of length 2 is bounded
by O(m2). As there are o(m) edges which have a distance o(m) to vk, the probability to
have a path p of length 2 which consists of such an edge is bounded by o(1).

We consider the case where p has length 2. A path of length at least 3 is produced
within O(m2) steps of the algorithm. Let ei and ei+1 be the edges on positions 1 and 2 if we
start with a path of length 2. The jump operations jump(1, 2) and jump(2, 1) are relevant
but only improving if the edge on the third position of π is either ei−1 for jump(1, 2) or ei+2

for jump(2, 1). Such an operation can shorten the distance of the start or end vertex of p
to vk by at most 1. Furthermore, the jump of edge ei−1 to position 2 is relevant but only
improving if the edge ei−2 is already on the third position. Each of these non improving
jumps can shorten the distance of the start or end of p to vk. The expected number of
these relevant steps in O(m2) steps of the algorithm equals Θ(1). By Markov’s inequality
the probability to have ω(1) steps that shorten the distance to vk is bounded by o(1).

If we have a path of length l, l ≥ 3, that does not start or end with an edge containing
vk there are exactly two jumps (one jump to position 1 and one to position l + 1) that
lengthen the path. If p has length l and ends with the vertex vk, there are three possibilities
to lengthen the path at vk. One jump that lengthens p by the other edge of C incident
to vk and two possibilities to lengthen the path by an edge of C ′. Hence, the probability
to use the edge of C for the extension of p at vk is 1

3
. After this extension has at least 2

edges, we only accept changes of p if we lengthen the path. The cycle C having length r is
produced within O(r) improvements. As an improvement can only be reached by a jump
to the first position or a jump to position l + 1, the expected number of improvements
changing the edge on the first postion of π equals r

2
. By Chernoff bounds the probability

to have more than 3r
4

improvements with jump to position 1 is bounded by e−Ω(m). Hence,
the probability to construct a cycle C where start and end points have distance Ω(m) to
the vertex vk is at least 1

3
− o(1). To improve the solution we have to revolve the cycle

6.3. ANALYSIS OF (1+1) EAP 61

by Θ(m) operations into one direction. Hence, an improvement revolving a cycle by Θ(m)
operations is necessary with a probability of at least 1

3
− o(1). 2

6.3 Analysis of (1+1) EAp

To analyze the expected optimization time of (1+1) EAp on the fitness function path we
have to consider the effect of more than one jump. We work under the assumption that
p is a cycle which is not optimal. Otherwise, the probability of an improvement in the
next step is at least 1

em(m−1)
, because one single jump can lengthen the path. This gives

an expected time for an improvement of O(m2). To get an upper bound on the expected
optimization time, it is important to analyze relevant mutations with k > 1 jumps that
affect the part p of π. Again we assume that π does not start with a vertex vk at which
the path can be lengthened and bound the effect of accepted mutation steps that do not
lead to an improvement. We say that we have a relevant mutation with k jumps, if the
mutation changes p by k jumps and is accepted. First, we consider relevant mutations
with more than 3 jumps in one mutation step. Later, we analyze relevant mutations with
2 and 3 jumps in one step.

Lemma 6.3.1 Let p be a cycle, which is not an Eulerian cycle. The probability to have in
O(m4) steps a relevant mutation, which changes p by at least 4 jumps and does not improve
the fitness value, is o(1).

Proof: The probability to have a mutation with exactly k jumps equals 1
e(k−1)!

. Hence,

the probability to have k = Ω(m) jumps in one mutation step is exponentially small and
this also holds for a polynomial number of mutation steps. In the rest of this proof, we
work under the assumption that k = o(m) holds.

We consider the different cases of relevant jumps jump(i, j) that change p. There
may be other jumps in the part q of π, but these additional jumps only lead to a smaller
probability.

If i ∈ {1, . . . , l} and j ∈ {1, . . . l} hold the jump has only influence on the path p. If we
have 1 jump in the mutation step we get a probability Θ(1/m2) for a relevant step that
shifts p to the left or to the right. If there is more than one jump in one mutation step p is
eventually shifted more than one position to the left or to the right. W. l. o. g. we assume
that p is shifted to the left by putting the first r edges e1, . . . er of p to the end of p. The
first edge in this sequence of jumps has to jump to position l. Edge ei, i ≥ 2, has to jump
to the position of ej , where ej is the edge with the greatest index smaller than i, that has
already been placed at the end of p. If such an ej has not yet been placed at the end of
p, ei has to jump to the position before the edge ek, where k is the smallest index greater
than i. If both edges ej and ek already exist at the end of p, the position to which ei has
to jump is for both cases the same. Hence, for each edge ei there is exactly one possible
position to jump to and we can estimate the probability of a success in one step by

r!

e(r − 1)!(m(m − 1))r
=

r

e(m(m − 1))r
.

62 CHAPTER 6. EULERIAN CYCLES

If r ≥ 3 the probability of such a mutation in O(m4) steps is bounded by O(1/m2).
If p contains cycles of the kind c = {{u1, u2}, {u2, u3}, . . . , {ut, u1}} there is another

possibility to have sequences of relevant jumps that are not improving. Such a mutation
is accepted if it changes the order of cycles in p. As we are considering undirected graphs
cycles have length at least 3. A sequence of t ≥ 3 jumps is accepted if it displaces a cycle
c from p at another position of p. There are O(l) possible positions where c can be placed.
The number of possible cycles in p is bounded by O(l). We inspect the displacement of a
cycle c with length t in greater detail. The cycle c has to “jump over” another cycle, so we
have to execute at least t jumps. There are t! possibilities to order the t edges in c with
respect to the jumps. W. l. o. g. we assume that c is displaced to the right in p. Let ei be
the edge in the first jump. As we want to have a cycle after the mutation step, ei has to
be adjacent to u1 after the first jump. This is only possible if we jump ei to a position
that contains an edge with a vertex u1. The second jump of our sequence determines how
to traverse the cycle. The edge can be placed before or behind ei. As the direction to
traverse the cycle is determined by the second jump, the positions for the other edges to
jump to are fixed. Hence, the probability to displace a cycle at another fixed position in p
is at most

2 · t!
e(t − 1)!(m(m − 1))t

=
2 · t

e(m(m − 1))t
.

As the number of cycles as well as the number of possible positions is bounded by O(l)
the probability to displace a cycle of length t = Θ(1) in O(m4) steps is bounded by
O
(

1
m2(t−3)

)

. If t = ω(1) holds, this probability is bounded by O
(

1
m2(t−3)−1

)

. It follows that
the probability to have a mutation in O(m4) steps, which displaces a cycle of length t ≥ 4,
is bounded above by O(1/m2).

There may be combinations of shifting p to the left or to the right and a displacement
of a cycle. Such a mutation has to consist of a displacement of at least one cycle of length
3 and at least one jump operation that shifts p to the left or to the right. For such an event
we get a probability of O(1/m2) in O(m4) steps because there are only two possibilities for
the shifting operation.

We examine the case where i ∈ {1, . . . , l} and j ∈ {l + 1, . . .m} hold. In this case an
edge from p jumps to a position of q. p describes a cycle iff it displaces a cycle from p.
Consider a cycle c with t edges that should be displaced from p. For each edge there are
O(m − l) position to jump to. Hence, the probability to displace the edges of c is upper
bounded by

t!(m − l)t

e(t − 1)!(m(m − 1))t
=

t(m − l)t

e(m(m − 1))t)
.

For each t ≥ 3 this is bounded by O(1/m3). As there are at most O(l) cycles that can
be displaced from p, the probability to displace a cycle from p in the next step is bounded
by O(1/m2). To accept such a displacement, edges of q have to be integrated into p and
form a cycle. There are O(m− l) cycles that can be generated from the edges of q. Cycles
can be generated at O(l) positions of p. Hence, the probability that this happens in the
next step is bounded by

6.3. ANALYSIS OF (1+1) EAP 63

O(l)O((m− l))t!

e(t − 1)!(m(m − 1))t
=

t

Ω(m2(t−1))
.

For each t ≥ 3 this is upper bounded by O(1/m4). Thus, the probability to displace one

cycle from p and integrate a new cycle into p in O(m4) steps is bounded by O(m4)
Ω(m4)Ω(m2)

=

O(1/m2).
If i ∈ {l + 1, . . . , m} and j ∈ {1, . . . l} hold there is an edge that jumps from q to p.

Such a sequence of jumps can only be accepted if it includes a new cycle c′ into p. To
have a relevant mutation that does not lead to an improvement, the fitness value has to
be unchanged. To achieve this we have to displace a cycle from p to q or to displace the
edge which is after the integration of c′ at position l + 1. The displacement of the edge
at position l + 1 can only be done by the operations jump(∗, l + 1) and jump(l + 1, ∗)
where ∗ ∈ {l +2, . . . , m} holds. The probability of such a jump equals 2(m−l−1)

em(m−1)
= O(1/m).

Hence, the probability to integrate a new cycle into p and displace one cycle of p in O(m4)
steps is bounded by O(1/m2) and the probability to integrate one cycle and displace the
edge at position l + 1 is bounded by O(1/m).

As the probability for each k ≥ 4, k = o(m), to have k relevant jumps in O(m4)
mutation steps is bounded by O(1/m), we can bound the probability to have a mutation
with 4 or more jumps that is not improving in O(m4) steps by o(m) · O(1/m) = o(1). 2

It remains to examine the effect of relevant mutations with 2 or 3 jumps that change p.
Our aim is to bound the expected number of such mutations in O(m4) steps from above by
a constant. Then we will see later that (1+1) EAp is able to compensate the effect within
O(m4) steps.

Lemma 6.3.2 Let p be a cycle, which is not an Eulerian cycle. The expected number of
non improving relevant mutations in O(m4) steps with 2 or 3 jumps that affect p is bounded
by O(1) with probability 1 − o(1).

Proof: We only have to consider the case where i ∈ {1, . . . l} and j ∈ {1, . . . , l} holds for
jump(i, j), because the other cases have already been considered in Lemma 6.3.1. If we
have 2 jumps in one step we can only shift the beginning of p. It follows that the expected

number of mutations is O(m4)
Ω(m4)

= O(1). If we have 3 jumps in one step we can displace a
cycle of length 3 or shift the beginning of p. Taking the arguments of the proof of the
previous lemma into account, we get an expected number of mutations that displace a
cycle of length 3 or shift the beginning of p by 3 jumps of O(1). By Markov’s inequality
the probability to have ω(1) mutations of that kind is bounded by 1/w(1) = o(1). 2

We have seen that the effect of more than one jump operation is small with probability
1−o(1). This can be used to prove an upper bound on the expected runtime of (1+1) EAp.

Theorem 6.3.3 The expected time until (1+1) EAp working on the fitness function path
constructs an Eulerian cycle is bounded by O(m5).

64 CHAPTER 6. EULERIAN CYCLES

Proof: We consider the path p implied by the current search point π. If it is not a cycle,
the probability of an improvement in the next step is at least 1

em(m−1)
which leads to an

expected time for an improvement of O(m2). If p is a cycle C and p is not optimal there
is another cycle C ′ that has one vertex vk with C in common. The probability to have a
relevant mutation with 4 or more jumps that is not improving in O(m4) steps is bounded
by o(1). Non improving relevant mutations with 2 or 3 jumps shift the edge {vk, vk+1} in
O(m4) steps O(1) positions away from position 1 with probability 1 − o(1).

Considering cm4 steps we have at least M = c′m4 relevant mutations consisting of one
jump. If we have at least M

2
+ m

2
+ O(1) mutations that shift {vk, vk+1} to the left we

reach a path p∗ that starts with {vk, vk+1}. The probability that we do not reach p∗ is
bounded by 1

2
+ 1

4
+ O(1/m). Hence, the probability to reach p∗ is at least 1

4
− o(1) and

the probability that the next relevant step is improving is at least 1
2
− o(1). It follows that

the probability to have an improvement in cm4 steps is at least 1
8
− o(1) which leads to

an expected time of O(m4) for an improvement. As the number of improvements until an
Eulerian cycle has been constructed is bounded by O(m), the expected optimization time
until (1+1) EAp finds an Eulerian cycle is O(m5). 2

As in the case of RLSp, improvements revolving a cycle Θ(m) steps into one direction
dominate the runtime of (1+1) EAp. We consider the instance Gm described in Section 6.2
to prove that such steps are necessary.

Theorem 6.3.4 Running (1+1) EAp on the instance Gm, an improvement revolving a
cycle by Θ(m) operations is necessary with probability at least 1

3
− o(1).

Proof: As the expected time for an improvement is bounded by O(m2) if p is a path, we
construct an Eulerian cycle or one of the cycles C and C ′ in O(m3) steps. The probability of
a relevant step in O(m3) steps of the algorithm, which changes p by t ≥ 2 jumps is bounded

by O(m3)
O(m2t)

= O(1/(m2t−3) = O(1/m). As the probability to have a mutation consisting of

Ω(m) jumps is exponentially small, the probability to have a relevant mutation with more
than 1 jump in O(m3) steps is bounded by o(m) ·O(1/m)+o(1) = o(1) from above. Hence,
(1+1) EAp behaves with probability 1 − o(1) like RLSp which shows the theorem. 2

6.4 Mutation using exchange operations

Many evolutionary algorithms based on the encoding of permutations use an exchange op-
eration for mutation. The operation exchange(i, j) executed on a permutation π consists
of exchanging the elements at position i and j in π. The algorithms RLS∗

p and (1+1) EA∗
p

use exchanges instead of jumps. Note, that an exchange operation exchange(i, j), i < j,
can be simulated by the two jumps jump(i, j) and jump(j − 1, i). The exchange of two
elements i and j has no affect on the positions of other elements in the permutation.

We have shown in Sections 6.2 and 6.3 that RLSp and (1+1) EAp have to walk on a
plateau of size Θ(m) with a probability bounded below by a constant. Considering RLS∗

p

6.4. MUTATION USING EXCHANGE OPERATIONS 65

and (1+1) EA∗
p this plateau changes to a local maximum with a large neighborhood having

a smaller fitness value. In the following we will show that this leads to an infinite expected
optimization time for RLS∗

p and an exponential optimization time for (1+1) EA∗
p on the

instance Gm.

Theorem 6.4.1 RLS∗
p working on the fitness function path has an infinite expected opti-

mization time on Gm.

Proof: W. l. o. g. we assume the path starts with an edge of C. With probability 1− o(1)
the path p has length 1 and the edge on the first position of π has distance Θ(m) to vk.
After the next improvement p has distance Θ(m) with probability 1 − o(1), because there
are o(m) edges having distance o(m) to the vertex vk.

If p is a path of length l that does not contain the vertex vk, there is exactly one exchange
operation exchanging the edge at position l + 1 with another edge of q that lengthens the
path. If p ends with an edge containing vk, there are exactly 3 possibilities to lengthen the
path. One of them lengthens the path by an edge of C. Each of these three possibilities
results in an extension of Θ(m) edges. Hence the probability to use the extension of C is
at least 1

3
− o(1). If we use this extension we construct the cycle C in an expected number

of O(m3) steps. After that the start and end points of p have distance Ω(m) to vk with
probability at least 1

3
− o(1). If this happens there is no relevant mutation, because each

exchange operation affecting one edge of the cycle destroys the cycle and shortens the path.
Hence, the optimization time is infinite with probability at least 1

3
− o(1) which yields the

theorem. 2

(1+1) EA∗
p using exchanges instead of jumps has the possibility to leave such a trap.

But this only happens with a small probability. We show that (1+1) EA∗
p has an exponen-

tial expected optimization time on the fitness function path.

Theorem 6.4.2 (1+1) EA∗
p working on the fitness function path has an exponential ex-

pected optimization time on Gm.

Proof: As RLS∗
p the algorithm (1+1) EA∗

p constructs p describing a cycle which is not
Eulerian and whose start vertex has distance Ω(m) to vk in O(m3) steps with probability
at least 1

3
− o(1).

W. l. o. g. we assume that the cycle C has been constructed. An exchange(i, j) only
affects the positions i and j. Edges at other positions are left unchanged. There are only
two possibilities to construct another path p′ that differs from p and is accepted. The first
possibility is to change the position of at least one edge in p. To have a relevant step that
changes the position of at least one edge, we have to displace all the other edges of C.
Hence, for such a step Θ(m) exchange operations are necessary. The probability that this
happens in one step is exponentially small.

66 CHAPTER 6. EULERIAN CYCLES

The second possibility is to integrate the circle C ′ into the path. This is only possible
if all the edges of C ′ are placed between the two edges containing the vertex vk in p. As
C ′ has length Θ(m) the probability that this happens in the next step is exponentially
small. Hence, the probability that the next step is accepted is exponentially small, if we
have reached the local optimum. The local optimum is reached with a probability at least
1
3
− o(1) and this proves the theorem. 2

6.5 Conclusions

The Eulerian cycle problem is a fundamental problem in graph theory belonging to the
class of arc routing problems. Several important problems belonging to this class are diffi-
cult, and evolutionary algorithms have a good chance to be competitive on these problems.
The analysis shows how evolutionary algorithms based on the encoding of permutations
work. This is also important because many evolutionary algorithms based on this encoding
have been proposed for the traveling salesman problem and different NP-hard scheduling
problems.

As a first step towards the analysis of evolutionary algorithms for the mentioned prob-
lems, upper bounds on the expected runtime of RLSp and (1+1) EAp for the Eulerian cycle
problem have been proven. We have also presented an instance where the most costly im-
provements revolving a cycle by Θ(m) operations are necessary for both algorithms with
probability at least 1

3
− o(1). Such investigations have led to the result that the variants

RLS∗
p and (1+1) EA∗

p, using exchanges for mutation, have an infinite or exponential opti-
mization time on this instance.

A conference version that contains the results of this chapter has been published in
the Proceedings of the Congress on Evolutionary Computation (CEC) 2004 (see Neu-
mann (2004a)). A journal version has been submitted for publication.

Chapter 7

Minimum Spanning Trees

In this chapter we study the behavior of randomized search heuristics on another important
combinatorial optimization problem. We consider the well-known problem of computing
a minimum spanning tree in a given undirected connected graph with n vertices and m
edges. The problem has many applications in the area of network design. Assume that we
have n computers that should be connected with minimum cost, where costs of a certain
amount occur when one computer is connected to another one. The cost for a connection
can for example be the distance between two considered computers. One needs to make
n − 1 connections between these computers such that all computers are able to communi-
cate with each other. Considering a graph as a model for a possible computer network the
graph has n vertices and one searches for the set of edges with minimal cost that makes
the graph connected. The problem can be solved easily by greedy algorithms.

The famous algorithms due to Kruskal (1956) and Prim (1957) have worst-case run
times of magnitude O((n+m) log n) and O(n2), respectively, see any textbook on efficient
algorithms, e.g., Cormen, Leiserson, Rivest, and Stein (2001). Karger, Klein, and Tarjan
(1995) have given a randomized greedy algorithm that computes a minimum spanning tree
in time O(m) with high probability. Greedy algorithms use global ideas. Considering only
the neighborhoods of two vertices u and v, it is not possible to decide whether the edge
{u, v} belongs to some minimum spanning tree. Therefore, it is interesting to analyze the
run times obtainable by more or less local search heuristics like randomized local search
and evolutionary algorithms. One goal is to estimate the expected time until a better span-
ning tree has been found. For large weights, there may be exponentially many spanning
trees with different weights, which means that the distance from a starting solution to an
optimal one may be exponentially. Then it is important how much progress a randomized
search heuristics can make with respect to an optimal solution. Therefore, we have to
analyze how much better the better spanning tree is. This is indeed the first time the
expected fitness increase is estimated for problems of combinatorial optimization. Based
on this approach Witt (2005) has presented analyses for randomized search heuristics and
the NP-hard partition problem.

67

68 CHAPTER 7. MINIMUM SPANNING TREES

As already argued, we do not and cannot hope to beat the best algorithms for the min-
imum spanning tree problem. This can be different for two generalizations of the problem.
First, one is interested in minimizing the weight of restricted spanning trees, e.g., trees
with bounded degree or trees with bounded diameter. These problems are NP-hard, and
evolutionary algorithms are competitive, see Raidl and Julstrom (2003). Second, one is
interested in the multi-objective variant of the problem. Each edge has k weights, and
one looks for the Pareto optimal spanning trees with respect to the weight functions, see
Hamacher and Ruhe (1994) for the general problem and Zhou and Gen (1999) for the
design of evolutionary algorithms. Many polynomially solvable problems have NP-hard
multi-objective counterparts, see Ehrgott (2000). None of these papers contains a run
time analysis of the considered search heuristics. We think that it is essential to under-
stand how the heuristics work on the unrestricted single-objective problem before one tries
to analyze their behavior on the more difficult variants. Our results obtained in this chap-
ter are the basis for the analysis of EAs on the multi-objective minimum spanning tree
problem which we will present in Chapter 9.

After having motivated the problem to analyze randomized search heuristics on the
minimum spanning tree problem, we give a survey on the rest of this chapter. In Section 7.1,
we describe our model of the minimum spanning tree problem. The theory on minimum
spanning trees is well established. In Section 7.2, we deduce some properties of local
changes in non-optimal spanning trees which are applied in the run time analysis presented
in Section 7.3. Some generalizations of the results obtained are presented in Section 7.4

7.1 The problem

This classical optimization problem has the following description. Given an undirected
connected graph G = (V, E) on n vertices and m weighted edges, find an edge set E ′ ⊆ E
of minimal weight, which connects all vertices. The weight of an edge set is the sum of
the weights of the considered edges. Weights are positive integers. Therefore, the solution
is a tree on V , a so-called spanning tree. One can also consider graphs which are not nec-
essarily connected. Then the aim is to find a minimum spanning forest, i.e., a collection
of spanning trees on the connected components. All our results hold also in this case. To
simplify the presentation we assume that G is connected.

There are many possibilities how to choose the search space for randomized search
heuristics. This problem has been investigated intensively by Raidl and Julstrom (2003).
Their experiments point out that one should work with “edge sets”. The search space
equals S = {0, 1}m, where each position corresponds to one edge. A search point s ∈ S
corresponds to the choice of all edges ei, 1 ≤ i ≤ m, where si = 1. In many cases, many
search points correspond to non-connected graphs and others correspond to connected
graphs with cycles, i.e., graphs which are not trees. If all graphs which are not spanning
trees get the same “bad” fitness, it will take exponential time to find a spanning tree when

7.2. PROPERTIES OF LOCAL CHANGES OF SPANNING TREES 69

we apply a general search heuristic. We will investigate two fitness functions w and w′. The
weight of ei is denoted by wi. Let wmax be the maximum weight. Then wub := n2 ·wmax is
an upper bound on the weight of each edge set. Let

w(s) := (c(s) − 1) · w2
ub + (e(s) − (n − 1)) · wub +

∑

i|si=1

wi

be the first fitness function where c(s) is the number of connected components of the graph
described by s and e(s) is the number of edges in this graph. The fitness function has to
be minimized and takes the weight of all edges into account for which corresponding bit
si = 1 holds. The most important issue is to decrease c(s) until we have graphs connecting
all vertices. Then we have at least n − 1 edges, and the next issue is to decrease e(s)
under the condition that s describes a connected graph. Hence, we look for spanning trees.
Finally, we look for minimum spanning trees.

It is necessary to penalize non-connected graphs since the empty graph has the smallest
weight. However, it is not necessary to penalize extra connections since breaking a cycle
decreases the weight. Therefore, it is also interesting to investigate the fitness function

w′(s) := (c(s) − 1)wub +
∑

i|si=1

wi.

The fitness function w′ is appropriate in the black-box scenario where the scenario con-
tains as little problem-specific knowledge as possible. The fitness function w contains the
knowledge that optimal solutions are trees. This simplifies the analysis of search heuristics.
Therefore, we always start with results on the fitness function w and discuss afterwards
how to obtain similar results for w′.

