160 research outputs found

    An improved neural network model for joint POS tagging and dependency parsing

    Full text link
    We propose a novel neural network model for joint part-of-speech (POS) tagging and dependency parsing. Our model extends the well-known BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating a BiLSTM-based tagging component to produce automatically predicted POS tags for the parser. On the benchmark English Penn treebank, our model obtains strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+% absolute improvements to the BIST graph-based parser, and also obtaining a state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental results on parsing 61 "big" Universal Dependencies treebanks from raw texts show that our model outperforms the baseline UDPipe (Straka and Strakov\'a, 2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS score. In addition, with our model, we also obtain state-of-the-art downstream task scores for biomedical event extraction and opinion analysis applications. Our code is available together with all pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, to appea

    A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing

    Full text link
    We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms the state-of-the-art neural network-based Stack-propagation model for joint POS tagging and transition-based dependency parsing, resulting in a new state of the art. Our code is open-source and available together with pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: v2: also include universal POS tagging, UAS and LAS accuracies w.r.t gold-standard segmentation on Universal Dependencies 2.0 - CoNLL 2017 shared task test data; in CoNLL 201

    Backpropagating through Structured Argmax using a SPIGOT

    Full text link
    We introduce the structured projection of intermediate gradients optimization technique (SPIGOT), a new method for backpropagating through neural networks that include hard-decision structured predictions (e.g., parsing) in intermediate layers. SPIGOT requires no marginal inference, unlike structured attention networks (Kim et al., 2017) and some reinforcement learning-inspired solutions (Yogatama et al., 2017). Like so-called straight-through estimators (Hinton, 2012), SPIGOT defines gradient-like quantities associated with intermediate nondifferentiable operations, allowing backpropagation before and after them; SPIGOT's proxy aims to ensure that, after a parameter update, the intermediate structure will remain well-formed. We experiment on two structured NLP pipelines: syntactic-then-semantic dependency parsing, and semantic parsing followed by sentiment classification. We show that training with SPIGOT leads to a larger improvement on the downstream task than a modularly-trained pipeline, the straight-through estimator, and structured attention, reaching a new state of the art on semantic dependency parsing.Comment: ACL 201

    Modeling the interface between morphology and syntax in data-driven dependency parsing

    Get PDF
    When people formulate sentences in a language, they follow a set of rules specific to that language that defines how words must be put together in order to express the intended meaning. These rules are called the grammar of the language. Languages have essentially two ways of encoding grammatical information: word order or word form. English uses primarily word order to encode different meanings, but many other languages change the form of the words themselves to express their grammatical function in the sentence. These languages are commonly subsumed under the term morphologically rich languages. Parsing is the automatic process for predicting the grammatical structure of a sentence. Since grammatical structure guides the way we understand sentences, parsing is a key component in computer programs that try to automatically understand what people say and write. This dissertation is about parsing and specifically about parsing languages with a rich morphology, which encode grammatical information in the form of words. Today’s parsing models for automatic parsing were developed for English and achieve good results on this language. However, when applied to other languages, a significant drop in performance is usually observed. The standard model for parsing is a pipeline model that separates the parsing process into different steps, in particular it separates the morphological analysis, i.e. the analysis of word forms, from the actual parsing step. This dissertation argues that this separation is one of the reasons for the performance drop of standard parsers when applied to other languages than English. An analysis is presented that exposes the connection between the morphological system of a language and the errors of a standard parsing model. In a second series of experiments, we show that knowledge about the syntactic structure of sentence can support the prediction of morphological information. We then argue for an alternative approach that models morphological analysis and syntactic analysis jointly instead of separating them. We support this argumentation with empirical evidence by implementing two parsers that model the relationship between morphology and syntax in two different but complementary ways
    • …
    corecore