7.2 Properties of local changes of spanning trees

The theory on minimum spanning trees is well established. Here we want to show how an
arbitrary spanning tree can be turned into an optimal solution in a specific way that can
be used later for analyzing the runtime of randomized search heuristics. We identify a tree
T by its set of edges. Let e ∈ E \ T be an edge that is not contained in T . We denote by
Cyc(T, e) the edges of T that are contained in the cycle which is created when introducing
e into T . It is well known that we can construct from a spanning tree T another spanning
tree T ′ by introducing an edge e ∈ E\T into T and removing one edge of Cyc(T, e) from T .
Such operations are called exchange operations. In this section we recall some facts from
the theory of minimum spanning trees that show that an arbitrary spanning tree T can be
turned into an optimal solution T ∗ by a set of exchange operations where each operation
is directly applicable on T and the execution of the operation does not lead to a weight
increase. Using this we can estimate the weight decrease that is possible when considering
the current spanning tree T .

70 CHAPTER 7. MINIMUM SPANNING TREES

The following result has been proven by Kano (1987) using an existence proof. Later
Mayr and Plaxton (1992) have given an explicit construction procedure which we present
in the following.

Theorem 7.2.1 Let T be a minimum spanning tree and S be an arbitrary spanning tree
of a given weighted graph G = (V, E). Then there exists a bijection Φ from T \ S to S \ T
such that for every edge e ∈ T \ S, Φ(e) ∈ Cyc(S, e) and w(Φ(e)) ≥ w(e).

Proof: Let C and D be disjoint subsets of E. The graph G′ = G[C, D] is constructed
from G by contracting the edges of C and deleting the edges of D. We determine the
bijection between the disjoint spanning trees T ′ = T \ S and S ′ = S \ T of the graph
G′ = G[T ∩ S, E \ T \ S]. It is easy to see that Cyc(T ′, e) ⊆ Cyc(T, e) holds for all
e ∈ T ′. Let t be the heaviest edge in T ′ and s be any edge in S ′ for which t ∈ Cyc(T ′, s)
and s ∈ Cyc(S ′, t) holds. We can determine such an s by removing t from G′. This
partitions the vertices of T ′ into two classes. Let s be the edge in S ′ that connects these
two components. Note that s ∈ Cyc(S ′, t) and t ∈ Cyc(T ′, s) holds as s and t connect the
two components of T ′ \ {t}.

T ′ is a minimum spanning tree of G′ which implies that w(t) ≤ w(s). Set Φ(t) = s and
determine the next component of the bijection by repeating the procedure on the graph
G′[s, t]. T ′[s, t] is a minimum spanning tree of G′[s, t]. In addition for all e ∈ T ′[s, t],

Cyc(S ′[s, t], e) = Cyc(S ′, e) \ {s} ⊆ Cyc(S ′, e) ⊆ Cyc(S, e)

holds. Hence, the next assignment of an edge e ∈ T ′[s, t] to Φ will be guaranteed to satisfy
Φ(e) ∈ Cyc(S, e). The process is iterated until for each e ∈ T ′ a corresponding Φ(e) ∈ S ′

has been determined. 2

Note, that Theorem 7.2.1 gives a set of edge exchanges to transform an arbitrary span-
ning tree into a minimum spanning tree.

We denote by wopt the weight of minimum spanning trees and want to show the fol-
lowing. For a non-optimal search point s, there are either many weight-decreasing local
changes which, on the average, decrease w(s) by an amount which is not too small with
respect to w(s)−wopt, or there are few of these local changes which, on the average, cause a
larger decrease of the weight. This statement will be made precise in the following lemma.

Lemma 7.2.2 Let s be a search point describing a non-minimum spanning tree T . Then
there exist some k ∈ {1, . . . , n−1} and k different accepted 2-bit flips such that the average
weight decrease of these flips is at least (w(s) − wopt)/k.

Proof: Let s∗ be a search point describing a minimum spanning tree T ∗. Let k := |T ∗\T |.
Then there exists a bijection Φ : T ∗ \T → T \T ∗ such that Φ(e) lies on the cycle Cyc(T, e)
and the weight of Φ(e) is not smaller than the weight of e due to Theorem 7.2.1.

We consider the k 2-bit flips flipping e and Φ(e) for e ∈ T ∗ \ T . They are accepted
since e creates a cycle which is destroyed by the elimination of Φ(e). Performing all the k

7.3. THE ANALYSIS OF RLSB AND (1+1) EAB 71

2-bit flips simultaneously changes T into T ∗ and leads to a weight decrease of w(s)−wopt.
Hence, the average weight decrease of these steps is (w(s) − wopt)/k. 2

The analysis performed in Section 7.3 will be simplified if we can ensure that we always
have the same parameter k in Lemma 7.2.2. This is easy if we allow also non-accepted
2-bit flips whose weight decrease is defined as 0. We add n − k non-accepted 2-bit flips to
the set of the k accepted 2-bit flips whose existence is proven in Lemma 7.2.2. Then we
obtain a set of exactly n 2-bit flips. The total weight decrease is at least w(s)−wopt since
this holds for the k accepted 2-bit flips. Therefore, the average weight decrease is bounded
below by (w(s) − wopt)/n. We state this result as Lemma 7.2.3.

Lemma 7.2.3 Let s be a search point describing a spanning tree T . Then there exists a set
of n 2-bit flips such that the average weight decrease of these flips is at least (w(s)−wopt)/n.

When analyzing the fitness function w′ instead of w, we may accept non-spanning trees
as improvements of spanning trees. Non-spanning trees can be improved by 1-bit flips
eliminating edges of cycles. A 1-bit flip leading to a non-connected graph is not accepted
and its weight decrease is defined as 0.

Lemma 7.2.4 Let s be a search point describing a connected graph. Then there exist a
set of n 2-bit flips and a set of m− (n−1) 1-bit flips such that the average weight decrease
of these flips is at least (w(s) − wopt)/(m + 1).

Proof: We consider all 1-bit flips concerning the edges that are not contained in the
minimum spanning tree T ∗. If we try them in some arbitrary order we obtain a spanning
tree T . If we consider their weight decrease with respect to the graph G′ described by s,
this weight decrease can be only larger. The reason is that a 1-bit flip, which is accepted in
the considered sequence of 1-bit flips, is also accepted when applied to s. Then we apply
Lemma 7.2.3 to T . At least the same weight decrease is possible by adding ei and deleting
a non-T ∗ edge with respect to G′. Altogether, we obtain at least a weight decrease of
w(s) − wopt. This proves the lemma, since we have chosen m + 1 flips. 2

7.3 The analysis of RLSb and (1+1) EAb

The fitness functions w penatalizes solutions that are not connected or have more than
n − 1 edges. In the case of w′ unconnected graphs get high fitness values as the number
of connected components is multiplied by a large amount. We first show that RLSb and
(1+1) EAb using the fitness functions w and w′ construct connected graphs efficiently. In
the case of w it is also easy to show that spanning trees are obtained in a small amount
of time. The technique used for these analyses is based on partitioning the search space
into fitness levels with respect to the number of connected components respectively to the
number of edges for a fixed number of connected components.

72 CHAPTER 7. MINIMUM SPANNING TREES

Lemma 7.3.1 The expected time until RLSb or (1+1) EAb working on one of the fitness
function w or w′ has constructed a connected graph is O(m log n).

Proof: The fitness functions are defined in such a way that the number of connected
components will never be increased in accepted steps. For each edge set leading to a graph
with k connected components, there are at least k − 1 edges whose inclusion decreases the
number of connected components by 1. Otherwise, the graph would not be connected. The
probability of a step decreasing the number of connected components is at least 1

2
· k−1

m
for

RLSb and 1
e
· k−1

m
for (1+1) EAb. Hence, the expected time until s describes a connected

graph is bounded above by

em

(

1 + · · ·+ 1

n − 1

)

= O(m logn). 2

Lemma 7.3.2 If s describes a connected graph, the expected time until RLSb or (1+1) EAb

has constructed a spanning tree for the fitness function w is bounded by O(m log n).

Proof: The fitness function w is defined in such a way that, starting with s, only connected
graphs are accepted and that the number of edges does not increase. If s describes a graph
with N edges, it contains a spanning tree with n−1 edges, and there are at least N−(n−1)
edges whose exclusion decreases the number of edges. If N = n−1, s describes a spanning
tree. Otherwise, by the same arguments as in the proof of Lemma 7.3.1, we obtain an
upper bound of

em

(

1 + · · · + 1

m − (n − 1)

)

= O(m log(m − n + 1)) = O(m log n). 2

This lemma holds also for RLSb and the fitness function w′. RLSb does not accept steps
only including an edge or only including two edges if s describes a connected graph. Since
RLSb does not affect more than two edges in a step, it does not accept steps in which the
number of edges of a connected graph is increased. This does not hold for (1+1) EAb. It
is possible that the exclusion of one edge and the inclusion of two or more edges creates a
connected graph whose weight is not larger than the weight of the given graph.

Before we analyze the expected time to turn a spanning tree into a minimum spanning
tree, we investigate an example (see Figure 7.1). The example graph consists of a connected
sequence of p triangles and the last triangle is connected to a complete graph on q vertices.
The number of vertices equals n := 2p+ q and the number of edges equals m := 3p+ q(q−
1)/2. We consider the case of p = n/4 and q = n/2 implying that m = Θ(n2). The edges in
the complete graph have the weight 1 and we set a := n2. Each triangle edge has a weight
which is larger than the weight of all edges of the complete graph altogether. Theorem 7.3.3
and Theorem 7.3.8 prove that this graph is a worst-case instance with polynomial weights.

7.3. THE ANALYSIS OF RLSB AND (1+1) EAB 73

....
Kq

2a 2a 2a2a

3a 3a 3a3a

T1 T2 T3 Tp

2a 2a 2a 2a

Figure 7.1: An example graph with p connected triangles and a complete graph on q
vertices with edges of weight 1.

Theorem 7.3.3 The expected optimization time until RLSb and (1+1) EAb find a mini-
mum spanning tree for the example graph of Figure 7.1 equals Θ(m2 log n) = Θ(n4 log n)
with respect to the fitness functions w and w′.

Proof: The upper bound is contained in Theorem 7.3.8. Here we prove the lower bound
by investigating typical runs of the algorithm. We partition the graph G into its triangle
part T and its clique part C. Each search point x describes an edge set. We use the
following notation.

• d(x): number of disconnected triangles with respect to the edges chosen by x

• b(x): number of bad triangles (exactly one 2a-edge and the 3a-edge are chosen)

• g(x): number of good triangles (exactly the two 2a-edges are chosen)

• c(x): number of complete triangles (all three edges are chosen)

• conG(x): number of connected components in the graph

• conC(x): number of connected components in the clique part C of the graph

• conT (x): number of connected components in the tree part T of the graph

We investigate four phases of the search. The first phase of length 1 is the initialization
step producing the random edge set x. In the following, all statements hold with probability
1 − o(1).

Claim 7.3.4 After initialization, b(x) = Θ(n) and conC(x) = 1.

Proof: The statements can be proved independently since the corresponding parts of x
are created independently. The probability that a given triangle is bad equals 1/4. There
are n/4 triangles and b(x) = Θ(n) by Chernoff bounds. We consider one vertex of C. It
has n/2 − 1 possible neighbors. By Chernoff bounds, it is connected to at least n/6 of
these vertices. For each other vertex, the probability to be not connected to at least one
of these n/6 vertices is (1/2)n/6. This is unlikely even for one of the remaining vertices.
Hence, conC(x) = 1. 2

74 CHAPTER 7. MINIMUM SPANNING TREES

For the following phases, we distinguish the steps by the number k of flipping triangle
edges and call them k-steps. Let pk be the probability of a k-step. For RLSb, p1 = Θ(n−1),
p2 = Θ(n−2) and pk = 0, if k ≥ 3. For (1+1) EAb and constant k

pk =

(

3n/4

k

)(

1

m

)k (

1 − 1

m

)3n/4−k

= Θ(nkm−k) = Θ(n−k).

For a phase of length n5/2, the following statements hold. The number of 1-steps equals
Θ(n3/2), the number of 2-steps equals Θ(n1/2), and there is no k-step, k ≥ 3.

Claim 7.3.5 Let b(x) = Θ(n) and conC(x) = 1. In a phase of length n5/2, a search point
y where b(y) = Θ(n) and conG(y) = 1 is produced.

Proof: By Lemma 7.3.1, the probability of creating a connected graph is large enough.
Let y be the first search point where conG(y) = 1. We prove that b(y) = Θ(n). All the
2-steps can decrease the b-value by at most O(n1/2). A 1-step has two possibilities to
destroy a bad triangle.

• It may destroy an edge of a bad triangle. This increases the conG-value. In order to
accept the step, it is necessary to decrease the conC-value.

• It may add the missing edge to a bad triangle. This increases the weight by at least
2a. No triangle edge is eliminated in this step. In order to accept the step, it is
necessary to decrease the conC-value.

However, conC(x) = 1. In order to decrease this value, it has to be increased before. A
step increasing the conC-value can be accepted only if the conT -value is decreased in the
same step at least by the same amount. This implies that triangle edges have to be added.
For a 1-step, the total weight is increased without decreasing the conG-value and the step
is not accepted. Hence, only the O(n1/2) 2-steps can increase the conC-value. By Chernoff
bounds, the number of clique edges flipping in these steps is O(n1/2). This implies that
the number of bad triangles is decreased by only O(n1/2). 2

Claim 7.3.6 Let b(y) = Θ(n) and conG(y) = 1. In a phase of length n5/2, a search point
z where b(z) = Θ(n), conG(z) = 1, and T (z) is a tree is produced.

Proof: Only search points x describing connected graphs are accepted, in particular,
d(x) = 0. Let z be the first search point where T (z) is a tree. Then conG(z) = 1 and
we have to prove that b(z) = Θ(n) and that z is produced within n5/2 steps. A 1-step
can be accepted only if it turns a complete triangle into a good or bad triangle. Such
a step is accepted if no other edge flips. Moreover, c(x) cannot be increased. In order
to increase c(x) it is necessary to add the missing edge to a good or bad triangle. To
compensate this weight increase, we have to eliminate an edge of a complete triangle.
Remember that we have no k-steps for k ≥ 3. If c(x) = l, the probability of decreasing
the c-value is at least 3l/(em) and the expected time to eliminate all complete triangles is
O(m log n) = O(n2 log n). Hence, n5/2 steps are sufficient to create z. The number of bad
triangles can be decreased only in the O(n1/2) 2-steps implying that b(z) = Θ(n). 2

7.3. THE ANALYSIS OF RLSB AND (1+1) EAB 75

Claim 7.3.7 Let b(z) = Θ(n), conG(z) = 1, and T (z) be a tree. The expected time to find
a minimum spanning tree is Ω(n4 log n).

Proof: First, we assume that only 2-steps change the number of bad triangles. Later, we
complete the arguments. The expected waiting time for a 2-step flipping those two edges
of a bad triangle that turn it into a good one equals Θ(n4). The expected time to decrease
the number of bad triangles from b to b − 1 equals Θ(n4/b). Since b has to be decreased
from Θ(n) to 0, we obtain an expected waiting time of

Θ(n4 ·
∑

1≤b≤Θ(n)

(1/b)) = Θ(n4 log n). (∗)

Similarly to the proof of the coupon collector’s theorem (see e. g. Motwani and Ragha-
van (1995)) we obtain that the optimization step if only 2-steps can be accepted equals
Θ(n4 log n) with probability 1 − o(1). Hence, it is sufficient to limit the influence of all
k-steps, k 6= 2, within a time period of αn4 log n for some constant α > 0. Again with
probability 1 − o(1), the number of 4-steps is O(log n) and there are no k-steps for k ≥ 5.
The 4-steps can decrease the number of bad triangles by at most O(log n). Because of the
weight increase, a k-step, k ≤ 4, can be accepted only if it eliminates at least ⌈k/2⌉ triangle
edges. Moreover, it is not possible to disconnect a good or a bad triangle. Hence, a 4-step
cannot create a complete triangle. As long as there is no complete triangle, a 3-step or a
1-step has to disconnect a triangle and is not accepted. A 2-step can only be accepted if
it changes a bad triangle into a good one. Hence, no complete triangles are created. The
4-steps eliminate O(logn) terms of the sum in (∗). The largest terms are those for the
smallest values of b. We only have to substract a term of O(n4 log log n) = o(n4 log n) from
the bound Θ(n4 log n) and this proves the claim. 2

This completes the proof since the sum of all failure probabilities is o(1). 2

In the following, we prove an upper bound of size O(m2(log n + log wmax)) on the
expected optimization time for arbitrary graphs using the method of the expected multi-
plicative weight decrease (see Section 5.3). This bound relies on the properties of minimum
spanning trees which we have stated in Section 7.2 and is O(m2 log n) as long as wmax is
polynomially bounded. But it is always polynomially bounded with respect to the bit
length of the input. Theorem 7.3.3 shows that the bound is optimal.

Theorem 7.3.8 The expected time until RLSb or (1+1) EAb working on the fitness func-
tion w constructs a minimum spanning tree is bounded by O(m2(log n + log wmax)).

Proof: By Lemmas 7.3.1 and 7.3.2, it is sufficient to investigate the search process after
having found a search point s describing a spanning T . Then, by Lemma 7.2.3, there always
exists a set of n 2-bit flips whose average weight decrease is at least (w(s)− wopt)/n. The
choice of such a 2-bit flip is called a “good step”. The probability of performing a good
step equals Θ(n/m2) and each of the good steps is chosen with the same probability. A

76 CHAPTER 7. MINIMUM SPANNING TREES

good step decreases the difference between the weight of the current spanning tree and wopt

on average by a factor not larger than 1 − 1/n. This holds independently from previous
good steps. Hence, after N good steps, the expected difference of the weight of T and wopt

is bounded above by (1− 1/n)N · (w(s)−wopt). Since w(s) ≤ (n− 1) ·wmax and wopt ≥ 0,
we obtain the upper bound (1 − 1/n)N · D, where D := n · wmax.

If N := ⌈(ln 2) · n · (log D + 1)⌉, this bound is at most 1
2
. Since the difference is not

negative, by Markov’s inequality, the probability that the bound is less than 1 is at least
1/2. The difference is an integer implying that the probability of having found a minimum
spanning tree is at least 1/2. Repeating the same arguments, the expected number of
good steps until a minimum spanning tree is found is bounded by 2N = O(n logD) =
O(n(log n + log wmax)).

By our construction, there are always exactly n good 2-bit flips. Therefore, the prob-
ability of a good step does not depend on the current search point. Hence, the expected
time until r steps are good equals Θ(rm2/n). Altogether, the expected optimization time
is bounded by

O(Nm2/n) = O(m2(log n + log wmax)). 2

Applying Lemma 7.2.4 instead of Lemma 7.2.3, it is not too difficult to obtain the same
upper bound for the fitness function w′. The main difference is that a good 1-bit flip has
a larger probability than a good 2-bit flip.

Theorem 7.3.9 The expected time until RLSb or (1+1) EAb working on the fitness func-
tion w′ constructs a minimum spanning tree is bounded by O(m2(log n + log wmax)).

Proof: By Lemma 7.3.1, it is sufficient to analyze the phase after having constructed a
connected graph. We apply Lemma 7.2.4. The total weight decrease of the chosen 1-bit
flips and 2-bit flips is at least w(s)−wopt if s is the current search point. If the total weight
decrease of the 1-bit flips is larger than the total weight decrease of the chosen 2-bit flips,
the step is called a 1-step. Otherwise, it is called a 2-step.

If more than half of the steps are 2-steps, we adapt the proof of Theorem 7.3.8
with N ′ := 2N since we guarantee only an expected weight decrease by a factor of
1−1/(2n). Otherwise, we consider the good 1-steps which have an expected weight decrease
by a factor of 1−1/(2m′) for m′ = m− (n−1). Choosing M := ⌈2 · (ln 2) ·m′ · (log D+1)⌉,
we can apply the proof technique of Theorem 7.3.8 where M takes the role of N . The
probability of performing a good 1-bit flip equals Θ(m′/m). In this case, we obtain the
bound

O(Mm/m′) = O(m(log n + log wmax))

for the expected number of steps which is even smaller than the proposed bound. 2

7.4. GENERALIZATIONS 77

7.4 Generalizations

Theorems 7.3.3, 7.3.8, and 7.3.9 contain matching upper and lower bounds for RLSb and
(1+1) EAb with respect to the fitness functions w and w′. The bounds are worst-case
bounds and one can hope that the algorithms are more efficient for many graphs. Here we
discuss what can be gained by other randomized search heuristics.

First, we introduce more problem-specific mutation operators. It is easy to construct
spanning trees. Afterwards, it is good to create children with the same number of edges.
The new mutation operators are:

– If RLSb flips two bits, it chooses randomly a 0-bit and randomly a 1-bit.

– If s contains k 1-bits, (1+1) EAb flips each 1-bit with probability 1/k and each 0-bit
with probability 1/(m − k).

For spanning trees, the probability of a specific edge exchange is increased from Θ(1/m2)
to Θ(1/(n(m − n + 1))). The following result can be obtained by adjusting the proofs of
the previous section to the modified mutation operators.

Theorem 7.4.1 For the modified mutation operators, the bounds of Theorems 7.3.3, 7.3.8,
and 7.3.9 can be replaced by bounds of size Θ(mn log n) and O(mn(log n + log wmax)) re-
spectively.

Using larger populations, we have to pay for improving all members of the population.
This holds at least if we guarantee a large diversity in the population. The lower bound of
Theorem 7.3.3 holds with overwhelming probability. Hence, we do not expect that large
populations help. The analysis in the proof of Theorems 7.3.8 and 7.3.9 is quite precise in
most aspects. There is only one essential exception. We know that the weight distance to
wopt is decreased on average by a factor of at most 1 − 1/n and we work under the pes-
simistic assumption that this factor equals 1 − 1/n. For large populations or multi-starts
the probability of having sometimes much larger improvements may increase for many
graphs.

It is more interesting to “parallelize” the algorithms by producing more children in
parallel. The algorithm (1+λ) EAb differs from (1+1) EAb by producing in each iteration
independently λ children from the single individual of the current population. The selection
procedure selects an individual with the smallest w-value (or w′-value) among the parent
and its children. In a similar way, we obtain λ-PRLSb (parallel RLSb) from RLSb. In the
proofs of Theorem 7.3.8 and Theorem 7.3.9 we have seen that the probability of a good step
is Θ(n/m2). Choosing λ = ⌈m2/n⌉, this probability is increased to a positive constant. We
have seen that the expected number of good steps is bounded by O(n(log n + log wmax)).
This leads to the following result.

78 CHAPTER 7. MINIMUM SPANNING TREES

Theorem 7.4.2 The expected number of generations until λ-PRLSb or the (1+λ) EAb

with λ := ⌈m2/n⌉ children constructs a minimum spanning tree is O(n(log n + log wmax)).
This holds for the fitness functions w and w′.

If we use the modified mutation operator defined above, the probability of a good step
is O(1/m) and we obtain the same bound on the expected number of generations as in
Theorem 7.4.2 already for λ := m.

Jansen and Sudholt (2005) have analyzed this mutation operator later in greater detail.
One important result of their work is that simple but not trivial pseudo-boolean functions
can be optimized by evolutionary algorithms in time O(n) which breaks for the first time
the Θ(n log n) bound that is often the result of the analysis on simple pseudo-boolean
functions.

Crossover operators are considered as important in evolutionary computation. But
one-point crossover or two-point crossover are not appropriate for edge set representations.
It is not possible to build blocks of all edges adjacent to a vertex. For uniform crossover, it
is very likely to create graphs which are not spanning trees. Hence, only problem-specific
crossover operators seem to be useful. Such operators are described by Raidl and Julstrom
(2003). It is difficult to analyze heuristics with these crossover operators and no results
with respect to the runtime of such algorithms have been obtained up to now.

7.5 Conclusions

The minimum spanning tree problem is one of the fundamental problems which are effi-
ciently solvable. Several important variants of this problem are difficult, and evolutionary
algorithms have a good chance to be competitive on these problems. As a first step to-
ward the analysis of evolutionary algorithms on these problems, randomized local search
and simple evolutionary algorithms have been analyzed on the basic minimum spanning
tree problem. The asymptotic worst-case (with respect to the problem instance) expected
optimization time has been obtained exactly. The analysis is based on the investigation of
the expected multiplicative weight decrease (with respect to the difference of the weight of
the current graph and the weight of a minimum spanning tree).

A conference version that contains the results of this chapter has been published in the
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2004 (see
Neumann and Wegener (2004)). A journal version of this chapter has been submitted for
publication.

Chapter 8

A Simple ACO Algorithm

In this chapter, we focus on another kind of randomized search heuristics, namely ant colony
optimization (ACO). Like EAs, these heuristics imitate optimization processes from na-
ture, in this case the search of an ant colony for a common source of food. Solving problems
by ACO techniques has become quite popular in recent years. From a theoretical point of
view, there are so far no results that provide estimates of the runtime of ACO algorithms.
Despite interesting theoretical investigations of models and dynamics of ACO algorithms
(Dorigo and Blum (2005)), convergence results are so far the only results related to their
runtimes. Dorigo and Blum (2005) explicitly formulate the open problem to determine the
runtime of ACO algorithms on simple problems in a similar fashion to what has been done
for EAs.

We solve this problem, starting the analysis of ACO algorithms with respect to their ex-
pected runtimes and success probability after a specific number of steps. Randomized local
search, Simulated annealing, and the Metropolis algorithm (see Section 3.3), search more
or less locally, and runtime bounds are often obtained by considering the neighborhood
structure of the considered problem. The same holds for simple evolutionary algorithms.
Considering ACO algorithms, this is different as search points are obtained by random
walks of ants on a construction graph. The traversal of an ant on this directed graph is
determined by values on the edges which are called pheromone values (see Section 3.2).
Larger pheromone values correspond to a higher probability of traversing a certain edge,
where the choice of an edge usually fixes a parameter in the current search space. The
pheromone values are updated if a good solution has been constructed in this random walk.
This update depends on the traversal of the ant and a so-called evaporation factor ρ.

The choice of ρ seems to be a crucial parameter in an ACO algorithm. Using a large
value of ρ, the last accepted solution changes the pheromone values by a large amount such
that there is a large probability of producing this solution in the next step. In contrast
to this, the use of a small evaporation factor leads to a small effect of the last accepted
solution such that an improvement may be hard to find in the next step. We consider the
1-ANT algorithm introduced in Section 4.1.3 and show that it behaves for large values of ρ

79

80 CHAPTER 8. A SIMPLE ACO ALGORITHM

as the simple evolutionary algorithm (1+1) EAb. This algorithm has been studied exten-
sively with respect to its runtime on classes of pseudo-boolean functions (see, e. g. Droste,
Jansen, and Wegener (2002)) as well as on combinatorial optimization problems. The list
of problems where runtime bounds have been obtained include some of the best-known
polynomially solvable problems such as maximum matchings (Giel and Wegener (2003))
and minimum spanning trees (see Chapter 7). In the case of NP-hard problems, one is
usually interested in good approximations of optimal solutions. Witt (2005) has presented
a worst-case and average-case analysis of (1+1) EAb for the partition problem, which is one
of the first results on NP-hard problems. All these results immediately transfer to 1-ANT
with large ρ.

After having obtained these general results, we consider the effect of the evaporation
factor ρ on the runtime of 1-ANT in detail. This analysis requires new techniques since it
is the first one of its kind. We examine the simplest non-trivial pseudo-boolean function
called OneMax and show that small values of ρ with high probability lead to an expo-
nential optimization time even for this simple function. In addition, we examine for which
choices of ρ the optimization time with high probability is still upper bounded by a small
polynomial. To achieve these bounds, we consider the expected function value for the algo-
rithm in the next step. It turns out that larger values of ρ change the pheromone values on
the edges such that the expected value in the next step is determined by the function value
of the best seen solution. Using results obtained by Hoeffding (1956) on the sum of inde-
pendent Poisson trails, we show that an improvement will be achieved after an expected
polynomial number of steps. In the case of small ρ, achieving an improvement does not
increase the expected value in the next step that much. Here exponential lower bounds are
obtained by showing that there is a large gap between the expected value and the best-so-
far function value. Both the proof of the upper and the lower runtime bound contain new
analytical tools to lower bound the tail of a sum of independent trials with different success
probabilities. The new tools may be of independent interest in other probabilistic analyses.

We investigate the relation of 1-ANT to (1+1) EAb in Section 8.1 and transfer the
results on this EA to our algorithm. After that we investigate the behavior of 1-ANT on
the function OneMax in greater detail. In Section 8.2 we give investigate the choice of ρ
that leads to an exponential runtime and show in Section 8.3 that a slightly larger value
of ρ reduces the runtime from exponential to polynomial.

8.1 1-ANT and (1+1) EAb

We consider the relation between 1-ANT and (1+1) EAb and show that they behave
for large values of ρ identical. (1+1) EAb has extensively been studied with respect to
its runtime distribution. We consider the optimization of pseudo-boolean goal functions
f : {0, 1}n → R for n ≥ 3. 1-ANT produces solutions by random walks on the construction
graph Cbool shown in Figure 4.1. The random walk is performed using the construction

8.1. 1-ANT AND (1+1) EAB 81

procedure Construct(C, τ) described in Section 4.1.3. The result of this procedure is a
solution x together with the path P (x) that has been used to construct this solution.

The algorithm (1+1) EAb chooses the first solution x uniformly at random from {0, 1}n.
After that it produces in each iteration a new solution x′ from a currently best solution x
by flipping each bit of x with probability 1/n. Hence, the probability of producing a certain
solution x′ with Hamming distance H(x, x′) to x is (1/n)H(x,x′) · (1 − 1/n)n−H(x,x′).

In the following, we consider 1-ANT with values of ρ at least n−2
3n−2

, which is for large n
approximately 1/3 . In this case, we show that 1-ANT behaves as (1+1) EAb on each func-
tion. This also means that 1-ANT has the same expected optimization time as (1+1) EAb

on each function.

Theorem 8.1.1 Choosing ρ ≥ (n−2)/(3n−2), 1-ANT has the same runtime distribution
as (1+1) EAb on each pseudo-boolean function.

Proof: In the initialization step of (1+1) EAb, a bitstring is chosen uniformly at random,
which means that Prob(xi = 1) = Prob(xi = 0) = 1/2 for all i, 1 ≤ i ≤ n. As τ(u,v) =
1/(4n) holds for each edge (u, v) ∈ E, the probability to choose the edge (v3i, v3i+1) equals
the probability of choosing the edge (v3i, v3i+2) at vertex v3i, 0 ≤ i ≤ n − 1, and is 1/2.
Hence, the 1-ANT chooses the first solution uniformly at random from the search space
{0, 1}n as (1+1) EAb.

Assume that the up to now best solution constructed by 1-ANT is x∗. This implies
that the edges of the construction graph corresponding to this solution have been updated
in the last update operation. Before the update, the value τ(u,v) of each edge (u, v) ∈ P (x∗)
was at least 1

2n2 and the value τ(u,v) of edges (u, v) 6∈ P (x∗) was at most n−1
2n2 .

We inspect the case of an edge (u, v) ∈ P (x∗) in greater detail and consider the function

h(ρ) :=
(1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
≥ (1 − ρ) · 1

2n2 + ρ

1 − ρ + 2nρ
=

1

2n2
· 1 + (2n2 − 1)ρ

1 + (2n − 1)ρ
=: h′(ρ).

For each fixed n ≥ 1, h′ is a non-decreasing function. Using ρ ≥ (n − 2)/(3n − 2), we
get

h(ρ) ≥
1 + (2n2 − 1) n−2

3n−2

2n2 + (4n3 − 2n2) n−2
3n−2

=
2n3 − 4n2 + 2n

4n4 − 4n3
=

n − 1

2n2
.

Hence, the pheromone value of each edge (u, v) ∈ P (x∗) is n−1
2n2 after the update. The

pheromone value of each edge (u, v) 6∈ P (x∗) is 1
2n2 as the sum of the pheromone values of

two complementary edges is 1
2n

. After this update, the probability to choose in the next

solution x the bit xi = x∗
i is 2n(n−1)

2n2 = 1 − 1
n

and the probability to choose xi = 1 − x∗
i

is 2n
2n2 = 1/n. Hence the probability to produce a specific solution x that has Hamming

distance H(x∗, x) to x∗ is (1/n)H(x∗,x) · (1 − 1/n)n−H(x∗,x) which completes the proof. 2

82 CHAPTER 8. A SIMPLE ACO ALGORITHM

8.2 Exponential lower bounds for OneMax

In the following, we inspect the choice of ρ in greater detail for a simple pseudo-boolean
function called OneMax and defined by OneMax(x) =

∑n
i=1 xi. This is the simplest non-

trivial pseudo-boolean function that can be considered and analyses of ACO algorithms
for such simple functions are explicity demanded by Dorigo and Blum (2005). Note that
due to results on the (1+1) EAb by Droste, Jansen, and Wegener (2002), the expected op-
timization time of 1-ANT is O(n logn) on each linear function if ρ ≥ (n−2)/(3n−2) holds.

We prepare ourselves by considering the effects of pheromone updates for a solution x∗

in greater detail. Let τ(e) and τ ′(e) be the pheromone values on edge e before respectively
after the update. If e ∈ P (x∗), τ ′(e) ≥ τ(e) and τ ′(e) ≤ τ(e) otherwise. The amount
by which the pheromone value is increased on a 1-edge equals the amount the pheromone
value is decreased on the complementary 0-edge. However, the change of a pheromone
value depends on the previous value on the edge. In the following lemma, we bound the
relative change of pheromone values. We call an edge saturated iff its pheromone value is
either 1

2n2 or n−1
2n2 .

Lemma 8.2.1 Let e1 and e2 be two edges of Cbool and let τ1 respectively τ2 be their current
pheromone values in 1-ANT. Let τ ′

1 respectively τ ′
2 be their updated pheromone values for

the next accepted solution x. If e1, e2 ∈ P (x∗) and none of the edges is saturated before or
after the update, then |(τ ′

1 − τ1) − (τ ′
2 − τ2)q| ≤ ρ|τ1 − τ2|.

Proof: W. l. o. g., τ2 ≥ τ1. Since e1, e2 ∈ P (x∗) and no edge is saturated,

τ ′
1 =

(1 − ρ)τ1 + ρ

1 − ρ + 2nρ
and τ ′

2 =
(1 − ρ)τ2 + ρ

1 − ρ + 2nρ
.

This implies

(τ ′
1 − τ1) − (τ ′

2 − τ2) =
ρ − τ12nρ − (ρ − τ22nρ)

1 − ρ + 2nρ
≥ 0.

Second, since the denominator is at least 1, we obtain

τ ′
1 − τ ′

2 ≤ ρ(τ2 − τ1) + (τ1 − τ2) ⇒ (τ ′
1 − τ1) − (τ ′

2 − τ2) ≤ ρ|τ1 − τ2|.

Taking the absolute value of (τ ′
1 − τ1) − (τ ′

2 − τ2), the claim follows. 2

In the following, we will figure out which values of ρ lead to efficient runtimes of 1-ANT
and which do not. Intuitively, 1/n is a threshold value for ρ since the denominator of the
normalization factor 1−ρ+2nρ diverges for ρ = ω(1/n) and is 1−ρ−o(1) for ρ = o(1/n).
We will make precise that the behavior of 1-ANT on OneMax changes drastically when
ρ is asymptotically smaller respectively larger than 1/n.

8.2. EXPONENTIAL LOWER BOUNDS FOR ONEMAX 83

Choosing ρ = 0, the pheromone value on each edge is 1/(4n) at each time step. This
implies that the expected optimization time of the 1-ANT on OneMax is 2n as each so-
lution is chosen uniformly at random from {0, 1}n. In the following, we show that the
optimization time with overwhelming proability is still exponential if ρ is convergent to 0
only polynomially fast.

Assume that the currently best solution x∗ has value k. Then the following lemma
gives a lower bound on the probability of overshooting k by a certain amount in the next
accepted step.

Lemma 8.2.2 Let X1, . . . , Xn ∈ {0, 1} be independent Poisson trials with success prob-
abilities pi, 1 ≤ i ≤ n. Let X := X1 + · · · + Xn, µ := E(X) = p1 + · · · + pn and
σ :=

√

Var(X). For any 0 ≤ k ≤ n − σ, let γk = max{2, (k − µ)/σ}. If σ = ω(1) then
Prob(X ≥ k + σ/γk | X ≥ k) = Ω(1).

Proof: Since the Xi are bounded and σ diverges, Lindeberg’s generalization of the Central
Limit Theorem (Feller (1971), Chapter VIII.4) holds s. t. the distribution of X converges
to a Normal distribution with expectation µ and variance σ2. We use approximations
of the Normal distribution (with the common notion Φ(x) for its cumulative distribution
function) and distinguish two cases.

If 2 maximizes γk, we even show p̃k := Prob(X ≥ k + σ/γk) = Ω(1). Let d̃k := (k +
σ/γk − µ)/σ be the normalized deviation from the expectation. Since by our assumptions
(k − µ)/σ ≤ 2, we obtain d̃k = O(1). The Central Limit Theorem implies p̃k = (1 ±
o(1))(1 − Φ(d̃k)) = Ω(1).

Now let γk > 2. Let pk := Prob(X ≥ k), dk := (k − µ)/σ, and let p̃k and d̃k as above.
By our assumptions, 2 ≤ dk ≤ d̃k ≤ dk + 1/dk. We have to bound p̃k/pk from below. We
reuse the Central Limit Theorem and employ the inequalities

(

1

x
− 1

x3

)

· 1√
2π

· e−x2/2 < 1 − Φ(x) <
1

x
· 1√

2π
· e−x2/2

(see Feller (1968), Chapter VII.1). Hence,

p̃k

pk

≥ 1 − o(1)

1 + o(1)
·
(

dk

d̃k

− dk

(d̃k)3

)

· e−(1/2)((d̃k)2−(dk)2).

The first fraction and the ()-term are Ω(1). Finally, the e-term is Ω(1) since (d̃k)
2−(dk)

2 ≤
(dk + 1/dk)

2 − (dk)
2 ≤ 2 + 1/(dk)

2 ≤ 3. 2

Using this lemma, we are able to prove an exponential lower bound on the runtime
of 1-ANT on OneMax. In order to show that the success probability in an exponen-
tial number of steps is still exponentially small, we assume that ρ = O(n−1−ǫ) for some
constant ǫ > 0.

84 CHAPTER 8. A SIMPLE ACO ALGORITHM

Theorem 8.2.3 Let ρ = O(n−1−ǫ) for some constant ǫ > 0. Then the optimization time

of 1-ANT on OneMax is 2Ω(nǫ/3) with probability 1 − 2−Ω(nǫ/3).

Proof: The main idea is to keep track of the so-called 1-potential, defined as the sum of
pheromone values on 1-edges. Note that the 1-potential multiplied by n equals the expected
OneMax-value of the next constructed solution x. If the 1-potential is bounded above by
1/2+O(1/

√
n), Chernoff bounds yield that the probability of OneMax(x) ≥ n/2+n1/2+ǫ/3

is bounded above by 2−Ω(nǫ/3). We will show that with overwhelming probability, the
1-potential is bounded as suggested as long as the OneMax-value of the so far best
solution is bounded above by n/2 + n1/2+ǫ/3.

Starting with initialization, we consider a phase of length s := ⌊2cnǫ/3⌋ for some con-

stant c to be chosen later and show that the success probability in the phase is 2−Ω(nǫ/3). A
main task is to bound the number of successful steps of the phase, i. e., of steps where the
new solution is accepted and a pheromone update occurs. In a success with OneMax-value
n/2+i, n+2i pheromone values on 1-edges are increased and n−2i are decreased. Suppose
all pheromone values are 1/(4n)± o(1/n) in the phase. Then Lemma 8.2.1 yields that the
1-potential is changed by at most 4i(1 ± o(1))ρ due to the considered success. Hence, if
the best solution always had OneMax-value at most n/2 + n1/2+ǫ/3, the total change of
the 1-potential due to at most O(n2ǫ/3) successes would be at most

O(n2ǫ/3) · 4n1/2+ǫ/3 · (1 ± o(1))ρ = O(n1/2+ǫ) · O(1/n1+ǫ) = O(1/n1/2)

by our assumption on ρ. This would prove the theorem since the initial 1-potential is 1/2.
Under the assumption on the pheromone values, we want to show that with probability

1−2−Ω(nǫ/3), at most c′n2ǫ/3 successes occur in the phase, where c′ is an appropriate constant.
We already know that then the probability of a success with value at least n/2 + n1/2+ǫ/3 is

2−Ω(nǫ/3) in each step of the phase. If c is chosen small enough, this probability is 2−Ω(nǫ/3)

for the whole phase. Moreover, the initial value is at least n/2 − n1/2+ǫ/3 with probability

1 − 2−Ω(nǫ/3).
Let the so far best value be k. We apply Lemma 8.2.2 with respect to the expected

OneMax-value µ of the next constructed solution. Note that k − µ = O(n1/2+ǫ/3) holds
at each time step we consider. Moreover, pi = 1/2 ± o(1) is assumed to hold for all bits,
implying σ = Θ(n1/2). Hence, with probability Ω(1) the next success leads to a value at

least k+Ω(n1/2−ǫ/3). Using Chernoff bounds, with probability 1−2−Ω(nǫ/3), c′n2ǫ/3 successes
increase the OneMax-value by at least c′′n1/2+ǫ/3, where c′′ is an appropriate constant.

We still have to show the statement on the pheromone values. This is not too difficult
for our choice of ρ if the number of successes is bounded by O(n2ǫ/3). Then the total change
of pheromone on any fixed edge is bounded above by

ρ · O(n2ǫ/3) = O(n−1−ǫ) · O(n2ǫ/3) = o(1/n)

with probability 1− 2−Ω(nǫ/3). Since the number of edges is bounded by 4n, this holds also
for all edges together. Since the sum of all failure probabilities is 2−Ω(nǫ/3), this completes
the proof. 2

8.3. POLYNOMIAL UPPER BOUNDS FOR ONEMAX 85

8.3 Polynomial upper bounds for OneMax

In the following, we consider for which values of ρ the optimization time of 1-ANT on
OneMax with high probability is still polynomial. We will show that the function value
of the last accepted solution determines the expected value of the next solution almost
exactly if ρ = Ω(n−1+ǫ), ǫ > 0 an arbitrary constant. To determine the expected time
to reach an improvement, we give a lower bound on the probability of overshooting the
expected value by at least a small amount.

Lemma 8.3.1 Let X1, . . . , Xk ∈ {0, 1}, k ≤ n, be independent Poisson trials with success
probabilities pi ∈ [1/n, 1 − 1/n], 1 ≤ i ≤ k. Let X := X1 + · · · + Xk and µ := E(X) =
p1 + · · ·+ pk. If µ ≤ k − 1 then Prob(X ≥ µ + 1/2) = Ω(1/n).

Proof: It follows from the work by Hoeffding (1956) that Prob(X ≥ µ+1/2) is minimized
if the pi take on at most 3 different values, only one of which is distinct from 1/n and
1 − 1/n. (See Lemma B.1.4 in Appendix B.)

Let nℓ be the number of pi that are 1/n, nh be the number that are 1−1/n and na be the
number that take a different value a, 1/n < a < 1− 1/n. The random variables belonging
to each of the three sets are called ℓ-variables, h-variables and a-variables, respectively.
Let Xℓ, Xh and Xa be the sums of the variables from these sets, i. e., X = Xℓ + Xh + Xa,
and let µℓ = nℓ/n, µh = nh(1 − 1/n) and µa = naa be the corresponding expectations. In
the following arguments we also cover the case that up to two sets are empty.

It always holds that Xh = nh ≥ µh with probability (1−1/n)nh = Ω(1). We distinguish
several cases according to the variables from the other two sets. Since by assumption
µ ≤ k − 1, the simple case na = nℓ = 0 is only possible if k = n since otherwise µ =
k − k/n > k − 1. In this simple case, however, X = n = µ + 1 holds with probability
Ω(1). In the following, we therefore assume that na > 0 or nℓ > 0 (or both). First we
concentrate on the most complicated case that nℓ 6= 0 6= na, implying µℓ 6= 0 6= µa. If
0 < µℓ ≤ 1/4 and 0 < µa ≤ 1/4, we exploit that Xℓ ≥ 1 with probability at least 1/n.
Hence Xh + Xℓ ≥ nh + 1 ≥ µh + (µℓ + 3/4) ≥ µ + 1/2 with probability Ω(1/n).

Now let µa > 1/4 and 0 < µℓ ≤ 1/4. We distinguish four cases depending on na, µa and
σa =

√

naa(1 − a). In all cases, we exploit that Xℓ ≥ 1 ≥ µℓ+3/4 with probability Ω(1/n).

Case 1: na = O(1). Since µa ≥ 1/4, a = Ω(1). Hence, we have Xa = na ≥ µa with
probability Ω(1), implying X = Xh + Xa + Xℓ ≥ µh + µa + µℓ + 3/4 = µ + 3/4 with
probability Ω(1/n).

Case 2: na → ∞ and µa = O(1). Hence, Xa can be approximated by means of
the Poisson distribution with parameter µa, implying Xa ≥ µa with probability at least
(1−o(1)) · e−µa(µa)

⌈µa⌉/(⌈µa⌉)! = Ω(1). Hence, we conclude as in Case 1 that X ≥ µ+3/4
with probability Ω(1/n).

Case 3: µa → ∞ (implying na → ∞) and σa → ∞. Using the Central Limit Theorem
(Feller (1968)), we approximate Xa by a Normal distribution, implying Xa ≥ µa with
probability Ω(1). We go on as in Case 1.

86 CHAPTER 8. A SIMPLE ACO ALGORITHM

Case 4: µa → ∞ and σa = O(1). Since σ2
a = µa(1− a) = O(1) implies a ≥ 1/2− o(1),

we obtain 1 − a = O(1/µa) = O(1/na). Hence, Xa = na ≥ µa with probability at least
(1 − O(1/na))

na = Ω(1). We go on as in Case 1.
The case that 0 < µa ≤ 1/4 and µℓ > 1/4 can be handled by an analogous case

distinction according to nℓ and µℓ. Here some cases are even impossible.
We still have to study the situation that µa > 1/4 and µℓ > 1/4. Then we examine to

which of the four cases the a-variables and ℓ-variables belong. If both lead to one of the
Cases 1 or 4, we even obtain X = k ≥ µ+1 with probability Ω(1). Otherwise, at least one
of the two sets of variables leads to Case 2 or 3. W. l. o. g., let this be the a-variables. Then
na → ∞ and na − µa → ∞ and both the approximation by the Poisson and the Normal
distribution can be adapted in a straightforward manner to show that even Xa ≥ µa + 1/2
still holds with probability Ω(1).

Finally, we have to consider the case that nℓ = 0 6= na or na = 0 6= nℓ. It suffices to
study the case na 6= 0 = nℓ. Considering the above four cases and the extra case µa ≤ 1/4,
the lemma follows by the same arguments as before. 2

Using Lemma 8.3.1 we will show that with probabilty close to 1 an optimal solution is
produced within O(n2) iterations of 1-ANT if ρ is slightly larger than 1/n.

Theorem 8.3.2 Choosing ρ = Ω(n−1+ǫ), ǫ > 0 a constant, the optimization time of

1-ANT on OneMax is O(n2) with probability 1 − 2−Ω(nǫ/2).

Proof: We assume ρ ≤ 1/2 since the result follows from Theorem 8.1.1 otherwise. In
contrast to previous definitions, an edge is called saturated if its pheromone value is n−1

2n2

and called unsaturated otherwise. Let x∗ be a newly accepted solution and denote by S
the set of saturated 1-edges and by U the set of unsaturated 1-edges after the pheromone
update. Let k = OneMax(x∗) and decompose k according to k = ks+ku, where ks denotes
the number of ones in x∗ whose corresponding 1-edges belong to S and ku to the number
of ones in x∗ whose 1-edges belong to U . The probability that the edges of S contribute
at least ks to the next (not necessarily accepted) solution x is at least (1 − 1/n)ks = Ω(1).

Consider the potential P of all edges of U before x∗ updates the pheromone values. Let
µ = Pn be the expected OneMax-value w. r. t. these edges before the update. Depending
on P and ku, we compute P ∗(ρ), the new 1-potential on these edges:

P ∗(ρ) =
(1 − ρ)P + 2kuρ

(1 − ρ) + 2nρ
.

We denote by µ∗ = P ∗(ρ) · n the expected OneMax-value w. r. t. to edges of U after
the update has occured. Under certain assumptions, we will prove that with probability
1− 2−Ω(nǫ), µ∗ + 1/2 > ku. Since ku is an integer, Lemma 8.3.1 shows that the probability
of producing in the next solution x at least ⌈µ∗ + 1/2⌉ ≥ ku + 1 ones by the mentioned
edges is at least Ω(1/n). Considering the difference between µ∗ and ku, we get

µ∗ − ku ≥ (1 − ρ)P + 2kuρ

(1 − ρ) + 2nρ
· n − ku =

(µ − ku)(1 − ρ)

(1 − ρ) + 2nρ
.

8.4. CONCLUSIONS 87

We exploit that ρ ≤ 1/2, implying 1 − ρ ≥ 0. Hence, if µ − ku ≥ 0 then µ∗ ≥ ku >
ku − 1/2 anyway. Assuming µ − ku < 0, we can lower bound the (negative) last fraction
by (µ − ku)/(2nρ). Hence, if we can prove that ku − µ < nρ, we obtain µ∗ > ku − 1/2 as
desired. We will bound the probability of a large deviation ku − µ keeping track of the
variance of the random OneMax-value of x∗. Let v be the variance before the pheromone
values have been updated with respect to x∗ and denote by v∗ the variance after the update.
If v ≤ (nρ)3/2, then a Chernoff-Hoeffding-type bound (see Appendix A.2.3) yields

Prob(ku − µ ≥ nρ) ≤ e−
(nρ)2

2v(1+nρ/(3v)) = 2−Ω(
√

nρ) = 2−Ω(nǫ/2).

However, we cannot show that v ≤ (nρ)3/2 is likely for all points of time. Therefore, we will
prove v∗ ≥ v/(4nρ) for any time step. This will show that v∗ is large enough to compensate
a large ku − µ in the following step, constructing x.

Suppose v > (nρ)3/2. Then v ≥ √
vnρ, and the above bound yields

Prob(ku − µ ≥ √
vnρ) ≤ e

− (
√

vnρ)2

2v+2
√

vnρ/3 ≤ e−
vnρ

2v+2v/3 = 2−Ω(nǫ).

Hence, with probability 1 − 2−Ω(nǫ), (ku − µ)/(2nρ) ≤
√

v/(2nρ), implying µ∗ ≥ ku −
√

v/(2nρ). Due to the assumptions v > (nρ)3/2, v∗ ≥ v/(4nρ) and nρ = Ω(nǫ), it follows
that v∗ = ω(1). Hence, we can apply Lindeberg’s generalization of the Central Limit
Theorem for the value of x. The probability of producing at least ku + 1 ones on the edges
of U is bounded below by the probability of producing at least 1 + µ∗ +

√

v/(2nρ) ones
on these edges. By the Central Limit Theorem, this has probability Ω(1) since

√
v∗ ≥

√

v/(2nρ).
We still have to show that v∗ ≥ v/(4nρ). It is sufficient to show a statement on the

success probability for each edge (u, v) of the construction graph. Consider the expression

τ ′
(u,v) ≥

(1−ρ)τ(u,v)

1−ρ+2nρ
. The last fraction is at least

τ(u,v)

4nρ
since ρ ≤ 1/2.

The edges of S contribute with probability Ω(1) at least ks, and (if no failure of prob-

ability 2−Ω(nǫ/2) occurs) with probability Ω(1/n), the value of the bits corresponding to
edges of U is at least ku + 1. At most n − 1 improvements are needed, and, by Chernoff
bounds, cn2 steps contain at least n − 1 improvements with probability 1 − 2−Ω(n) for an
appropriate constant c. Since ρ ≤ 1/2, ǫ ≤ 1 must hold. Hence, the sum of all failure

probabilities for O(n2) steps is 2−Ω(nǫ/2). 2

8.4 Conclusions

For the first time, bounds on the runtime of a simple ACO algorithm have been obtained.
Choosing a large evaporation factor, it behaves like (1+1) EAb and all results on this al-
gorithm transfer directly to our ACO algorithm. In addition, we have inspected the effect
of the evaporation factor in detail for the function OneMax and figured out the border
between a polynomial and an exponential optimization time almost completely. Thereby,

88 CHAPTER 8. A SIMPLE ACO ALGORITHM

we have developed new techniques for the analysis of randomized search heuristics.

A conference version that contains the results of this chapter has been submitted for
publication.

Part IV

Multi-Objective Optimization
Problems

89

Chapter 9

Multi-Objective Minimum Spanning
Trees

Especially in the case of multi-objective optimization problems evolutionary algorithms
have been successfully applied. In this case the population of a multi-objective evolution-
ary algorithm (MOEA) is used to compute or approximate the Pareto front. In contrast
to their wide applications the rigorous analysis of MOEAs with respect to their runtime
behavior has been started only recently. Such analyses are necessary to get a better under-
standing how these heuristics work and which parts of the Pareto front can be computed
fastly. To our knowledge, there are only a few results on the expected runtime of multi-
objective evolutionary algorithms. Laumanns, Thiele, Zitzler, Welzl, and Deb (2002) have
analyzed two local search algorithms (SEMO and FEMO) for a problem with conflicting
objectives. Giel (2003) has investigated a simple MOEA that searches globally (GSEMO).

In this chapter we analyze MOEAs on a NP-hard multi-objective combinatorial opti-
mization problem. Laumanns, Thiele, and Zitzler (2004) have considered a special instance
of the multi-objective knapsack problem. An analysis of MOEAs on a combinatorial prob-
lem, not only specific instances, is still missing. The investigations presented in this chap-
ter seem to be the first analyses of a MOEA with respect to the expected runtime on an
NP-hard combinatorial optimization problem. We consider the multi-objective minimum
spanning tree problem. Many successful evolutionary algorithms have been proposed for
this problem (see e. g. Zhou and Gen (1999) or Knowles and Corne (2001)). In Chapter 7
we have shown that randomized search heuristics are able to compute minimum spanning
trees in expected polynomial time. The analysis is based on the investigation of the ex-
pected multiplicative weight decrease (with respect to the difference of the weight of the
current graph and the weight of a minimum spanning tree) and serves as a starting point for
the analysis on the multi-objective minimum spanning tree problem. We analyze GSEMO
(see Section 4.2) until it has produced a population including for each extremal point of
the Pareto front a corresponding solution. The extremal points of the Pareto front are of
particular interest as we show that they give a 2-approximation of the Pareto front.

91

92 CHAPTER 9. MULTI-OBJECTIVE MINIMUM SPANNING TREES

After having given a motivation for our work we introduce in Section 9.1 our model
of the multi-objective minimum spanning tree problem. In Section 9.2 we show that the
extremal points give a 2-approximation of the Pareto front. We analyze GSEMO in Section
9.3 with respect to the expected time until it has produced a population that includes for
each extremal point of the Pareto front a corresponding spanning tree and finish with some
conclusions.

9.1 The problem

The problem to compute multi-objective minimum spanning trees can be stated as follows.
Given an undirected connected graph G = (V, E) on n vertices and m edges and for each
edge e ∈ E a weight vector w(e) = (w1(e), . . . , wk(e)), where wi(e), 1 ≤ i ≤ k, is a positive
integer, the goal is to find for each objective vector q of the Pareto front F a spanning
tree s with w(s) = q. In the case of at least two weight functions the problem is NP-
hard (see e.g. Ehrgott (2005)). Papadimitriou and Yannakakis (2000) have given an fully
polynomial time approximation scheme (FPTAS) to compute an ǫ-approximation of the
Pareto front. This algorithm is based on a pseudo-polynomial algorithm for the problem
given by Barahona and Pullyblank (1987). In the rest of this chapter we consider the case
k = 2 and examine which parts of the Pareto front can be computed by simple MOEAs in
pseudo-polynomial time.

Again we use the edge-set encoding for our algorithms. The search space equals S =
{0, 1}m where each position corresponds to one edge. A search point s corresponds to the
choice of all edges ej , 1 ≤ j ≤ m, where sj = 1 holds. Let wmax

i be the maximum weight of
wi, wmax = maxwmax

i , wmin = min wmax
i and wub = n2 · wmax, The fitness of an individual

s is described by a vector f(s) = (f1(s), . . . fk(s)) with

fi(s) := (c(s) − 1) · w2
ub + (e(s) − (n − 1)) · wub +

∑

j|sj=1

wj
i

where wj
i is the value of edge ej with respect to the function wi, c(s) is the number of

connected components in the graph described by s and e(s) is the number of edges in this
graph. This is a generalization of the fitness function w used for RLSb and (1+1) EAb in
Chapter 7 to the multi-objective case. Again the most important issue is to decrease c(s)
until we have graphs connecting all vertices. The next issue is to decrease e(s) under the
condition that s describes a connected graph. Finally, we look for Pareto optimal spanning
trees.

The fitness function f , similar to the fitness function w of Chapter 7, penalizes the
number of connected components as well as the extra connections. This is not necessary
since breaking a cycle decreases the fitness value. Therefore we are also interested in the

9.2. THE EXTREMAL POINTS OF THE CONVEX HULL 93

qi

q1

qr

qi+1
gi

f2

f1

Figure 9.1: The convex hull of the Pareto front F

fitness function f ′(s) = (f ′
1(s), . . . f

′
k(s)) with

f ′
i(s) := (c(s) − 1) · wub +

∑

j|sj=1

wj
i ,

which generalizes the fitness function w′ of Chapter 7 to the multi-objective case.

Note that the fitness functions f and f ′ compute the same objective vector if s describes
a spanning tree. This implies that the Pareto fronts for a given connected graph G contain
the same objective vectors. As both fitness functions take only the weight vectors on the
edges into account if s is a spanning tree, the Pareto sets of f and f ′ consist of all Pareto
optimal spanning trees.

Considering a spanning tree T we can create another spanning tree T ′ by integrating
an edge e ∈ E \ T into T and removing one edge of the created cycle Cyc(T, e). Using
such local changes we can transform a spanning tree T into another spanning tree S. The
properties of such local changes have been examined in detail in Section 7.2. We will also
make use of these results to obtain upper bounds on the runtime of simple MOEAs for the
multi-objective minimum spanning tree problem.

9.2 The extremal points of the convex hull

Let F be the Pareto front of a given instance. If we consider the bi-objective problem
the convex hull of F , denoted by conv(F), is a piecewise linear function (see Figure 9.1).
Note that for each spanning tree T on the convex hull there is a λ ∈ [0, 1] such that T is a
minimum spanning tree with respect to the single weight function λw1 +(1−λ)w2 (see e.g.
Knowles and Corne (2001)). We will use this in Section 9.3 to transform an arbitrary span-
ning tree S into a desired Pareto optimal spanning tree T on conv(F) using Theorem 7.2.1.

94 CHAPTER 9. MULTI-OBJECTIVE MINIMUM SPANNING TREES

Let q1 and qr be the Pareto optimal objective vectors with minimal weight with respect
to f1 respectively f2. We denote by gi, 1 ≤ i ≤ r−1, the linear functions with gradients mi

describing conv(F). Then i < j holds for two linear functions gi and gj iff mi < mj . Hence,
the linear functions are ordered with respect to their increasing gradients. Let qi = (xi, yi),
2 ≤ i ≤ r − 1, be the intersecting point of gi−1 and gi. Our aim is to analyze the expected
time until a simple MOEA has produced a population that includes for each vector of
F ′ = {q1, q2, . . . , qr} a spanning tree. We call the vectors of F ′ the extremal points of the
Pareto front.

The general idea of evolutionary algorithms is to create good approximations of optimal
solutions for a given task. In the case of multi-objective problems the task is to approximate
the Pareto front.

Definition 9.2.1 A solution x is called a c-approximation of a solution x∗ if f1(x) ≤
c·f1(x

∗) and f2(x) ≤ c·f2(x
∗) holds. We also call the vector (f1(x), f2(x)) a c-approximation

of the vector (f1(x
∗), f2(x

∗)) in this case. A set P of solutions is called a c-approximation
of the Pareto front F , if there exists for each solution x∗ of the Pareto set a solution x in
P that is a c-approximation of x∗.

We are not aware of a result in the literature showing that, in the case of the minimiza-
tion of two arbitrary functions with positive function values, the extremal points of the
Pareto front give a 2-approximation of the Pareto front. Therefore, we show the following
result.

Theorem 9.2.2 Considering the minimization of two objective functions with positive ob-
jective values, a set P containing for each extremal point a solution is a 2-approximation
of the Pareto front.

Proof: Consider the different possibilities for an arbitrary solution x∗ of the Pareto set
together with its Pareto optimal objective vector q = (q1, q2), which is not an extremal
point. Assume that xi < q1 < xi+1 holds for some i ∈ {1, . . . , r−1}. This has to be the case
because otherwise q would be dominated or the extremal points are not Pareto optimal.
The situation for the two extremal points qi and qi+1 is shown in Figure 9.2. If q2 ≥ yi, q is
not Pareto optimal as it is dominated by qi. Let dx = xi+1−xi and dy = yi+1−yi. Consider
the vector s = (s1, s2) with s1 = xi + (dx/2) and s2 = yi − (dy/2) in the objective space.
As a 2-approximation of a vector q that dominates a vector q′ is also a 2-approximation
of q′, it is not necessary to consider the vectors dominated by s. Note, that s is a point
on the linear function gi which separates the possible vectors that have to be considered
into two classes class 1 and class 2. Class 1 includes all vectors q with xi < q1 < xi + dx/2
and yi − dy/2 < q2 < yi and in addition the vector s. Class 2 includes all vectors q with
xi + dx/2 < q1 < xi+1 and yi+1 < q2 < yi − dy/2.

Clearly xi ≤ q1 and yi+1 ≤ q2. In the following we show that if q belongs to class 1,
yi ≤ 2 · q2 holds and that if q belongs to class 2, xi+1 ≤ 2 · q1 holds. Hence, either qi or qi+1

is a 2-approximation of q.

9.3. ANALYSIS OF GSEMO 95

dominated by qi

dominated by sclass 1

class 2(xi, yi − dy/2)

(xi + dx/2, yi+1)

s

qi

qi+1

gi

Figure 9.2: Possible Pareto optimal vectors between two extremal points qi and qi+1

If q belong to class 1 then q1 ≤ xi + (dx/2) holds. In this case, we get

q2 ≥ yi + (q1 − xi) · mi

≥ yi + (dx/2) · mi

= yi + (dx/2)
yi+1 − yi

xi+1 − xi

= yi + (1/2)(yi+1 − yi)

which implies 2 · q2 ≥ 2yi + yi+1 − yi ≥ yi.
If q belongs to class 2 then q2 < yi+1 − (dy/2) holds. In this case we get

q1 ≥ xi+1 + (q2 − yi+1) · (1/mi)

≥ xi+1 − (dy/2) · (1/mi)

= xi+1 − (dy/2)
xi+1 − xi

yi+1 − yi

= xi+1 − (1/2)(xi+1 − xi)

which implies 2 · q1 ≥ 2xi + xi+1 − xi ≥ xi+1. 2

9.3 Analysis of GSEMO

In the definition of GSEMO we have not specified how to choose the first search point.
All results in this section hold for an arbitray initial solution. Note, that often the initial
solution is chosen uniformly at random from the considered search space.

We start by analyzing GSEMO until it has produced a population consisting of solutions
which are connected graphs.

Lemma 9.3.1 GSEMO working on the fitness function f or f ′ constructs a population
consisting of connected graphs in expected time O(m logn).

Proof: Due to the fitness functions no steps increasing the number of connected compo-
nents are accepted. The current population P consists at each time of solutions having

96 CHAPTER 9. MULTI-OBJECTIVE MINIMUM SPANNING TREES

............

connected
graphs

components

components
2

at most l − 1 components expected time O(m/(l − 1))

l

f2

f1

Figure 9.3: Decomposition of the objective space due to the number of connected compo-
nents

the same number of connected components as otherwise the solution s with the smallest
number of connected components would dominate a solution with a larger number of con-
nected components in P . The decomposition of the objective space due to the number
of connected components is shown in Figure 9.3. If P consists of search points with l,
l ≥ 2, components there are for each search point in P at least l− 1 edges whose inclusion
decreases the number of connected components. The probability of a step decreasing the
number of connected components is therefore at least 1

e
· l−1

m
and its expected waiting time

is bounded by O(m/(l−1)). After we have decreased the number of connected components
for one solution, all solutions with more connected components are deleted from the popu-
lation. Hence, the expected time until the population consists only of solutions describing
connected graphs is upper bounded by

em

(

1 + . . . +
1

n − 1

)

= O(m logn). 2

Now we bound the expected time until P includes for the objective vectors q1 and qr

corresponding solutions. Later these solutions will serve as a basis to collect solutions for
the remaining extremal points.

Lemma 9.3.2 GSEMO working on the fitness function f constructs a population, which
includes for each of the objective vectors q1 and qr a spanning tree, in expected time
O(m2nwmin(log n + log wmax)).

Proof: Using Lemma 9.3.1, we work under the assumption that P consists of individuals
describing connected graphs. In this case, all individuals of P have the same number of
edges. If there are N edges in each solution there are N − (n − 1) edges whose exclusion

9.3. ANALYSIS OF GSEMO 97

decreases the number of edges without increasing the number of connected components.
Hence, the probability to decrease the number of edges in the next step is at least 1

e
·N−(n−1)

m

and we can bound the expected time to create a population consisting of spanning trees
by

em

(

1 + . . . +
1

m − (n − 1)

)

= O(m log(m − n + 1) = O(m log n).

If P consists of spanning trees the population size is bounded by (n − 1)wmin because
there is only one spanning tree for each value of one single function in the population. We
show an upper bound on the expected time to create a population including a spanning
tree with vector q1. The expected optimization time of (1+1) EAb in the case of one
cost function is bounded by O(m2(log n + wmax)); see Theorem 7.3.8. We are working
with a population of size O(nwmin) and consider in each step the individual with the
smallest weight with respect to the function w1. In each step this individual is chosen with

probability Ω
(

1
nwmin

)

. Following the ideas in the proof of Theorem 7.3.8, we can upper

bound the expected time until P includes a spanning tree having minimal weight with
respect to w1 by O(m2nwmin(log n + log wmax

1)).

It remains to bound the expected time to create from a population with a minimal
spanning tree S with respect to w1, a population with a spanning tree T which is minimal
with respect to w1 and also Pareto optimal. If |S \ T | = k holds we can consider pairs of
edges si, ti with si ∈ S \ T and ti ∈ T \ S due the bijection given by Theorem 7.2.1. As
S and T are both minimum spanning trees with respect to w1, w1(si) = w1(ti) holds for
i = 1, . . . k, because otherwise we are able to improve T or S with respect to w1. This
contradicts the assumption that S and T are both minimum spanning trees with respect
to w1. w2(ti) ≤ w2(si) holds for i = 1, . . . , k, because otherwise we are able to improve T
with respect to w2 without changing the value of w1. A contradiction to the assumption
that T is Pareto optimal. Hence, there are k exchange operations which turn S into T and
the expected time to create T from S is bounded by O(m2nwmin(log n + log wmax

2)) using
the ideas in the proof of Theorem 7.3.8.

Altogether we obtain an upper bound of O(m2nwmin(log n + log wmax
1 + log wmax

2)) =
O(m2nwmin(log n + log wmax)) to contruct a spanning with vector q1. After we have con-
structed a population including a spanning tree for q1, we can upper bound the expected
time to create a population including for each of the vectors q1 and qr a spanning tree
by O(m2nwmin(log n + log wmax)) using the same arguments as before and this proves the
lemma. 2

We give a similar bound for the fitness function f ′. The main difference is that we can
only guarantee a population size which is bounded by O(mwmin).

Lemma 9.3.3 GSEMO working on the fitness function f ′ constructs a population, which
includes for each of the objective vectors q1 and qr a spanning tree, in expected time
O(m3wmin(log n + log wmax)).

98 CHAPTER 9. MULTI-OBJECTIVE MINIMUM SPANNING TREES

Proof: We consider the expected time to create a spanning tree with vector q1. At each
time the population size is bounded by mwmin, because there is only one search point for
each value of one single function in the population. We consider in each step the connected
graph with the minimal weight with respect to w1 in P . Using the ideas of Lemma 9.3.2
a connected subgraph with minimal costs with respect to w1 is constructed in expected
time O(m3wmin(log n + log wmax

1)). This is a spanning tree, because otherwise the weight
of w1 can be decreased. After that we consider the spanning tree with minimal weight with
respect to w1 in P . We are in the situation to minimize the weight of this spanning tree
with respect to w2 and this can be done in expected time O(m3wmin(log n + log wmax

2))
using the ideas of Lemma 9.3.2. The expected time to create a spanning tree with vector
qr can be bounded in the same way. 2

In the following we work under the assumption that F = F ′ holds which means that the
Pareto front consist only of extremal points. In this case we call the Pareto front strongly
convex. Let d(T, T ′) = |T \ T ′| denote the distance of two spanning trees T and T ′ which
equals the minimal number of exchanges of two edges to construct T ′ from T .

Lemma 9.3.4 Assume that the Pareto front F is strongly convex. For each spanning tree
T with w(T) = qi, 1 ≤ i ≤ r − 1, there is a spanning tree T ′ with w(T ′) = qi+1 and
d(T, T ′) = 1.

Proof: As T and T ′ are different d(T, T ′) > 0 holds. We assume that T ′ is a spanning
tree with vector qi+1 which has minimal distance to T . Working under the assumption
that d(T, T ′) > 1 holds for all spanning trees T ′ with vector qi+1, we show a contradiction.
We can apply Theorem 7.2.1 because for each spanning tree T ′ of the convex hull conv(F)
there is a λ ∈ [0, 1] such that T ′ is a minimum spanning tree for the single weight function
λw1 +(1−λ)w2. We partition the different exchange operations exchange(e, e′) inserting e
and deleting e′ due to Theorem 7.2.1 into 4 groups (see Figure 9.4). Let d = exchange(e, e′)
and w(d) = (w1(e)−w1(e

′), w2(e)−w2(e
′)) be the vector describing the weight changes of

this operation. d belongs to group 1, if w1(d) < 0 and w2(d) > 0, to group 2, if w1(d) ≥ 0
and w2(d) ≥ 0, to group 3, if w1(d) < 0 and w2(d) < 0, and to group 4, if w1(d) > 0 and
w2(d) < 0.

There is no exchange operation d with w(d) = (0, 0), because otherwise T ′ is not a
spanning tree with vector qi+1 and minimal distance to T . All other operations belonging
to group 2 are not possible because the remaining operations applied to T would construct a
spanning tree dominating T ′. A contradiction to the assumption that T ′ is Pareto optimal.
Operations belonging to group 3 are not possible because they would construct a spanning
tree dominating T . Let qi = (xi, yi), 1 ≤ i ≤ r. There is no exchange operation belonging
to group 4 which constructs a spanning tree T ′′ with value xi < w1(T

′′) < xi+1, because
qi+1 lexicographically follows qi in the Pareto front. There is also no operation belonging
to group 4 constructing a spanning tree with value w1(T

′′) ≥ xi+1 and w2(T
′′) ≥ yi+1,

because otherwise the remaining operations applied to T construct a spanning tree which
dominates T ′. A contradiction to the assumption that T ′ is Pareto optimal.

9.3. ANALYSIS OF GSEMO 99

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

v
tv

gi

qi

group 3 group 4

group 2group 1

w

tw

gi−1

qi+1

gi+1

Figure 9.4: The strongly convex Pareto front and the classification of exchange operations
creating a spanning tree T ′ with vector qi+1 from a spanning tree T with vector qi.

Let M be the set of exchange operations constructing T ′ from T , M1 ⊆ M be the set
of operations belonging to group 4, and M2 ⊂ M be the subset of operations belonging to
group 1. Note that M1 ∪M2 = M holds due to previous observations. We assume that M
consists of more than one operation. As xi+1 > xi holds, M1 is not empty. Let v = (vx, vy)
be the vector of the spanning tree which is constructed when all operations of M1 are applied
to T . vx > xi+1 and vy < yi+1 holds, because otherwise we have produced a spanning tree
with vector qi+1 by one single operation (a contradiction to d(T, T ′) > 1), have constructed
a spanning tree dominating T ′, or the remaining operations applied to T construct a
spanning tree dominating T ′. We consider the linear function tv with the gradient mv

intersecting the points qi+1 and v. As F is strongly convex mv ≥ mi > mi−1 holds. To
construct a spanning tree with vector qi+1 M2 can not be empty. Let w = (wx, wy) be the
vector of the spanning tree which is constructed when the operations of M2 are applied to
T and let tw be the linear function with gradient mw defined by qi and w. As F is strongly
convex mw ≤ mi−1 holds which implies mv > mw. Let z = (zx, zy), zx < 0, zy > 0, be the
vector such that qi + v + z = qi+1. As the operations of M applied to T construct T ′ with
vector qi+1, wx = zx must hold. Taking the gradient mw into account, we can compute the
value of the second component by vy + mw · zx > vy + mv · zx = yi+1. A contradiction to
the assumption that the operations of M applied to T construct a spanning tree T ′ with
vector qi+1. Hence, T ′ has to be constructed from T by one single operation belonging to
group 4. 2

Let |F | be the number of Pareto optimal objective vectors. Note that |F | ≤ (n−1)wmin

holds. In the following, we show an upper bound on the expected time until the population
P includes for each vector of a strongly convex Pareto front F a corresponding spanning
tree.

Theorem 9.3.5 The expected time until GSEMO working on the fitness function f or f ′

has constructed a population, which includes a spanning tree for each vector of a strongly

100 CHAPTER 9. MULTI-OBJECTIVE MINIMUM SPANNING TREES

gi−1

gi+1

gi

qi

v

qi+1

f2

f1

Set N of exchange operations (directly applicable to v)

s

operation that constructs s from v

Figure 9.5: Situation to compute the next extremal point

convex Pareto front F , is bounded by O(m2nwmin(|F | + log n + log wmax)) respectively
O(m3wmin(|F | + log n + log wmax)) .

Proof: We consider the fitness function f . Due to Lemma 9.3.2 the expected time to create
a population including spanning trees for the Pareto optimal vectors q1 and qr is bounded
by O(m2nwmin(log n+log wmax)). We assume that the population includes a spanning tree
for each qj , 1 ≤ j ≤ i. For each spanning tree T with vector qi there exists a spanning tree
T ′ with vector qi+1 and d(T, T ′) = 1. The probability to choose the individual representing
T in the next mutation step is at least 1

(n−1)wmin
, because the population size is bounded

by (n − 1)wmin. As d(T, T ′) = 1 holds for at least one spanning tree T ′ with vector qi+1,
the probability to construct such a T ′, after having chosen the individual x describing

T , is at least 1
m2

(

1 − 1
m

)m−2 ≥ 1
em2 . Hence, the expected time to create a spanning tree

with vector qi+1 is bounded by O(m2nwmin). As there are |F | Pareto optimal vectors the
expected time until GSEMO constructs a spanning tree for each Pareto optimal vector of
a strongly convex Pareto front is bounded by O(m2nwmin(|F | + log n + log wmax)). The
ideas can be easily adapted to f ′ using Lemma 9.3.3 and the upper bound mwmin on the
population size. 2

We consider the general case now and give an upper bound on the expected time until
GSEMO has constructed a population including a spanning tree for each extremal point
q ∈ F ′ of an arbitrary Pareto front F. Let C = conv(F) be the set of objective vectors on
the convex hull of F . Note that |C| ≤ (n − 1) · wmax holds.

Theorem 9.3.6 The expected time until GSEMO working on the fitness function f or
f ′ has constructed a population, which includes a spanning tree for each vector q ∈ F ′,

9.4. CONCLUSIONS 101

is bounded by O(m2nwmin(|C| + log n + log wmax)) respectively O(m3wmin(|C| + log n +
log wmax)) .

Proof: Again we consider the fitness function f and adapt the ideas to achieve the upper
bound for f ′. By Lemma 9.3.2 the population P includes after an expected number of
O(m2nwmin(log n+log wmax)) steps spanning trees for the vectors q1 and qr. To transform
a spanning tree of conv(F) into another spanning tree of conv(F) we use the set of exchange
operations described by Theorem 7.2.1. Let T be a spanning tree with vector qi, 1 ≤ i ≤
r − 2 and suppose that T ′ is a spanning tree with vector qi+1 and minimal distance to T .
We denote by M the set of exchanges operations classified as in the proof of Lemma 9.3.4
that construct T ′ from T . Using the arguments in the proof of Lemma 9.3.4 there are
no exchanges belonging to group 2 or 3 in M . We show that each subset of M applied
to T constructs a spanning tree on gi. Suppose that a subset M ′ ⊆ M of the operations
constructs a spanning with a vector v not lying on gi. This vector has to lie above gi

because otherwise it is outside of conv(F). To construct a spanning tree with vector qi+1

on gi the operations of M ′′ = M \ M ′ have to construct a spanning lying below gi. A
contradiction to the assumption that gi is part of conv(F).

We consider the spanning tree T ′′ with the lexicographic greatest vector v = (vx, vy)
on gi in the population (see Figure 9.5). If v 6= qi+1 T ′ can be constructed from T ′′ by
a set N of exchanges of two edges, where each single exchange operation executed on
T ′′ yields a spanning tree with vector on gi. As vx < xi+1 holds there is at least one
operation in this set N which constructs a spanning tree on gi with vector s = (sx, sy)
where vx < sx ≤ xi+1 holds. Such a spanning tree is a spanning tree of conv(F). Let
Ci be the set of Pareto optimal vectors on gi, 1 ≤ i ≤ r − 2, excluding the lexicographic
smallest vector and including the lexicographic greatest vector. The expected time to
construct from a population P having spanning trees for the vectors of {q1, . . . , qi, qr},
1 ≤ i ≤ r − 2, a population including spanning trees for the vectors of {q1, . . . qi, qi+1, qr}
is therefore upper bounded by O(m2nwmin|Ci|).

As |C| = 1 +
∑r−2

i=1 |Ci| holds, the expected time, starting with a population including
spanning trees for q1 and qr, to construct a population including a spanning tree for each
vector of F ′ is bounded by O(m2nwmin|C|). Together with Lemma 9.3.2 we obtain the
proposed bound.

To prove the upper bound for f ′ we use Lemma 9.3.3 and the upper bound of mwmin

on the population size. Together with previous ideas we obtain an upper bound of
O(m3wmin|C|) after having constructed a population which includes spanning trees for
q1 and qr and this proves the theorem. 2

9.4 Conclusions

The multi-objective minimum spanning tree problem is one of the best-known multi-
objective combinatorial optimization problems. For the first time evolutionary algorithms
have been analyzed with respect to the expected time until they produce solutions of the

102 CHAPTER 9. MULTI-OBJECTIVE MINIMUM SPANNING TREES

Pareto front. In the case of a strongly convex Pareto front, we have achieved a pseudo-
polynomial bound on the expected time until the population includes for each Pareto opti-
mal objective vector a corresponding spanning tree. For an arbitrary Pareto front we have
considered the extremal points of the Pareto front. These points are of particular interest
as they give a 2-approximation of the Pareto front. It has been shown that the popula-
tion includes a solution for each extremal point after a pseudo-polynomial number of steps.

A conference version has been published in the Proceedings of Parallel Problem Solv-
ing from Nature (PPSN) 2004 (see Neumann (2004b)). An extended journal version
that contains the results of this chapter will appear in a Special Issue on Evolutionary
Multi-Objective Optimization of the European Journal on Operational Research (see Neu-
mann (2007)).

Chapter 10

Minimum Spanning Trees Made
Easier

In the previous chapter, we have analyzed simple MOEAs on a given multi-objective op-
timization problem. In this chapter, we consider a multi-objective model of the minimum
spanning tree problem. A single-objective model for the computation of minimum span-
ning trees has already been examined in Chapter 7. Our goal is to show that sometimes
single-objective optimization problems can be solved much easier by using a multi-objective
model of the problem. This approach may open a new research area in the field of multi-
objective optimization.

Sometimes, people try to turn multi-objective problems into single-objective ones, e. g.,
by optimizing a weighted sum of the fitness values of the single criteria. This may be useful
in some applications but, in general, we do not obtain the information contained in the
Pareto front and corresponding search points. Many variants of evolutionary algorithms
specialized to multi-objective optimization problems have been developed and applied, for
a survey see the monographs of Deb (2001) and Coello Coello, Van Veldhuizen, and La-
mont (2002). A conclusion from this discussion is that “multi-objective optimization is
more (at least as) difficult than (as) single-objective optimization”. This is true at least if
the fitness values for the different criteria are “somehow independent”. Without such an
assumption there is no reason to believe in the conclusion above.

We discuss the following scenario. The considered problem is a single-objective prob-
lem. It is possible to add some further criteria such that the Pareto front of the newly
created multi-objective optimization problem is not too large and such that the solution of
the multi-objective problem includes the solution of the single-objective problem. Solving
the multi-objective problem instead of the single-objective problem implies to compute the
Pareto front instead of a single optimal value. Each considered search point contains more
information than in the single-objective case since it contains also the fitness values for
the additional criteria. At least in principle it is possible that this additional information
improves the search behavior of evolutionary algorithms. This would imply that for solving

103

104 CHAPTER 10. MINIMUM SPANNING TREES MADE EASIER

difficult single-objective optimization problems one should also think about the possibility
to model the problems as generalized multi-objective optimization problems.

The purpose of this chapter is to prove that the considered scenario is not a fiction. We
do not investigate artificial problems to support this claim but one of the combinatorial
optimization problems contained in each textbook namely the computation of minimum
spanning trees. (Nobody should expect that evolutionary algorithms computing minimum
spanning trees beat the well-known problem-specific algorithms.) In Chapter 7, we have
already considered the runtime behavior of RLSb and (1+1) EAb on this problem.

In Section 10.1, we introduce the two-objective variant of the minimum spanning tree
problem which is subject of our investigations and distinguish it from other multi-objective
variants of the minimum spanning tree problem. In Section 10.2, we prove upper bounds
on the expected optimization time of some evolutionary algorithms for multi-objective
optimization applied to our problems. It turns out that they are asymptotically smaller
than lower bounds for the worst-case instances of simple evolutionary algorithms for the
single-objective case. In order to investigate what happens for small problem dimensions
and typical problem instances we have performed several experiments whose results are
presented in Section 10.3. We finish with some conclusions.

10.1 A two-objective model

In Chapter 7 we have considered RLSb and (1+1) EAb for the minimum spanning tree
problem. We have penalized edge sets which do not describe connected graphs (and in one
model additionally edge sets containing cycles) and have proven the following results:

• The expected optimization time of RLSb and (1+1) EAb is O(m2(log n + log wmax))
where wmax is the largest weight of the considered graph.

• There are graphs with n vertices, m = Θ(n2) edges, and wmax = Θ(n2) such that the
expected optimization time of RLSb and (1+1) EAb equals Θ(m2 log n).

We discuss the reason for the expected optimization time of RLSb and (1+1) EAb. If a
search point describes a non-minimum spanning tree, one-bit flips are not accepted. Either
the new search point describes an unconnected graph or a connected graph with a larger
weight. We have to wait until a mutation step includes an edge and excludes a heavier one
from the newly created cycle. The expected waiting time for a specified 2-bit flip equals
Θ(m2).

As already mentioned, the considered algorithms penalize the number of connected
components. This motivates the following two-objective optimization model of the mini-
mum spanning tree problem.

10.2. THE ANALYSIS OF THE EXPECTED OPTIMIZATION TIME 105

• The search space S equals {0, 1}m for graphs on m edges and the search point s
describes an edge set.

• The fitness function f : S → R
2 is defined by f(s) = (c(s), w(s)) where c(s) is the

number of connected components of the graph described by s and w(s) is the total
weight of all chosen edges.

• Both objectives have to be minimized.

We state some simple properties of this problem that are direct consequences of the
presented model.

• The parameter c(s) is an integer from {1, . . . , n}.

• The first property implies that the populations of SEMO and GSEMO contain at
most n search points and the Pareto front contains exactly n elements.

• The parameter w(s) is an integer.

We have to be careful when discussing this model of the minimum spanning tree prob-
lem. In Chapter 9, we have discussed another type of multi-objective minimum spanning
tree problem. Each edge has k different types of weights, i. e., w(e) = (w1(e), . . . , wk(e)).
Unconnected graphs are penalized and the aim is to minimize f(s) where s is not legal
if s does not describe a connected graph and f(s) is the sum of all w(ei) where si = 1,
otherwise. Similarly to other optimization problems this multi-objective variant of a poly-
nomially solvable problem is NP-hard (Ehrgott (2000)). This problem has been attacked
in different ways, e. g., by Hamacher and Ruhe (1994). Zhou and Gen (1999) present ex-
perimental results for evolutionary algorithms. In Chapter 9 we have analyzed which parts
of the Pareto front can be obtained in expected pseudo-polynomial time by GSEMO.

10.2 The analysis of the expected optimization time

The results we will prove hold for SEMO as well as for GSEMO. The essential steps are
1-bit flips. In the definition of SEMO and GSEMO we have not specified how to choose
the first search point. We discuss two possibilities.

• The first search point is chosen uniformly at random. This is the typical choice for
evolutionary algorithms.

• The first search point is s = 0m describing the empty edge set. This is quite typical,
e. g., for simulated annealing.

Our analysis is simplified by knowing that P contains 0m. Note that f(0m) = (n, 0)
belongs to the Pareto front and 0m is the only search point s with c(s) = n. First, we

106 CHAPTER 10. MINIMUM SPANNING TREES MADE EASIER

investigate the expected time until the population contains the empty edge set.

One might expect that we only have to wait until all edges of the initial search point
s have been excluded. This is not true. It is possible that we accept the inclusion of
edges since this decreases the number of connected components (although it increases the
total weight). Later, we may exclude edges of the new search point s′ without increasing
the number of connected components. It is possible to construct a search point s′′ which
dominates s. Then s is eliminated and all search points in the population (perhaps only
one) have more edges than s.

Hence, the situation is more complicated. Instead of the minimal number of edges of
all search points in P we analyze the minimal weight of all search points in P . One search
point s∗ with minimal weight has the largest number of connected components (otherwise,
the search point s∗∗ with c(s∗∗) > c(s∗) is dominated by s∗ and will be excluded from P).
We analyze w(s∗). We have reached the aim of our investigations if w(s∗) = 0, since this
implies s∗ = 0m. After initialization, w(s∗) ≤ W := w1 + · · · + wm ≤ m · wmax.

Theorem 10.2.1 Starting with an arbitrary search point the expected time until the pop-
ulation of SEMO or GSEMO contains the empty edge set is O(mn(log n + log wmax)).

Proof: We only investigate steps where the solution with minimal weight s∗ is chosen for
mutation. The probability of such a step is always at least 1/n, since |P | ≤ n. Hence, the
expected time is only by a factor of at most n larger than the expected number of steps
where s∗ is chosen.

By renumbering, we may assume that s∗ has chosen the first k edges. We investigate
only steps flipping exactly one bit. This has probability 1 for SEMO and probability at
least e−1 for GSEMO. These steps are accepted if they flip one of the first k edges. If the
edge i is flipped, we obtain a search point whose weight is w(s∗) − wi and the minimal
weight has been decreased by a factor of 1− wi

w(s∗)
. The average factor of the weight decrease

equals

1

m

(

∑

1≤i≤k

(1 − wi

w(s∗)
) +

∑

k+1≤i≤m

1

)

= 1 − 1

m

if the choice of a non-existing edge is considered as a weight decrease by a factor of 1. The
result 1 − 1

m
does not depend on the population. After M := ⌈(ln 2) · m · (log W + 1)⌉

steps choosing the current s∗, the expected weight of the new s∗ is bounded above by
(1 − 1/m)M · W ≤ 1

2
. Applying Markov’s inequality, the probability that w(s∗) ≥ 1 is

bounded above by 1/2. Hence, w(s∗) < 1 holds with probability at least 1/2. Since
weights are integers, w(s∗) < 1 implies w(s∗) = 0. The expected number of phases of
length M until w(s∗) = 0 is at most 2. Hence, altogether the expected waiting time
for s∗ = 0m is bounded above by 2 · n · M = O(mn(log n + log wmax)) for SEMO. The
corresponding value for GSEMO is larger at most by a factor of 3. 2

10.3. EXPERIMENTAL RESULTS 107

One may expect that the upper bound given in Theorem 10.2.1 is not exact for many
graphs and starting points.

After having analyzed the expected time to produce a population that includes the
empty edge set, we analyze to expected optimization under the condition that the empty
edge set is included in the population.

Theorem 10.2.2 Starting with a population containing the empty edge set the expected
optimization time of SEMO or GSEMO is O(mn2).

Proof: As long as the algorithm has not reached its goal we consider the smallest i
such that the population contains for each j, i ≤ j ≤ n, a Pareto optimal search point
sj with f(sj) = (j, w(sj)). This implies that the graph described by sj consists of j
connected components and has the minimal possible weight among all possible search
points describing graphs with j connected components. After initialization, the population
includes 0m which has the smallest weight among all search points representing graphs with
n connected components. Hence, i is well defined. The search point sj is only excluded
from the population if a search point s′j with f(s′j) = f(sj) is included in the population.
Hence, the crucial parameter i can only decrease and the search is successful if i = 1.

Finally, we investigate the probability of decreasing i. It is well-known that a solution
with i − 1 components and minimal weight can be constructed from a solution with i
components and minimal weight by introducing the lightest edge that does not create a
cycle. Therefore, it is sufficient to choose si for mutation (probability at least 1/n) and
to flip exactly one bit concerning a lightest edge connecting two components in the graph
described by si (probability at least 1/m for SEMO and at least 1/(em) for GSEMO).
Hence, the expected waiting time to decrease the parameter i is bounded above by O(nm).
After at most n − 1 of such events the search is successful. 2

Corollary 10.2.3 If the weights are bounded above by 2n, SEMO and GSEMO find the
Pareto front in the two-objective variant of the minimum spanning tree problem in an
expected number of O(mn2) rounds independently from the choice of the first search point.

For dense graphs, this bound beats the bound O(m2 · log n) for the application of RLSb

and (1+1) EAb to the single-objective variant of the minimum spanning tree problem.

10.3 Experimental results

The theoretical results are asymptotic ones. They reveal differences for worst-case in-
stances and large m. We add experimental results that show what happens for typical
instances and reasonable m. In order to compare randomized algorithms on perhaps ran-
domly chosen instances one may compare the average run times, but these values can be
highly influenced by outliners. We have no hypothesis about the probability distribution
describing the random run time for constant input length. Hence, only parameter-free sta-
tistical tests can be applied. We apply the Mann-Whitney test (MWT) (see e. g. Swinscow

108 CHAPTER 10. MINIMUM SPANNING TREES MADE EASIER

and Campbell (2001)) that ranks all observed run times. Small ranks correspond to small
run times. If the average rank of the results of algorithm A1 are smaller than those for
A2, MWT decides how likely it can be that such a difference or a larger one can occur
under the assumption that A1 is not more efficient than A2. If the corresponding p-value
is at most 0.05, we call the result significant, for 0.01 very significant, and for 0.001 highly
significant. The statistical evaluation has been performed with the software SPSS (Version
11.5, see www.spss.com). The tables contain the considered class of graphs, the average
rank AR of different algorithms and the p-value for the hypothesis that the algorithm with
the smaller AR-value is likely to be faster.

The experiments consider the following graph classes.

• uniformn: these are complete graphs with m =
(

n
2

)

edges and the weights are chosen
independently and uniformly at random from {1, . . . , n}.

• uniformbdn: each possible edge is chosen with probability 3/n leading to a small
average degree of 3, unconnected graphs are rejected and the construction is repeated,
the weights of existing edges are chosen as for uniformn.

• planen: the n vertices are placed randomly on the points of the two-dimensional
grid {1, . . . , n}×{1, . . . , n}, the weight of an edge is the rounded Euclidean distance
between the vertices.

• planebdn: the n vertices are placed as for planen but each edge is only considered
with probability 3/n as for uniformbdn.

These graph classes reflect different choices of weights (one non-metric and one metric
one) and the possibility of dense and sparse graphs. Our algorithms are RLSb, (1+1) EAb,
SEMO, and GSEMO. The index z denotes the case that the initial search point is the
empty edge set (or all-zero string). Without an index the initial search point is chosen
uniformly at random. The run time of RLSb and (1+1) EAb denotes the number of fitness
evaluations until a minimum spanning tree is constructed. The run time of SEMO and
GSEMO denotes the number of rounds until, in one experiment, P contains a minimum
spanning tree or until f(P) equals the Pareto front. In each experiment the compared
algorithms are considered for 100 runs leading to an average rank of 100.5.

We have analyzed the influence of the initial search point. First, we have considered
the time until the Pareto front is computed. The results are shown in Table 10.1 and can
be summarized as follows.

Result 10.3.1 In 23 out of 24 experiments the variant starting with the empty edge set
has the smaller AR-value. Only 8 results are significant, among them 5 very significant
and 2 of these highly significant.

10.3. EXPERIMENTAL RESULTS 109

Table 10.1: Comparison of SEMO and GSEMO with different initial solutions until they
have computed the Pareto front

Class AR SEMOz AR SEMO p-value AR GSEMOz AR GSEMO p-value

uniform12 92.76 108.25 0.058 89.35 111.66 0.006

uniform16 83.51 117.49 < 0.001 91.28 109.72 0.024

uniform20 99.12 101.89 0.735 94.21 106.80 0.124

uniform24 98.01 102.99 0.543 93.65 107.35 0.094

uniform28 94.62 106.38 0.151 94.48 106.52 0.141

uniform32 91.24 109.76 0.024 96.76 104.24 0.361

plane12 81.61 119.39 < 0.001 88.14 112.86 0.003

plane16 94.51 106.49 0.143 89.38 111.63 0.007

plane20 97.17 103.83 0.416 95.15 105.85 0.191

plane24 93.33 107.67 0.080 103.11 97.89 0.524

plane28 90.58 110.43 0.015 93.09 107.91 0.070

plane32 94.55 106.45 0.146 97.44 103.56 0.455

If we are only interested in the computation of a minimum spanning tree, one may
expect that one sometimes computes a minimum spanning tree without computing the
empty edge set. Indeed, the influence of the choice of the initial search point gets smaller.
For the classes uniformn, n = 4i and 3 ≤ i ≤ 11, there is no real difference between SEMOz

and SEMO, while the AR-values of GSEMO are in 8 of the 9 experiments smaller than
for GSEMOz. For the classes planen, n = 4i and 3 ≤ i ≤ 11, SEMOz beats SEMO (7
cases) and GSEMOz beats GSEMO (7 cases). We do not show the results in detail since
they are not significant (with the exception of 3 out of 36 cases). The remaining experi-
ments consider the more general case of an initial search point chosen uniformly at random.

We have not considered the worst-case instances for RLSb and (1+1) EAb presented in
Chapter 7. This would be unfair against these algorithms. Nevertheless, the experiments
of Briest et al. (2004) have indicated that, for n and m of reasonable size, dense random
graphs are even harder than the asymptotic worst-case examples. This leads to the con-
jecture that SEMO beats RLSb and GSEMO beats its counterpart (1+1) EAb. Here, the
run time measures the rounds until a minimum spanning tree is constructed. Table 10.2
proves that our conjecture holds for the considered cases. Note that the average rank of
100 runs of one algorithm is at least 50.5. In several experiments the AR-value of SEMO
or GSEMO comes close to this value. For n ≥ 20 all values are at most 51.6 and for small
values of n the AR-values are smaller than 60. We can state the following result.

Result 10.3.2 It is highly significant for all considered graph classes and graph sizes that
SEMO outperforms RLSb and GSEMO outperforms (1+1) EAb.

The theoretical analysis of the algorithms gives values of O(m2 log n) for RLSb and
(1+1) EAb and O(mn2) for SEMO and GSEMO (if the weights are reasonably bounded).

110 CHAPTER 10. MINIMUM SPANNING TREES MADE EASIER

Table 10.2: Comparison of SEMO and GSEMO with their single-criteria counterparts on
complete uniform and complete geometric instances

Class AR RLSb AR SEMO p-value AR (1+1) EAb AR GSEMO p-value

uniform12 146.36 54.64 < 0.001 147.79 53.32 < 0.001

uniform16 148.45 52.55 < 0.001 149.28 51.72 < 0.001

uniform20 149.74 51.26 < 0.001 149.40 51.60 < 0.001

uniform24 150.00 51.00 < 0.001 150.29 50.71 < 0.001

uniform28 150.40 50.60 < 0.001 150.23 50.77 < 0.001

uniform32 150.50 50.50 < 0.001 150.50 50.50 < 0.001

plane12 141.43 59.58 < 0.001 145.04 55.96 < 0.001

plane16 144.25 56.75 < 0.001 148.28 52.72 < 0.001

plane20 149.47 51.53 < 0.001 149.54 51.46 < 0.001

plane24 149.95 51.05 < 0.001 149.89 51.11 < 0.001

plane28 150.40 50.60 < 0.001 150.36 50.64 < 0.001

plane32 150.34 50.66 < 0.001 150.28 50.72 < 0.001

For complete graphs, m = Θ(n2) and we get values n4 log n vs. n4. For sparse graphs,
m = Θ(n) and we get values n2 log n vs. n3. Although these are only upper bounds,
one may expect different results for the sparse graphs from uniformbdn and planebdn.
Table 10.3 shows that this is indeed the case and we obtain the following result.

Result 10.3.3 It is highly significant for uniformbdn and n ≥ 24 and for planebdn and
n ≥ 16 (and the considered values of n) that RLSb outperforms SEMO. Similar results hold
for (1+1) EAb and GSEMO, but the results are highly significant only for large values of
n, namely n ≥ 32 for both graph classes.

Note that the last group of experiments considers values of n up to 100.

10.4 Conclusions

It has been investigated whether the multi-objective variant of a single-variant optimiza-
tion problem can lead to more efficient optimization processes. This is indeed the case for
the well-known minimum spanning tree problem and randomly chosen dense graphs. For
sparse connected graphs it is better to use the single-objective variant of the problem. The
results are obtained by a rigorous asymptotic analysis of the expected optimization time
and by experiments on graphs of reasonable size.

Recently, Gerhards (2006) has investigated a multi-objective model for the degree-
constrained minimum spanning tree problem, where the Pareto front may be exponentially
large. His experiments do not show any advantage for his multi-objective model. In the

10.4. CONCLUSIONS 111

Table 10.3: Comparison of SEMO and GSEMO with their single-criteria counterparts on
uniform and geometric instances with bounded average degree

Class AR RLSb AR SEMO p-value AR (1+1) EAb AR GSEMO p-value

uniformbd12 91.91 109.09 0.036 101.44 99.57 0.819

uniformbd16 90.62 110.39 0.016 103.54 97.46 0.458

uniformbd20 89.79 111.22 0.009 98.98 102.02 0.710

uniformbd24 73.19 127.82 < 0.001 91.53 109.47 0.028

uniformbd28 78.01 122.99 < 0.001 93.03 107.98 0.068

uniformbd32 77.92 123.08 < 0.001 80.85 120.15 < 0.001

uniformbd40 73.02 127.98 < 0.001 84.37 116.63 < 0.001

uniformbd60 65.40 135.60 < 0.001 71.22 129.78 < 0.001

uniformbd80 56.70 144.30 < 0.001 58.72 142.28 < 0.001

uniformbd100 54.99 146.01 < 0.001 58.47 142.53 < 0.001

planebd12 97.56 103.45 0.472 105.24 95.77 0.247

planebd16 81.88 119.13 < 0.001 96.79 104.22 0.364

planebd20 81.06 119.95 < 0.001 101.70 99.30 0.769

planebd24 84.45 116.55 < 0.001 86.52 114.48 0.001

planebd28 81.94 119.06 < 0.001 88.45 112.55 0.003

planebd32 71.53 129.47 < 0.001 80.86 120.14 < 0.001

planebd40 67.18 133.82 < 0.001 74.57 126.44 < 0.001

planebd60 56.59 144.41 < 0.001 60.69 140.31 < 0.001

planebd80 52.98 148.02 < 0.001 59.60 141.40 < 0.001

planebd100 52.21 148.79 < 0.001 52.30 148.70 < 0.001

case of the vertex cover problem, Glaser (2006) has presented a model where the Pareto
front is polynomially bounded in the number of vertices and shown that a multi-objective
model can lead to better results on random bipartite graphs. In the next chapter, we will
show that a multi-objective view on an NP-hard single-objective optimization problem can
also help to come up with faster approximation algorithms.

A conference version that contains the results of this chapter has been published in the
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2005
(see Neumann and Wegener (2005)). A journal version has been accepted for publication
in Natural Computing (see Neumann and Wegener (2006)).

112 CHAPTER 10. MINIMUM SPANNING TREES MADE EASIER

Chapter 11

NP-hard Spanning Forest Problems

In the previous chapter, we have shown that randomized search heuristics find a minimum
spanning tree much easier in a multi-objective model than in a single-objective one. In this
chapter we consider two NP-hard spanning forest problems and use a multi-objective for-
mulation to obtain faster approximation algorithms. Given a undirected connected graph
G = (V, E) with n vertices and m edges and positive integer weights w(e) for each edge
e ∈ E, we are searching (i) for minimum spanning forests of minimum degree, and (ii)
for minimum spanning forests obeying given degree bounds on the vertices. A forest with
i connected components is a cycle-free subgraph of G that contains exactly n − i edges.
A minimum spanning forest with i connected components is a forest where the sum over
all edge weights is minimal among all spanning forests with i connected components. In
a minimum spanning forest of minimum degree, the largest vertex degree is as small as
possible. This generalizes the problem of computing minimum spanning trees of minimum
degree. For our algorithms it is, in contrast to previous work, not necessary to assume
the graph to be connected. For simplicity we work under this assumption, but in the case
that G is not connected our algorithms would produce solutions for each possible value
of i. Note that solutions for the different number of connected components may be of
additional interest when each spanning tree has a weight that is not acceptable in practical
applications such that the graph has to be partitioned into different clusters. Having a
solution for each number of connected components the designer of a network can decide
how to build these clusters.

Let ∆∗ be the maximum vertex degree of an optimal solution. When edge weights are
not considered, or assumed to be uniform, a ∆∗+1 approximation algorithm for minimizing
the degree of spanning trees has been obtained by Fürer and Raghavachari (1994). For the
weighted case, Fischer (1993) has presented an approximation algorithm that computes
a minimum spanning tree of degree at most b · ∆∗ + ⌈logb n⌉ in time O(n4+1/ ln b) for any
b > 1, which is the best-known algorithm for this problem up to now. His algorithm is an
adaptation of a local search algorithm of Fürer and Raghavachari (1992) to the weighted
case. The idea of the local search is to perform edge exchanges until the spanning tree is
locally optimal.

113

114 CHAPTER 11. NP-HARD SPANNING FOREST PROBLEMS

We model the problem of computing minimum spanning forests of minimum degree as
a multi-objective optimization problem where one objective is to minimize the number of
connected components and the other objective to minimize the weight and degree. Our
aim is to compute for each i, 1 ≤ i ≤ n, a minimum spanning forest with i connected
components that has the same approximation quality as the algorithm of Fischer. Our
algorithm can be seen as extension of Kruskal’s algorithm for the computation of mini-
mum spanning trees and runs in time O(n3+1/ ln b). Note that during the run, Kruskal’s
algorithm computes solutions that are minimum spanning forests for each possible number
of connected components. The working principle of our algorithm is also to start with an
empty graph and to compute the minimum spanning forests as in the run of Kruskal’s al-
gorithm one after another. After a new edge has been introduced that leads to a minimum
spanning forest with smaller number of connected components, the degree of this minimum
spanning forest is improved by edge exchanges as long as we cannot guarantee our desired
approximation quality.

Könemann and Ravi (2003) have considered the problem of approximating minimum
spanning trees with nonuniform degree bounds. Given degree bounds Bv for all vertices,
they have presented an algorithm that runs in time O(n6 log n) to compute a spanning
tree in which the degree of each vertex v is O(Bv + log n) and the weight is by at most a
constant factor higher than the weight of any spanning tree that obeys the given degree
constraints, if such a tree exists. Note, that the question whether there exists a spanning
tree obeying the given degree bounds is already NP-complete. Starting with the empty
edge set, we compute in time O(n3+2/ ln b) for each number of connected components a min-
imum spanning forest with the same approximation quality as Könemann and Ravi. For
b > 1 a large constant the runtime of our algorithm approaches the upper bound O(n3).
An additional advantage of our algorithm is that we do not need the assumption that there
is a spanning tree obeying the given degree bounds. If this is not the case our algorithm
will produce a set of solutions that contains for each i where a spanning forest exists that
respects the degree constraints a solution that has the stated approximation quality.

This chapter is organized as follows. In Section 11.1, we introduce our model for the
computation of minimum spanning forests with minimum degree and give a new algorithm
for minimizing the degree of minimum spanning forests that runs in time O(n3+1/ ln b). Sec-
tion 11.2 applies our technique in combination with an extension of the primal-dual method
for minimum spanning trees by Könemann and Ravi to the problem of computing minimum
spanning forests with nonuniform degree bounds. We finish with some conclusions.

11.1 Minimizing the maximum degree

We take a multi-objective view on the computation of minimum spanning forests with
minimum degree. Let S = {0, 1}m be the search space. A search point x ∈ S describes

11.1. MINIMIZING THE MAXIMUM DEGREE 115

the set of all edges ei where xi = 1 holds. Let c(x) be the number of connected com-
ponents of the solution x, w(x) be the weight of the chosen edges, dj(x) be the number
of vertices of degree j in x, and ∆(x) the maximum vertex degree of x. The objec-
tive function value of x is given by the vector f(x) = (f1(x), f2(x)), where f1(x) = c(x)
and f2(x) = (w(x), dn−1(x), . . . , d0(x)). Both objectives f1 and f2 have to be minimized.
Minimizing the second objective means minimization with respect to the lexicographic or-
der. This generalizes the model we have examined in Chapter 10 for the computation of
minimum spanning trees by randomized search heuristics. There we have shown that a
multi-objective view leads to a more efficient optimization process than in the case of a
single objective one.

Let f(S) be the image of the search space under the objective function f defined above.
By intersecting the canonic order on f1(S) with the lexicographic order on f2(S), both of
which are total orders, a partial order on f(S) can be defined as

f(x) � f(x′) :⇔ f1(x) ≤ f1(x
′) ∧ f2(x) ≤lex f2(x

′) (11.1)

for all x, x′ ∈ S. This partial order represents our preference relation regarding the solu-
tions. The aim is compute the Pareto front which means to identify all minimal elements
of (f(S),�), and with each minimal element one of its pre-images from S.

As the edge weights are positive, a minimum spanning forest with i connected compo-
nents has a smaller weight than a minimum spanning forest with i + 1 connected compo-
nents. Therefore, (f(S),�) has n minimal elements, representing for each i, 1 ≤ i ≤ n, a
minimum spanning forest with i connected components and minimum degree. Our goal is
to approximate the set of minimal elements as good as possible. We want to compute for
each i a minimum spanning forest with i connected components that has degree at most
b ·∆∗

i +⌈logb n⌉, where ∆∗
i is the smallest maximum degree of any minimum spanning forest

with i connected components.

Fischer’s algorithm (1993) for the computation of a minimum spanning tree with degree
at most b · ∆∗ + ⌈logb n⌉ starts with an arbitrary minimum spanning tree and improves
the degree of high-degree vertices. The number of these improvements is bounded by
O(n2+1/ ln b). A better bound on the number of necessary improvements would yield a better
upper bound for the runtime of Fischer’s algorithm. We consider the number of necessary
improvements for our multi-objective model and start with some general properties of
minimum spanning forests with i connected components.

Lemma 11.1.1 Let ∆∗
i , 1 ≤ i ≤ n, be the minimum degree of a minimum spanning forest

with i connected components. Then ∆∗
n ≤ ∆∗

n−1 ≤ . . . ≤ ∆∗
1 holds.

Proof: Suppose that ∆∗
i > ∆∗

i−1 holds for some i ∈ {2, . . . n}. Let F ∗
i−1 be a minimum

spanning forest with i−1 connected components and minimum degree. Then we can delete
the heaviest edge from F ∗

i−1 to construct a minimum spanning forest with i connected
components whose degree is at most ∆∗

i−1. This contradicts the assumption. 2

116 CHAPTER 11. NP-HARD SPANNING FOREST PROBLEMS

Let si be a solution with i connected components and minimal weight. We call si

locally optimal if there is no solution s′i with c(s′i) = c(si) and Hamming distance 2 that is
better than si with respect to f2(si) when disregarding all dj(si) with j < ∆(si)−⌈logb n⌉.
Otherwise, we say that s′i improves si. For the case i = 1 Fischer has shown that if there
is no improvement for s1 then the minimum spanning tree has already degree at most
b ·∆∗

1 +⌈logb n⌉ for any b > 1. We generalize this approximation guarantee of local optimal
minimum spanning trees given by Fischer to locally optimal minimum spanning forests.

Lemma 11.1.2 Let si be a solution that is locally optimal and ∆i be its maximum degree.
Then ∆i ≤ b · ∆∗

i + ⌈logb n⌉ holds for any constant b > 1.

Proof: Consider a locally optimal forest F described by si. Let Ui be the set of vertices
of degree at least i in F . The number of vertices in Ui is at most n for each i. Hence, the
ratio |Ui−1|

|Ui| cannot be greater than b for logb n consecutive values of i.

Consider a δ with ∆i − ⌈logb n⌉ ≤ δ ≤ ∆i such that |Uδ−1|
|Uδ| ≤ b. Deleting all edges from

F that are adjacent to vertices of Uδ yields a forest Fδ with at least (δ − 1)|Uδ| + 1 + i
connected components. As F is locally optimal, only edges adjacent to vertices of Uδ−1

may participate in a minimum spanning forest with i connected components. Hence, there
must be at least (δ − 1)|Uδ|+ 1 ≥ (δ − 1)(|Uδ−1|/b) + 1 edges adjacent to vertices of Uδ−1.

The average degree of a vertex in Uδ−1 is therefore at least
(δ−1)|Uδ−1|+b

b·|Uδ−1| , which implies

∆∗
i > δ−1

b
. Using δ ≥ ∆i − ⌈logb n⌉ we get ∆i ≤ b · ∆∗

i + ⌈logb n⌉. 2

In the following, we show an upper bound of O(n1+1/ ln b) to produce a set of solutions
with the desired approximation quality.

Lemma 11.1.3 The total number of local improvements until a minimum spanning forest
of degree at most b ·∆∗

i + ⌈logb n⌉ has been computed for each i, 1 ≤ i ≤ n, can be bounded
by O(n1+1/ ln b).

Proof: Consider a situation where a minimum spanning forest with j connected compo-
nents and degree at most b · ∆∗

j + ⌈logb n⌉ has been computed for each j, i ≤ j ≤ n. We
want to show that no more than 3 · (n − i) · µ local improvements are necessary to reach
this state, where µ = O(n1/ ln b). Setting i = 1 then proves the lemma.

Let a potential function be defined as p(s) :=
∑⌈logb n⌉+1

j=0 dr+j(s) · ej , where r =
max{∆(si) − ⌈logb n⌉, 0}. The empty edge set sn = ∅ is obviously a minimum span-
ning forest with n components and minimum degree, and no improvements are necessary
to reach this. In addition p(sn) = 0 holds. For going from i to i − 1 we introduce into
si a lightest edge e that does not create a cycle. This yields a minimum spanning forest
with i − 1 components, denoted as s′i−1. Introducing an arbitrary edge into si increases
the potential value p(si) by at most 2e⌈logb n⌉+1 ≤ 2e2 · elogb n = 2e2 · eln(n)/ ln(b) =: µ,
hence p(s′i−1) − p(si) ≤ µ, where µ = O(n1/ ln b). Now, s′i−1 can undergo a number νi−1

of local improvements to arrive at a new solution si−1 that is locally optimal or satisfies

11.1. MINIMIZING THE MAXIMUM DEGREE 117

1. Let i := n, si := ∅, S := {si}.

2. Create si−1 by introducing into si the lightest edge that does not create a cycle.

3. Improve the solution si−1 until it is locally optimal or ∆(si−1) = ∆(si) holds.

4. S := S ∪ {si−1}

5. i := i − 1

6. If i > 1 continue at 2., otherwise output S and stop.

Figure 11.1: Minimum Spanning Forest Optimizer (MSFO)

∆(si−1) = ∆(si), which can be achieved by reducing the whole potential p(s′i−1). Due to
Lemma 11.1.1 and 11.1.2 in both cases the claimed approximation holds.

In a local improvement dk(s) decreases by at least 1 for some k ≥ r + 2. The potential
reduces by the smallest amount if dk(s) reduces by one, dk−1(s) increases by three and
dk−2(s) decreases by 2. This means that one local improvement step reduces the potential
by at least e2 − 3e + 2 > 1/3, i.e., a constant amount.

Therefore, and because r cannot increase in this process, the relation p(si) ≤ p(si+1)−
νi/3 + µ holds for each i, 1 ≤ i ≤ n − 1. Using this, the potential value of a solution s′i
that has been created by the introduction of a new edge into si+1 can be bounded with
respect to the cumulated number of all νj , i < j ≤ n, previous improvement steps by
p(s′i) ≤ (n − i)µ −∑n

j=i+1 νj/3. As νi ≤ 3p(s′i),
∑n

j=i νj ≤ 3µ(n − i). 2

In Lemma 11.1.3 we have shown that the number of improvements in the multi-objective
model can be bounded by O(n1+1/ ln b), which is by a factor n smaller than then the number
of improvements in the algorithm of Fischer. Based on this observation we give a deter-
ministic algorithm that computes for each i a minimum spanning forest with i connected
components and degree at most b · ∆∗

i + ⌈logb n⌉ in time O(n3+1/ ln b) for any b > 1.

Let si be a minimum spanning forest of degree at most b · ∆∗
i + ⌈logb n⌉. Then we can

produce a minimum spanning forest si−1 with i− 1 connected components by introducing
a lightest edge that does not create a cycle. If ∆(si−1) = ∆(si) holds, si−1 has the desired
approximation quality. Otherwise we have to improve si−1. The pseudo-code of our algo-
rithm called Minimum Spanning Forest Optimizer (MSFO) is given in Figure 11.1.

MSFO can be seen as a variant of Kruskal’s algorithm where after each insertion of an
edge the degree of the current solution si−1 is improved as long as we cannot guarantee
the desired approximation quality. The algorithm of Kruskal can be implemented in time
O((m + n) log n). Hence, to bound the runtime of MSFO it is necessary to bound the
number of local improvements (as done in Lemma 11.1.3) and the time to achieve such an
improvement.

118 CHAPTER 11. NP-HARD SPANNING FOREST PROBLEMS

Lemma 11.1.4 Let si be a solution with i connected components that is not locally optimal.
Then an improvement can be found in time O(n2).

Proof: There are two possibilities to improve a solution si. Let F be the corresponding
minimum spanning forest. In the first case, the introduced edge connects two components
of F and an edge from the forest has to be removed. In the second case, the improvement
is achieved by introducing an edge e that creates a cycle in F . Then an edge from this
cycle has to be deleted to create a new spanning forest with i connected components.

Let W1, . . . , Wk be the distinct weight classes for which there are edges in F . For the
first case, consider the edges of Wj for each j, 1 ≤ j ≤ k, in F and compute the edge
that reduces the value of the potential function of Lemma 11.1.3 by the largest amount.
This computation can be done in time O(n) for all weight classes because the computation
of the reduction for a single edge e can be done in constant time and there are at most
n − 2 edges to consider. Let gj

min be the smallest value that can be obtained by removing
an edge ej of weight class Wj from F . Now we consider each edge e′ ∈ E \ F of weight
class Wj and introduce e′ if the result improves si. We consider in the process each edge
at most once and the computation of the desired potential difference can be implemented
in constant time. Hence, an improvement can be found in time O(n2) in this case.

For the second case we use the idea of Fischer and investigate a depth first search
traversal of the forest F represented by si from every vertex v ∈ V . Let w be the current
vertex of the traversal and Pw be the set of edges on the path from v to w. We assign
variables M1, . . . , Mk such that Mj , 1 ≤ j ≤ k, denotes the maximum degree of those
vertices adjacent to edges of weight class Wj in Pw. For a depth first search traversal we
can compute the Mi variables in constant time per step using stacks. If there is an edge
{v, w} ∈ E, let wi be its weight. If Mi is at least two greater than the degree of v and w,
and Mi is at least ∆(si) − ⌈logb n⌉, then adding {v, w} to si and deleting some edge from
Pw of weight class Wi adjacent to a vertex of degree Mi constitutes an improvement. The
computation of the n depth first search traversals can be carried out in time O(n2) which
completes the proof. 2

Using the bound on the number of necessary improvements and the time bound to
achieve such an improvement, we can give an upper bound on the runtime of MSFO.

Theorem 11.1.5 The algorithm MSFO computes for any b > 1 in time O(n3+1/ ln b) a
set of solutions that includes for each i, 1 ≤ i ≤ n, a minimum spanning forest with i
connected components and degree at most b · ∆∗

i + ⌈logb n⌉.

Proof: Consider the time the solutions {sn, sn−1, . . . , si} ⊂ S have been produced. These
solutions have the following properties. Each sj, i ≤ j ≤ n, is a minimum spanning forest
with j connected components. In addition, sj is locally optimal or ∆(sj) = ∆(sj+1) holds.
Obviously, sn is a locally optimal solution. We introduce into si an edge e of minimal
weight that does not create a cycle. This can be easily done by checking each remaining
edge in time O(m). Note that the whole computation in step 2 in the run of the algorithm

11.2. NONUNIFORM DEGREE BOUNDS 119

can be implemented in time O((m+n) log n) using the ideas of Kruskal’s algorithm. After
step 3, the solution si−1 has minimal weight among all solutions with i − 1 components.
If e is not incident to at least one edge of degree ∆(si), ∆(si−1) = ∆(si) holds and si−1 is
a solution with the desired approximation quality due to Lemma 11.1.1. Otherwise, the
number of vertices with degree ∆(si)+1 is at most 2 and we have to improve si−1 to reach
a locally optimal solution or to achieve ∆(si−1) = ∆(si).

The number of local improvements in the run of MSFO is O(n1+1/ ln b) as shown in
Lemma 11.1.3 and an improvement of a non locally optimal solution can be found in
time O(n2) due to Lemma 11.1.4. Hence, the time until MSFO has achieved the desired
approximation can be bounded by O(n3+1/ ln b). 2

11.2 Nonuniform degree bounds

Könemann and Ravi (2003) have examined the case of non-uniform degree bounds Bv for
all vertices v ∈ V . They presented an algorithm that finds, in time O(n6 log n), a spanning
tree where the degree of each vertex is O(Bv + log n) and whose total edge weight is at
most a constant times the weight of any tree that satisfies the degree constraints. Here the
assumption that there exists a tree obeying the given degree bounds is necessary. Note,
that the problem to decide this question is already NP-complete. The algorithm uses a
combination of primal-dual methods (see e. g. Chapter 4 in Hochbaum (1997)) and local
search, where in each local search step the normalized degree of the high-degree vertices in
a current spanning tree is reduced. We generalize the primal-dual idea of Könemann and
Ravi to the approximation of minimum spanning forests with nonuniform degree bounds.
The task is to find for each i, 1 ≤ i ≤ n, a spanning forest with i connected components
and minimum total edge weight such that the maximum degree of each vertex v is at most
Bv. The algorithm presented here runs in time O(n3+2/ ln b), b > 1 an arbitrary constant,
and outputs for each i, 1 ≤ i ≤ n, a spanning forest Fi of i connected components whose
vertex degrees are O(Bv + log n) and whose total weight is at most a constant times the
total weight of any minimum spanning forest with i connected components. Here we do
not need the assumption that there exists a spanning tree obeying the given degree bounds.
For each value of i where a spanning forest respecting the degree constraints exists a solu-
tion with the stated approximation quality is produced.

We first adapt some results of Könemann and Ravi to the case of spanning forests.
A feasible partition of V is a set π = {V1, . . . , Vk} where Vi ∩ Vj = ∅ for all i 6= j,
V = V1 ∪ . . . ∪ Vk, and the induced subgraphs G[Vi] are connected. Let Gπ be the graph
obtained from G by contracting each Vi into a single vertex, Π be the set of all feasible
partitions of V , and x(e) be the variable indicating whether edge e is included in the
current solution, i.e., x(ei) = xi. We consider the following integer linear program (IP)
formulation for the problem of computing the minimum spanning forest with i, 1 ≤ i ≤ n,
connected components that obeys all degree bounds Bv.

120 CHAPTER 11. NP-HARD SPANNING FOREST PROBLEMS

min
∑

e∈E

w(e)x(e) (11.2)

s.t.
∑

e∈E[Gπ]

x(e) ≥ |π| − i for all π ∈ Π (11.3)

∑

e∈E:v∈e

x(e) ≤ Bv for all v ∈ V (11.4)

x(e) ∈ {0, 1} for all e ∈ E (11.5)

The dual of the linear programming relaxation (LP) of (IP) is given by

max
∑

π∈Π

(|π| − i) · yπ −
∑

v∈V

λvBv (11.6)

s.t.
∑

π:e∈E[Gπ]

yπ ≤ w(e) + λu + λv for all e = {u, v} ∈ E (11.7)

y, λ ≥ 0 (11.8)

Könemann and Ravi have given a primal-dual interpretation of Kruskal’s algorithm.
Let (IP-SP) denote (IP) without constraints of type (11.4) its LP relaxation denoted by
(LP-SP) and its dual be (D-SP). Kruskal’s algorithm can be seen as a continuous pro-
cess over time that starts with an empty edge set at time 0 and ends with a minimum
spanning tree at time t∗. At any time t, 0 ≤ t ≤ t∗, a pair (xt, yt) is kept, where xt is a
partial primal solution for (LP-SP) and yt is feasible solution for (D-SP). In the initial-
ization step x(e)0 = 0 is set for all e ∈ E, and yt

π = 0 for all π ∈ Π. Consider the forest
F t that corresponds to the partial solution xt and let πt be the partition induced by the
connected components of G[F t]. At time t the algorithm increases yt

π until a constraint
of type (11.7) becomes tight. If this happens for edge e, this edge e is included into the
primal solution. If more than one edge becomes tight, the edges are processed in arbi-
trary order. We denote by MSFi a variant of this algorithm that stops when a minimum
spanning forest with i connected components has been computed in the continuous process.

Let degF (v) be the degree of vertex v in the spanning forest F with i connected com-
ponents. The normalized degree of a vertex v is denoted by ndegF (v) = max{0, degF (v)−
1− bα ·Bv}, where b and α are constants depending on the desired approximation quality.
Let ∆t the maximum normalized degree of any vertex in the current spanning forest F t

i at
a given time t and denote by U t

j the set of vertices whose normalized degree is at least j
at time t. The following lemma was shown by Könemann and Ravi (2003). It is crucial to
show the approximation quality, so we present the proof.

Lemma 11.2.1 There is a dt ∈ {∆t − 2 logb n, . . . , ∆t} such that
∑

v∈Udt−1

Bv ≤ b ·
∑

v∈Udt

Bv

11.2. NONUNIFORM DEGREE BOUNDS 121

1. t := 0; set λt
v := 0 for all v ∈ V , set wt(e) = w(e) for all e ∈ E;

2. i := n; (xt, yt) := MSFi(G, wt); S := {xt};

3. while i > 1 do

(a) i := i − 1; wt+1(e) = wt(e); (xt+1, yt+1) := MSFi(G, wt+1); t := t + 1;

(b) while ∆t > 2 logb n do

i. Choose dt ∈ {∆t − 2 logb n, . . . , ∆t} s.t.
∑

v∈Udt−1
Bv ≤ b ·∑v∈Udt

Bv

ii. Choose ǫt and let λt+1
v := λt

v + ǫt if v ∈ U t
dt−1 and λt+1

v := λt
v otherwise

iii. wt+1(e) := wt(s)+ǫt if ((e ∈ F t
i)∧(e∩Udt 6= ∅)∨((e 6∈ F t

i)∧(e∩Udt−1 6= ∅))
and wt+1(e) := wt(e) otherwise

iv. (xt+1, yt+1) := MSFi(G, wt+1); t := t + 1;

(c) S := S ∪ {xt};

Figure 11.2: Primal Dual Forest Optimizer (PDFO)

for any constant b > 1.

Proof: Suppose that for all dt ∈ {∆t − 2 logb n, . . . , ∆t} the relation

∑

v∈Udt−1

Bv > b ·
∑

v∈Udt

Bv

holds. We may assume Bv ≤ n − 1 for any v, which implies
∑

v∈V Bv ≤ n(n − 1). Since
there is at least one vertex of normalized degree ∆t, we have

∑

v∈U∆t−2 logb n

Bv ≥ b2 logb n = n2,

a contradiction. 2

Our algorithm called Primal Dual Forest Optimizer (PDFO) is given in Figure 11.2.
The idea of the algorithm is to start with an empty edge set and compute the solutions
with the desired approximation quality one after another. If we are considering a solution
xt with i connected components that does not have the desired approximation quality with
respect to the degree bounds, we compute a new solution xt+1 which improves xt with
respect to the normalized degree. Let F t

i be the forest corresponding to xt. We increase
the weight of an edge e ∈ E by ǫt if it is either in F t

i and adjacent to vertices of Udt , or in
E \F t

i and adjacent to vertices of Udt−1. The weight increment ǫt is defined as the smallest
weight increase when deleting an edge adjacent to a vertex of Udt and inserting an edge
adjacent to vertices that are not contained in Udt−1 such that a new cycle-free subgraph of G

122 CHAPTER 11. NP-HARD SPANNING FOREST PROBLEMS

is constructed. After that, xt+1 is a minimum spanning forest with i connected components
with respect to the updated weight function wt+1. We have also stated the computation of
the dual variables corresponding to the primal solutions in Figure 11.2 using the algorithm
MSFi. The dual variables will be used later to show the approximation quality of our
algorithm, but it is not necessary to carry out the computation of these variables in the
run of the algorithm.

We want to show that the algorithm computes in time O(n3+2/ ln b) an approximation
of the set of minimal elements that contains for each i, 1 ≤ i ≤ n, a spanning forest with
i connected components in which each vertex v has degree O(Bv + log n) and weight at
most a constant times the weight of an optimal solution obeying the degree bounds. First,
we consider the approximation quality of the solutions that are introduced into the set S
in step 3c. Here we use an extension of the arguments given by Könemann and Ravi to
the case of minimum spanning forest with given degree bounds.

Lemma 11.2.2 For all iterations t ≥ 0 where we are considering solutions with i connected
components in the algorithm PDFO, the relation

∑

π∈Π

(|π| − j)yt+1
π ≥

∑

π∈Π

(|π| − j)yt
π + ǫtα

∑

v∈Udt−1

Bv (11.9)

holds for and all j, 1 ≤ j ≤ i.

Proof: Let F t
j = {et

1, . . . , e
t
n−j} be the set of edges that would be produced by a run of the

algorithm MSFj in iteration t. The change of the dual objective function value in iteration
t for a specific value of j is given by

∑

π∈Π

(|π| − j) · (yt+1
π − yt

π) =

n−j
∑

l=1

(rt+1
l − rt

l)

where rt
l is the time at which the MSFj algorithm includes the edge et

l . Assume that we
are considering solutions with i connected components in iteration t. Then we lengthen
all edges e ∈ F t

i that are incident to vertices of normalized degree at least dt. This implies
that all these edges become tight ǫt time later. Using that all edges of F t

i are also contained
in each minimum spanning forest F t

j for j ≤ i, we get

∑

π∈Π

(|π| − j) · (yt+1
π − yt

π) ≥ ǫt · |E(Udt) ∩ F t
i |.

Here E(Udt) denotes the set of edges that are incident to vertices from Udt . F t
i is a minimum

spanning forest with i connected components. This implies that there are at most |Udt|− i
edges in E(Udt) that are incident to two vertices from Udt , therefore

ǫt · |E(Udt) ∩ F t
i | ≥ ǫt ·

∑

v∈Udt

(bα + 1/Bv) · Bv

− (|Udt | − i)

 .

11.2. NONUNIFORM DEGREE BOUNDS 123

This leads to

∑

π∈Π

(|π| − j)(yt+1
π − yt

π) ≥ ǫtαb ·

∑

v∈Udt

Bv

 + i ≥ ǫtαb ·
∑

v∈Udt

Bv,

and using Lemma 11.2.1 we get
∑

π∈Π

(|π| − j)(yt+1
π − yt

π) ≥ ǫtα ·
∑

v∈Udt−1

Bv,

which completes the proof. 2

Lemma 11.2.3 Let ω > 1 be a constant and α = max{ω/(ω − 1), ω}. For all iterations
t ≥ 0 where we are considering solutions with i connected components in the algorithm
PDFO, the relation

ω
∑

v∈V

Bvλ
t
v ≤ (ω − 1)

∑

π∈Π

(|π| − j) · yt
π (11.10)

holds for each j, 1 ≤ j ≤ i.

Proof: After initialization,
∑

v∈V Bvλ
0
v =

∑

π∈Π(|π| − j) · y0
π = 0 holds. Lemma 11.2.2

implies that the right hand side of (11.10) increases by at least (ω − 1) · αǫt
∑

v∈U t
dt−1

Bv.

The left hand side increases by ω · ǫt
∑

v∈U t
dt−1

Bv. Using α ≥ ω/(ω − 1), the relation is

maintained. 2

Lemma 11.2.4 For all iterations t ≥ 0 where we are considering solutions with i connected
components in the algorithm PDFO, the relation

∑

e∈F t
j

w(e) ≤ ω

[

∑

π∈Π

((|π| − j) · yt
π) −

∑

v∈V

(Bv · λt
v)

]

(11.11)

holds for each j, 1 ≤ j ≤ i.

Proof: For t = 0 this is obviously true. Let F t
j be the spanning forest produced by the

algorithm MSFj in the t-th iteration and let wt(F t
j) be the weight of this spanning forest

with respect to the weight function wt. As the weights can only increase during the run of
PDFO,

w(F t
j) ≤ wt(F t

j) =
∑

e∈F t
j

wt(e) =
∑

π∈Π

(|π| − j) · yt
π

holds. Using the invariant given in Lemma 11.2.3 we get

w(F t
j) ≤ ω

[

∑

π∈Π

((|π| − j) · yt
π) −

∑

v∈V

(Bv · λt
v)

]

2

124 CHAPTER 11. NP-HARD SPANNING FOREST PROBLEMS

Lemma 11.2.4 shows that in each iteration the weight of a spanning forest with j,
1 ≤ j ≤ i, is only a constant times the weight of an optimal solution. It remains to show
an upper bound on the runtime of PDFO. To do this we first consider the time to produce
a new solution xt+1 from the current solution xt.

Lemma 11.2.5 The solution xt+1 can be computed from xt in time O(n2).

Proof: If the computation of xt+1 is carried out in step 3a of the algorithm introducing the
lightest edge for the weight function wt+1 into xt that does not create a cycle yields xt+1.
This can be done in time O(n2) by inspecting every edge at most once. In the other case
xt is a minimum spanning forest with i connected components with respect to wt and xt+1

is a minimum spanning forest with i connected components with respect to the updated
weight function wt+1. To determine xt+1 we have to compute ǫt and execute the resulting
exchange operation. For the computation of dt we use an integer array of size n and store at
position j, 0 ≤ j ≤ n− 1, the sum over the Bv-values with vertices of normalized degree j
in F t

i . This can be done in time O(n) using a breath first search traversal on F t
i in which we

compute the Bv value for the current vertex v in the traversal and add the value to the value
of the corresponding position in the array. After that we determine the values

∑

v∈Uj
Bv,

0 ≤ j ≤ n − 1, one after another starting with U0. Note that
∑

v∈U0
Bv =

∑

v∈V Bv. The
value

∑

v∈Uj+1
Bv can be computed by subtracting from

∑

v∈Uj
Bv the entry at position j

in the array. Each computation can be done in constant time based on the corresponding
array values. Hence, the value dt due to Lemma 11.2.1 can be determined in time O(n). To
compute the ǫt value we determine the exchange operation that leads to a primal solution
of MSFi(G, wt+1). Note that ǫt is the smallest weight increase such that deleting an edge
adjacent to at least one vertex of Udt and inserting an edge adjacent to vertices that are
not contained in Udt−1 yields a minimum spanning forest with i components for the weight
function wt+1. We consider two possibilities for the exchange operation.

First we investigate the case where introducing an edge e connects two components
of the current forest F t

i . Then another edge from the resulting forest has to be removed
to create a solution with i connected components. Introducing the edge e with smallest
weight that is not incident to vertices of Udt−1 and deleting the edge e′ ∈ F t

i that has the
largest weight of all edges incident to vertices of Udt in F t

i leads to the desired exchange
operation with the smallest weight increase. Each edge of G has to be examined once,
which gives an upper bound of O(n2) on the runtime in this case. Let ǫt′ be the value
obtained by this exchange operation.

The other possibility to get a smaller value than ǫt′ is to introduce into F t
i an edge that

creates a cycle. Then we have to delete one edge of this cycle. We use a depth first search
traversal of F t

i from every vertex v ∈ V . Let w be the current vertex in this traversal.
Assume that there is an edge e = {v, w} in E and that v and w are not contained in
Udt−1. Otherwise we can continue the traversal since the pair {v, w} does not fulfill the
properties for the exchange operation. Let wi be the largest weight of an edge e′ in the
path from v to w that is incident to vertices of Udt . If no such edge edge e′ exists in the
path from v to w, e can not participate in the exchange operation we are looking for.

11.2. NONUNIFORM DEGREE BOUNDS 125

The weight increase of introducing e and deleting e′ can be computed in constant time,
and the wi variables can be maintained in constant time per step of the traversal using
stacks. Hence, we can determine the exchange operation with the smallest weight increase
in the second case in time O(n2). Let ǫt′′ be weight increase of this exchange operation.
Choosing ǫt = min{ǫt′ , ǫt′′} and computing a primal solution of MSFt+1

i by executing the
corresponding exchange operation gives the stated upper bound. In addition we update
the weight with respect to wt+1 for the next iteration which can be done in time O(n2). 2

Now we can prove the main result of this section and show the approximation quality
and an upper bound on the runtime of the algorithm PDFO.

Theorem 11.2.6 The algorithm PDFO computes for any b > 1 and ω > 1 in time
O(n3+2/ ln b) a set of solutions that includes for each i, 1 ≤ i ≤ n, a minimum spanning for-
est with i connected components in which each vertex degree is at most b ·α ·Bv +2 logb n+1
and the total weight is at most ω · w(F ∗

i), where α = max{ω/(ω − 1), ω} and w(F ∗
i) is the

minimum weight of any spanning forest with i connected components satisfying the degree
bounds.

Proof: As long as the algorithm has not achieved a solution with i connected components
such that the vertex degree is at most b ·α ·Bv +2 logb n+1, the right hand side of (11.11)
is ω times the optimal value of the dual objective function. This implies that the weight
of a minimum spanning forest with i connected components for the weight function wt

is at most ω times the value of an optimal solution obeying the degree bounds for each
j, 1 ≤ j ≤ i. Hence, the solutions introduced into the set S in step 3c of PDFO have
the stated approximation quality. As each possible value of i is considered in the run
of PDFO, the set S includes after termination for each i, 1 ≤ i ≤ n, a solution with i
connected components that has the desired approximation quality.

In the following we give an upper bound of O(n3+2/ ln b) on the runtime until the al-
gorithm terminates. A new solution xt+1 can be computed from the current solution in
time O(n2) due to Lemma 11.2.5. It remains to bound the number of primal solutions xt

that have to be computed until the algorithm terminates. The number of solutions that
are computed in step 3a of the algorithm is at most n − 1 as the number of connected
components is bound by n. In the inner while-loop we compute for the solution with i
connected components new primal solutions as long as we have not reached a solution with
i connected components that has the desired approximation quality.

We consider a modification of the potential function p introduced in Lemma 11.1.3.
Consider a solution s, let ∆̂(s) be the maximum normalized degree of s, and let d̂i, 0 ≤ i ≤
n−1, be the number of vertices with normalized degree i in this solution. The potential of
a solution s is given by p′(s) :=

∑⌈2 logb n⌉+1
j=0 d̂r+j(s)·ej, where r = ∆̂(s)−⌈2 logb n⌉. Assume

the a minimum spanning forest with i, 2 ≤ i ≤ n, has been computed. After initialization
this is true for i = n. The solution of MSFi−1(G, wt) differs from MSFi(G, wt) by one single
edge that is additionally introduced into MSFi−1(G, wt) at any time t. Introducing this

126 CHAPTER 11. NP-HARD SPANNING FOREST PROBLEMS

edge into si, a solution s′i−1 with p′(s′i−1) − p′(si) = O(n2/ ln b) is created. Each iteration
of the inner while-loop reduces the potential by at least 1/3. Hence, we can upper bound
the number of improvements in the run of PDFO by O(n1+2/ ln b) using the ideas of Lemma
11.1.3. 2

Note that choosing b as a constant large enough the runtime of PDFO approximates
the upper bound O(n3). For b = e, b = e2, . . . , b = ek, where e = 2.71... and k is a
constant, we get runtimes O(n5), O(n4), . . . , O(n3+2/k). The degrees of the produced
solutions are bounded by O(Bv + log n), and the weight of a solution with i connected
components introduced into the set S in step 3c is at most a constant times the weight of
any minimum spanning forest with i connected components obeying the degree bounds.

11.3 Conclusions

In this chapter we have shown that a multi-objective formulation can help to design faster
approximation algorithms for the generalization of two NP-hard spanning tree problems.
Our algorithms can be seen as an incremental construction procedure starting with the
empty edge set and producing the solutions for the different number of connected compo-
nents after another. Nevertheless we point out that our results have been obtained by the
multi-objective formulation and this new view on the problem. We also think that this
approach may be helpful to get a better understanding of other problems that have addi-
tional constraints. Based on our observations we have given an algorithm that computes
for each i, 1 ≤ i ≤ n, a minimum spanning forest with i components and degree at most
b · ∆∗

i + ⌈logb n⌉ in a total time of O(n3+1/ ln b). In the case of nonuniform degree bounds
we have presented an algorithm that runs in time O(n3+2/ ln b) and computes for each i,
1 ≤ i ≤ n, a spanning forest in which each vertex has degree O(Bv + log n) and the weight
is a most a constant times the weight of a minimum spanning forest with i components
obeying the given degree bounds.

A conference version that contains the results of this chapter has been published in the
Proceedings of the Latin American Theoretical Informatics Symposium (LATIN) 2006 (see
Neumann and Laumanns (2006)). A journal version has been submitted for publication.

Chapter 12

Summary and Future Work

In this thesis we have examined the runtime behavior of randomized search heuristics on
different combinatorial optimization problems. Most of the time we have considered evo-
lutionary algorithms. This kind of randomized search heuristic has widely been applied to
combinatorial optimization problems as well as to complex engineering problems. In the
case of complex engineering problems often the structure of the given problem is not known
and the quality of a certain parameter setting can only be evaluated by experiments of sim-
ulations. An analysis of randomized search heuristics has to consider well-known problems
as otherwise it is not possible to say anything about the runtime behavior. There is no
hope that such general purpose heuristics can outperform specialized algorithms on the
considered problems. Nevertheless our analyses give new insights on the behavior of these
heuristics that may help to come up with better randomized search heuristics for new
problems where no specialized algorithms are known.

For the Eulerian cycle problem, we have shown that evolutionary algorithms are able to
compute an Eulerian cycle of a given Eulerian graph in expected polynomial time if jumps
are used for mutation. Switching from jumps to exchanges there are instances where the
expected optimization time change drastically, i. e. from polynomial to exponential. In the
case of the minimum spanning tree problem, evolutionary algorithms have to cope with the
possibility that there are exponentially many spanning trees that have different weights.
Nevertheless, they are able to compute a minimum spanning tree in expected polynomial
time. Examining the minimum spanning tree problem we have also shown that sometimes
a multi-objective model of a given single-objective optimization problem can direct the
search of an evolutionary algorithm in a better way. We have given runtime bounds for the
corresponding MOEAs that are smaller than the lower bounds obtained for their single-
objective counterparts. In addition our experimental studies shown the advantage of the
multi-objective model for the case of dense random graphs.

For the multi-objective minimum spanning tree problem, we have shown that the ex-
tremal points of the Pareto front constitute a 2-approximation of the Pareto set. In addition
we have proven that simple MOEAs are able to compute a set of solutions which contains

127

128 CHAPTER 12. SUMMARY AND FUTURE WORK

for each extremal point a corresponding solution in expected pseudo-polynomial time. To
our knowledge this is the first rigorous result on the runtime behavior of a MOEA on an
NP-hard multi-objective combinatorial optimization problem.

Another important class of randomized search heuristic is ant colony optimization. We
have shown that a simple algorithm belonging to this class behaves for a certain parameter
setting as a simple evolutionary algorithm for which many results on the runtime behavior
are known. Hence, these results, including the ones presented in Chapter 7, transfer to
the considered ACO algorithm. In addition the behavior of the ACO algorithm on the
pseudo-boolean function OneMax has been investigated in greater detail and a threshold
behavior has been proven for varying evaporation factor.

After we obtained the mentioned results on the behavior of randomized search heuris-
tics, we have switched to classical approximation algorithms. Motivated by the results on
the behavior of evolutionary algorithms on the minimum spanning tree problem, we have
investigated whether a multi-objective model of a single-objective optimization problem
can also help to come up with faster approximation algorithms. We have shown that this
is indeed the case by examining the generalization of two NP-hard spanning tree problems.

The randomized search heuristics analyzed in this thesis are simple ones. For future
work it would be interesting to examine the influence of a larger population for some clas-
sical combinatorial optimization problems. Also the influence of crossover operators seems
to be an interesting point which should be investigated. In the case of ACO algorithms,
we are at the beginning of rigorous analyses. The results presented in Chapter 8 are the
first of that kind. In the future, it would be interesting to examine more pseudo-boolean
functions in greater detail as well as the behavior of ACO algorithms on other construction
graphs. Another interesting point is to investigate ACO algorithms that work with a larger
number of ants in each iteration.

Appendix A

Mathematical Background

We present some elementary mathematical material that has been used throughout this
thesis. Most of these basics in mathematics can be found in Feller (1968, 1971) or Motwani
and Raghavan (1995).

A.1 Probability distributions

Definition A.1.1 (Normal distribution):
A random variable X is called normally distributed with expectation µ and variance σ2 and
denoted by Φ(µ, σ2) if it has the density function

n(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

In the case of µ = 0 and σ2 = 1 it is called the standard normal distribution and denoted
by Φ.

Definition A.1.2 (Binomial distribution):
The binomial distribution with parameter n and p which is denoted by B(n, p) and defined by
the probability b(k; n, p) that n Bernoulli trials with probabilities p for success and q = 1−p
for failure result in k successes and n − k failures. B(n, p) has the density function

b(k; n, p) =

(

n

k

)

pkqn−k.

Definition A.1.3 (Poisson distribution):
Let λ be a positive real number. The Poisson distribution with parameter λ has the density
function

p(x) =

{

λxe−λ/x! : x = 0, 1, 2, . . .
0 : otherwise

.

129

130 APPENDIX A. MATHEMATICAL BACKGROUND

Proposition A.1.4 (Central Limit Theorem):
Let X1, X2, . . . , Xn be mutually independent random variable with a common distribution
D. Assume that the expectation µ and the standard deviation σ of D exist and are finite.
Let Sn = X1 + . . . + Xn then

lim
n→∞

Prob

(

Sn − nµ

σ
√

n
< x

)

= Φ(x),

where Φ denotes the standard normal distribution.

Proposition A.1.5 (Lindeberg’s generalization of the Central Limit Theorem):
Let X1, X2, . . . , Xn be mutually independent random variables with distributions F1, F2, . . . , Fn.
Assume that

E(Xk) = 0, Var(Xk) = σ2
k

and define

s2
n = σ2

1 + . . . + σ2
n.

If for all t > 0

1

s2
n

n
∑

k=1

∫

|y|≥tsn

y2Fk{dy} → 0 (A.1)

holds , the distribution of the normalized sum

S∗
n =

X1 + . . . + Xn

sn

tends to the standard normal distribution Φ.

Condition (A.1) is called the Lindeberg condition. Assume that the Xk are uniformly
bounded, which means that all Fk are carried by some finite interval [−a, a]. Then (A.1)
is satisfied iff sn → ∞.

A.2 Deviation inequalities

Proposition A.2.1 (Markov’s inequality):
Let X be a random variable assuming only non-negative values. Then for all t ∈ R

+,

Prob(X ≥ k · E(X)) ≤ 1/k.

Proposition A.2.2 (Chernoff bounds):
Let X1, X2, . . . , Xn be independent Poisson trials such that for 1 ≤ i ≤ n Prob(Xi = 1) =
pi, where 0 < pi < 1. Let X =

∑n
i=1 Xi, µ = E(X) =

∑n
i=1 pi. Then the following

inequalities hold.

A.3. OTHER USEFUL FORMULAS 131

Prob(X > (1 + δ)µ) <

(

eδ

(1 + δ)(1+δ)

)µ

δ > 0

Prob(X > (1 + δ)µ) < e−µδ2/3 0 < δ ≤ 1

Prob(X < (1 + δ)µ) < e−µδ2/2 0 < δ ≤ 1

The following Chernoff-Hoeffding-type bound can be found as Theorem 3.44 in Schei-
deler (2000).

Proposition A.2.3 (Chernoff-Hoeffding-type bound):
Let X1, . . . , Xn be be independent random variables such that Xi − E(Xi) ≤ b, 1 ≤ i ≤ n.
Let X =

∑n
i=1 Xi have expected value µ and variance ν, then for any d ≥ 0,

Prob(X − µ ≥ d) ≤
(

eδ

(1 + δ)1+δ

)ν/b2

≤ e−
d2

2ν(1+δ/3)

holds, where δ = b · d/ν.

A.3 Other useful formulas

Proposition A.3.1 (Stirling’s formula):
For any n ∈ N √

2πnnne−n < n! <
√

3πnnne−n

holds.

Proposition A.3.2 (Binomial coefficients):

Let n ≥ k ≥ 0. The binomial coefficients are defined as
(

n

k

)

=

(

n

n − k

)

=
n!

k!(n − k)!

and it holds
(n

k

)k

≤
(

n

k

)

≤ nk

k!
.

Proposition A.3.3 (Harmonic sum):
Let Hn =

∑n
i=1 1/i be the nth Harmonic sum. Then for any n ∈ N

Hn = ln n + Θ(1)

holds.

132 APPENDIX A. MATHEMATICAL BACKGROUND

Proposition A.3.4 (Coupon collector’s theorem):
In the coupon collector’s problem n different coupons are given and at each trial a coupon
is chosen uniformly at random. Let X be a random variable describing the number of trials
required to choose each coupon at least once. Then

E(X) = nHn

holds, where Hn denotes the nth Harmonic number, and

lim
n→∞

Prob(X ≤ n(ln n − c)) = e−ec

holds for each constant c ∈ R.

Appendix B

ACO Algorithms

We repeat Hoeffding’s technique, leading to Lemma B.1.4. Note that the following state-
ments constitute only minor modifications of the first pages in Hoeffding (1956).

B.1 Modifications of the Hoeffding Lemma

The expected value of a function g(S) is

f(p) = E(g(S)) =
n
∑

k=0

g(k)Ank(p), (B.1)

where p = (p1, . . . , pn) and the probability Ank of S = k is given by

Ank(p) =
∑

(i1,...,in)∈{0,1}n,
i1+···+in=k

n
∏

j=1

p
ij
j (1 − pj)

1−ij , k = 0, 1 . . . , n.

The function f(p) is symmetric in the components of p and linear in each component.
Any function with these two properties can be represented in form (B.1). We consider
the problem of finding the maximum and the minimum of f(p) in the section D of the
hyperplane

p1 + p2 + · · ·+ pn = np (1/n < p < 1 − 1/n).

We denote by pi1,i2,...,im the point in the (n − m)-dimensional space, which is obtained
from p by omitting the coordinates pi1 , pi2, . . . , pim.

Since f(p) is symmetric, and linear in each component, we can write

f(p) = fn−1,0(p
j) + pjfn−1,1(p

j), j = 1, 2, . . . , n, (B.2)

where the functions fn−1,0 and fn−1,1 are independent of the index j and symmetric and
linear in the components of pj.

133

134 APPENDIX B. ACO ALGORITHMS

We define the functions fn−k,i by fn,0(p) = f(p) and

fn−k,i(p
1,2,...,k) = fn−k−1,i(p

1,2,...,k+1) + pk+1fn−k−1,i+1(p
1,2,...,k),

i = 0, 1, . . . , k, k = 0, 1, . . . n − 1. (B.3)

We obtain

f(p) =

m
∑

i=1

Cmi(p1, p2, . . . , pm)fn−m,i(p
1,...,m), m = 1, 2, . . . , n, (B.4)

where Cm0, Cm1, . . . , Cm,m are the symmetric sums

Cm0(p1, p2, . . . , pm) = 1 (B.5)

and

Cmi(p1, p2, . . . , pm)

= (p1p2 · · ·pi) + (p1p2 · · · pi−1pi+1) + · · ·+ (pm−i+1pm−i+2 · · · pm)

for i > 0.

Theorem B.1.1 Let a = (a1, a2, . . . , an) be a point in D at which f(p) attains its maxi-
mum. Then for every two distinct indices i, j, we have

fn−2,2(a
ij) ≤ 0 if ai 6= aj , (B.6)

fn−2,2(a
ij) = 0 if ai 6= aj , 1/n < ai, aj < 1 − 1/n, (B.7)

fn−2,2(a
ij) ≥ 0 if 1/n < ai = aj < 1 − 1/n. (B.8)

Proof: Let a′ denote the point which is obtained from a if ai and aj are replaced by ai +x
and aj−x. The point a′ is in D for all x in the interval I defined by 1/n ≤ ai+x ≤ 1−1/n,
1/n ≤ aj − x ≤ 1 − 1/n. We have

f(a′) = fn−2,0(a
ij) + (ai + aj)fn−2,1(a

ij) + (ai + x)(aj − x)fn−2,2(a
ij).

Hence,
f(a′) − f(a) = x(aj − ai − x)fn−2,2(a

ij). (B.9)

Since f(a) is a maximum, the right side must be negative or zero for all x in I. We may
assume ai ≤ aj . If ai 6= aj , we can choose x positive and sufficiently small such that x
is in I and (B.6) holds. If 1/n < ai < 1 − 1/n and 1/n < aj < 1 − 1/n then the point
x = −ai + 1/n is in the interior of I and (B.8) must hold. Moreover, if ai 6= aj , together
with (B.6), we obtain (B.7). If the maximum is not attained at a′ when x is in I and is
different and sufficiently close to zero, the inequalities (B.6) and (B.8) must be strict. 2

B.1. MODIFICATIONS OF THE HOEFFDING LEMMA 135

In general, the maximum or minimum of f(p) can be attained at more than one point
in D. The following theorem gives some information about the set of points at which an
extremum is attained.

Theorem B.1.2 Let a be a point in D at which f(p) attains its maximum or its minimum.
Suppose that a has at least two unequal coordinates which are distinct from 1/n and 1−1/n.
Then f(p) attains its maximum (or minimum) at any point in D which has the same
number of 1/n coordinates and the same number of 1 − 1/n coordinates as a has.

Proof: Let m = n − r − s be the number of coordinates of a = (a1, . . . , an) which are
distinct from 1/n and 1−1/n. We may take a1, . . . , am to be these coordinates and assume
a1 6= a2. We first show

fn−k,i(ak+1, . . . , an) = 0, i = 2, . . . , k. (B.10)

We prove this equation by induction on k. Due to Theorem B.1.1 this holds for k = 2. Let

bk = (b1, . . . , bk, ak+1, . . . , an), (B.11)

where

b1 + · · · + bk = a1 + · · ·+ ak, 1/n ≤ bi ≤ 1 − 1/n, i = 1, . . . , k. (B.12)

The point bk is in D. By (B.4) and the induction hypothesis,

f(bk) = fn−k,0(ak+1, . . . , an) + (a1 + · · ·+ ak)fn−k,1(ak+1, . . . , an) = f(a). (B.13)

Thus, the maximum is attained at every point bk which satisfies (B.11) and (B.12). In
particular (B.12) can be satisfied with b1 6= b2, b1 6= ak+1, b2 6= ak+1, 1/n < bi < 1 − 1/n,
i = 1, . . . , k (since 1/n < aj < 1− 1/n for j = 1, . . . , m). Under these assumptions, we can
apply the induction hypothesis (B.10) with a replaced by the point bk, whose first k + 1
coordinates can by suitably rearranged. Hence,

fn−k,i(b1, ak+2, . . . , an) = 0, fn−k,i(b2, ak+2, . . . , an) = 0, i = 2, . . . k.

Applying (B.3) to the left sides of these equations, we obtain

fn−k−1,i(ak+2, . . . , an) + bhfn−k−1,i+1(ak+2, . . . , an) = 0,

i = 2, . . . , k, h = 1, 2. (B.14)

Since b1 6= b2, we find that (B.10) is satisfied with k replaced by k + 1. Thus (B.10)
holds for k = 2, . . . , m. Equation (B.13) holds for every bm that satisfies (B.11) and (B.12)
and f is symmetric which completes the proof. 2

Corollary B.1.3 The maximum and minimum of f(p) in D are attained at points whose
coordinates take on at most three different values, only one of which is distinct from 1/n
and 1 − 1/n.

136 APPENDIX B. ACO ALGORITHMS

Lemma B.1.4 Let X1, . . . , Xk ∈ {0, 1} be independent Poisson trails with success proba-
bilities pi ∈ [1/n, 1− 1/n], 1 ≤ i ≤ k. Let X = X1 + · · ·+ Xk and µ = p1 + · · ·+ pk. Then
Prob(X ≥ µ + 1/2) is minimized if the pi take on at most three different values, only one
which is distinct from 1/n and 1 − 1/n.

Proof: Consider (B.1) and set g(k) = 1 if k ≥ µ + 1/2 and g(k) = 0 otherwise. Hence
f(p) computes in this case the probability of obtaining a value at least µ+1/2 and we can
apply Corollary B.1.3. 2

Bibliography

[1] Barahona, F., Pulleyblank, W. R. (1987). Exact arborescences , matching and cycles.
Discrete Applied Mathematics, 16, 91–99.

[2] Beier, R., and Vöcking, B. (2003). Random knapsack in expected polynomial time.
Proc of the ACM Symposium on Theory of Computing (STOC), 306–329.

[3] Beyer, H.-G., Schwefel, H.-P., and Wegener, I. (2002). How to analyse evolutionary
algorithms. Theoretical Computer Science 287, 101–130.

[4] Briest, P., Brockhoff, D., Degener, B., Englert, M., Gunia, C., Heering, O., Jansen, T.,
Leifhelm, M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum, S.,
and Wegener, I. (2004). Experimental supplements to the theoretical analysis of EAs
on problems from combinatorial optimization. In Proc. of the 8th Int. Conf. on Parallel
Problem Solving from Nature (PPSN VIII). LNCS 3242, 21–30.

[5] Bui, T., Chaudhuri, S., Leighton, T., Sipser, M. (1984). Graph bisection algorithms
with good average case behavior. In Proc. of the 25th IEEE Symposium onf Founda-
tions of Computer Science (FOCS), 181–192

[6] Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont, G. B. (2002). Evolutionary
algorithms for solving multi-objective problems. Kluwer Academic Publishers, New
York.

[7] Cohn, H., Kleinberg, R. D., Szegedy, B., and Umans, Ch. (2005). Group-theoretic
algorithms for matrix multiplication. 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 379-388.

[8] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction to algorithms.
2nd Edition, McGraw Hill, New York.

[9] Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Wiley,
Chichester.

[10] Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoret-
ical Computer Science 344, 243–278.

137

138 BIBLIOGRAPHY

[11] Dorigo, M., Maniezzo, V., and Colorni, A. (1991). The ant system: An autocatalytic
optimization process. Technical Report 91-016 Revised, Politecnico di Milano.

[12] Dorigo, M. and Stützle, T. (2004). Ant colony optimization. MIT Press.

[13] Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science 276, 51–81.

[14] Edmonds, J. and Johnson, E.L. (1973). Matching, Euler tours and the chinese post-
man. Mathematical Programming, 5:88-124.

[15] Ehrgott, M. (2000). Approximation algorithms for combinatorial multicriteria opti-
mization problems. Int. Transactions in Operational Research 7, 5–31.

[16] Feller, W. (1968). An Introduction to probability theory and its applications, vol. 1.
Wiley, 3rd ed.

[17] Feller, W. (1971). An introduction to probability theory and its applications, vol. 2.
Wiley, 2nd ed.

[18] Fischer, T. (1993). Optimizing the degree of minimum weight spanning trees. Tech-
nical Report 93-1338, Department of Computer Science, Cornell University, Ithaca,
NY, USA.

[19] Fogel, L., Ownes, M., and Walsh, M.(1966). Artificial intelligence through simulated
evolution. Wiley, New York.

[20] Fürer, M. and Raghavachari, B. (1990). An NC approximation algorithm for the
minimum degree spanning tree problem. In Proc. of the 28th Annual Allerton Conf.
on Communication, Control and Computing, 274-281.

[21] Fürer, M. and Raghavachari, B. (1992). Approximating the minimum-degree spanning
tree to within one from the optimal degree. In Proc. of the third annual ACM-SIAM
symposium on Discrete algorithms (SODA), 317-324.

[22] Fürer, M. and Raghavachari, B. (1994). Approximating the minimum-degree Steiner
tree to within one of optimal. Journal of Algorithms 17, 409-423.

[23] Ehrgott, M. (2000). Multicriteria optimization. Second edition, Berlin, Springer.

[24] Gerhards, T. (2006). Evolutionary algorithms and the degree-constrained minimum
spanning tree problem (in german). Master thesis, Department of Computer Science,
Christian-Albrechts University of Kiel.

[25] Giel, O. (2003). Expected runtimes of a simple multi-objective evolutionary algorithm.
Proc. of the Congress on Evolutionary Computation 2003 (CEC 2003), 1918–1925.

BIBLIOGRAPHY 139

[26] Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum matching
problem. Proc. of 20th STACS. LNCS 2607, 415–426.

[27] Giel, O. and Wegener, I. (2004). Searching randomly for maximum matchings. Elec-
tronic Colloquium on Computational Complexity (ECCC), Report No. 76.

[28] Glaser, O. (2006). Multi-objective evolutionary algorithms and the vertex cover prob-
lem (in german). Master thesis, Department of Computer Science, Christian-Albrechts
University of Kiel.

[29] Gottlieb, J., Julstrom, B. A., Raidl, G. R., Rothlauf, F. (2001). Prüfer numbers: A
poor representation of spanning trees for evolutionary search. In Proc. of the Genetic
and Evolutionary Computation Conference (GECCO 2001), San Francisco, CA, 343–
350.

[30] Gutjahr, W. J. (2003). A generalized convergence result for the graph-based ant system
metaheuristic. Probability in the Engineering and Informational Sciences 17, 545–569.

[31] Gutjahr, W. J. (2006). On the finite-time dynamics of ant colony optimization.
Methodology and Computing in Applied Probability. To appear

[32] Hamacher, H.W. and Ruhe, G. (1994). On spanning tree problems with multiple
objectives. Annals of Operations Research 52, 209–230.

[33] Hierholzer, C. (1873). Über die Möglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbrechung zu umfahren. Math. Ann. 6, 30-32.

[34] Hochbaum, D. S. (1997). Approximation algorithms for NP-hard problems. PWS Pub-
lishing Company.

[35] Hoeffding, W. (1956). On the distribution of the number of successes in independent
trials. Annals of Mathematical Statistics, 27, 713–721.

[36] Jansen, T. and Sudholt, D. (2005). Design and analysis of an asymmetric mutation
operator. Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2005). IEEE Press, Piscataway, NJ, 497–504.

[37] Jansen, T. and Wegener, I. (2001). Evolutionary algorithms - how to cope with
plateaus of constant fitness and when to reject strings of the same fitness. IEEE
Trans. on Evolutionary Computation 5, 589-599.

[38] Jerrum, M. and Sorkin, G.B. (1998). The Metropolis algorithm for graph bisection.
Discrete Applied Mathematics 82, 155–175.

[39] Johnson, D.S., Papadimitriou, C. H., and Yannakakis, M. (1988). How easy is local
search. J. Comp. Syst. Sci. 37, 79–100

140 BIBLIOGRAPHY

[40] Kano, M. (1987). Maximum and kth maximal spanning trees of a weighted graph.
Combinatorica 7, 205–214.

[41] Karger, D.R., Klein, P.N., and Tarjan, R.E. (1995). A randomized linear-time algo-
rithm to find minimum spanning trees. Journal of the ACM 42(2): 321–328.

[42] Kehden, B. and Neumann F. (2006). A relation-algebraic view on evolutionary algo-
rithms for some graph problems. In: Gottlieb and Raidl (Eds.): EvoCop 2006, LNCS
3906, Springer, Berlin, 147–158.

[43] Knowles, J.D. and Corne, D.W. (2001). A comparison of encodings and algorithms
for multiobjective minimum spanning tree problems. Proc. of the Congress on Evolu-
tionary Computation 2001 (CEC 2001).

[44] Könemann, J., and Ravi, R. (2003). Primal-dual meets local search: approximating
MST’s with nonuniform degree bounds. Proc of the ACM Symposium on Theory of
Computing (STOC), 389-395.

[45] Koza, J. R. (1990). Genetic programming: A paradigm for genetically breeding popu-
lations of computer programs to solve problems. Technical report STAN-CS-90-1314,
Department of Computer Science, Standford, CA.

[46] Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. of the American Mathematical Society, 7: 48–50.

[47] Lacomme, P., Prins, C., and Ramdane-Chérif, W. (2001). A genetic algorithm for
the capacitated arc routing problem and its extensions. Applications of evolutionary
computing: Proc. EvoWorkshops.

[48] Laumanns, M., Thiele, L. , and Zitzler, E. (2004). Running time analysis of evolution-
ary algorithms on a simplified multiobjective knapsack problem. Natural Computing
3, 37–51.

[49] Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., and Deb, K. (2002). Running time
analysis of multi-objective evolutionary algorithms on a simple discrete optimization
problem. Proc. of Parallel Problem Solving from Nature – PPSN VII. LNCS 2939,
44–53.

[50] Mayr, E.W. and Plaxton, C.G. (1992). On the spanning trees of weighted graphs.
Combinatorica 12, 433–447.

[51] Michalewicz, Z. (2004). How to solve it: Modern heuristics. 2nd edition, Springer-
Verlag, Berlin.

[52] Motwani, R. and Raghavan, P. (1995). Randomized algorithms. Cambridge University
Press.

BIBLIOGRAPHY 141

[53] Mühlenbein, H. (1992). How genetic algorithms really work: mutation and hillclimb-
ing. Parallel Problem Solving from Nature - PPSN-II, Elsevier, 15–26.

[54] Nemhauser, G. and Ullmann, Z. (1969). Discrete dynamic programming and capital
allocation. Management Science, 15(9), 494–505.

[55] Neumann, F. (2004a). Expected runtimes of evolutionary algorithms for the Eulerian
cycle problem. Proc. of the Congress on Evolutionary Computation 2004 (CEC 2004),
volume 1, IEEE Press, 904–910.

[56] Neumann F. (2004b). Expected runtimes of a simple evolutionary algorithm for the
multi-objective minimum spanning tree problem. In: Yao et al. (Eds.): Parallel Prob-
lem Solving from Nature - PPSN VIII, LNCS 3242, Springer, Berlin, Germany, pages
80–89.

[57] Neumann F. (2007). Expected runtimes of a simple evolutionary algorithm for the
multi-objective minimum spanning tree problem. Special Issue on Evolutionary Multi-
Objective Optimization of the European Journal on Operational Research (to appear).

[58] Neumann F. and Laumanns M. (2006). Speeding up approximation algorithms for
NP-hard spanning forest problems by multi-objective optimization. In: Correa et al.
(Eds.): LATIN 2006, LNCS 3887, Springer, Berlin, pages 745–756.

[59] Neumann, F. and Wegener, I. (2004). Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Deb et al. (Eds.): Genetic and
Evolutionary Computation Conference - GECCO 2004, LNCS 3102, Springer, Berlin,
Germany, 713–724.

[60] Neumann, F. and Wegener, I. (2005). Minimum spanning trees made easier via multi-
objective optimization. In: Beyer et al. (Eds.): Genetic and Evolutionary Computa-
tion Conference - GECCO 2005, Volume 1, ACM Press, New York, USA, 763–770.

[61] Neumann, F. and Wegener, I. (2006). Minimum spanning trees made easier via multi-
objective optimization. Accepted for Natural Computing.

[62] Neumann, F. and Witt, C. (2006). Runtime Analysis of a Simple Ant Colony Opti-
mization Algorithm. Submitted for publication

[63] Papadimitriou, C. H. (1994). Computational complexity. Addison Wesley.

[64] Papadimitriou, C. H. and Steiglitz, K. (1998). Combinatorial optimization: algorithms
and complexity. Dover

[65] Papadimitriou, C. H., Schäffer, A. A., and Yannakakis, M. (1990). On the complexity
of local search. Proc. of 22nd ACM Symp. on Theory of Computing (STOC), 438–445.

142 BIBLIOGRAPHY

[66] Papadimitriou, C. H. and Yannakakis, M. (2000). The complexity of tradeoffs, and
optimal access of web sources. 41st Annual Symposium on Foundations of Computer
Science (FOCS), 86–92.

[67] Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell Sys-
tem Technical Journal, 36: 1389–1401.

[68] Raidl, G.R. and Julstrom, B.A. (2003). Edge sets: an effective evolutionary coding of
spanning trees. IEEE Trans. on Evolutionary Computation 7, 225–239.

[69] Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach
prinzipien der biologischen evolution. Frommann-Holzboog Verlag, Stuttgart, Ger-
many.

[70] Sasaki, G. and Hajek, B. (1988). The time complexity of maximum matching by
simulated annealing. Journal of the ACM 35, 387–403.

[71] Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness landscapes based on
sorting and shortest paths problems. Proc. of Parallel Problem Solving from Nature
– PPSN VII. LNCS 2939, 54–63.

[72] Scharnow, J., Tinnefeld, K., and Wegener, I. (2004). The analysis of evolutionary
algorithms on sorting and shortest paths problems. Special Issue on Evolutionary
Computation in Combinatorial Optimization of the Journal of Mathematical Modeling
and Algorithms, Volume 4, Issue 3, 349–366.

[73] Scheideler, C. (2000). Probabilistic methods for coordination problems. HNI-
Verlagsschriftenreihe 78, University of Paderborn, Habilitation Thesis.

[74] Skiena, S. (1990). Implementing discrete mathematics: combinatorics and graph the-
ory with mathematica. Addison-Wesley.

[75] Schwefel, H.P. (1995). Evolution and optimum seeking. Sixth-Generation Computer
Technology Series, Wiley, New York.

[76] Schwefel, H.P. (1981). Numerical optimization for computer models. John Willey,
Chichester, U.K..

[77] Swinscow, T. D. V. and Campbell, M. J. (2001). Statistics at square one. Bmj Pub-
lishing Group, 10th edition.

[78] Vazirani, V. V. (2003). Approximation algorithms. Springer, Second edition.

[79] Wegener, I. (2005a). Complexity theory - exploring the limits of efficient algorithms.
Springer.

BIBLIOGRAPHY 143

[80] Wegener, I. (2005b). Simulated annealing beats metropolis in combinatorial optimiza-
tion. Proc. of Automata, Languages and Programming, 32nd International Colloquium
(ICALP 2005), LNCS 3580, 589–601.

[81] Witt, C. (2005). Worst-case and average-case approximations by simple randomized
search heuristics. Proc. of the 22nd Annual Symposium on Theoretical Aspects of
Computer Science (STACS 2005), LNCS 3404, 44–56.

[82] Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE
Trans. on Evolutionary Computation 1(1), 67–82.

[83] Zhou, G. and Gen, M. (1999). Genetic algorithm approach on multi-criteria minimum
spanning tree problem. European Journal of Operational Research 114, 141–152.

