14,235 research outputs found

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nloglogSn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(logn)O(\log n)-bit counter, that makes only O(loglogsn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of PNPcoNPP \ne NP \cap coNP for length o(nloglogn)o(n \log\log n) oblivious branching programs

    Quantum vs. Classical Read-once Branching Programs

    Full text link
    The paper presents the first nontrivial upper and lower bounds for (non-oblivious) quantum read-once branching programs. It is shown that the computational power of quantum and classical read-once branching programs is incomparable in the following sense: (i) A simple, explicit boolean function on 2n input bits is presented that is computable by error-free quantum read-once branching programs of size O(n^3), while each classical randomized read-once branching program and each quantum OBDD for this function with bounded two-sided error requires size 2^{\Omega(n)}. (ii) Quantum branching programs reading each input variable exactly once are shown to require size 2^{\Omega(n)} for computing the set-disjointness function DISJ_n from communication complexity theory with two-sided error bounded by a constant smaller than 1/2-2\sqrt{3}/7. This function is trivially computable even by deterministic OBDDs of linear size. The technically most involved part is the proof of the lower bound in (ii). For this, a new model of quantum multi-partition communication protocols is introduced and a suitable extension of the information cost technique of Jain, Radhakrishnan, and Sen (2003) to this model is presented.Comment: 35 pages. Lower bound for disjointness: Error in application of info theory corrected and regularity of quantum read-once BPs (each variable at least once) added as additional assumption of the theorem. Some more informal explanations adde

    Query-to-Communication Lifting for BPP

    Full text link
    For any nn-bit boolean function ff, we show that the randomized communication complexity of the composed function fgnf\circ g^n, where gg is an index gadget, is characterized by the randomized decision tree complexity of ff. In particular, this means that many query complexity separations involving randomized models (e.g., classical vs. quantum) automatically imply analogous separations in communication complexity.Comment: 21 page

    Separating decision tree complexity from subcube partition complexity

    Get PDF
    The subcube partition model of computation is at least as powerful as decision trees but no separation between these models was known. We show that there exists a function whose deterministic subcube partition complexity is asymptotically smaller than its randomized decision tree complexity, resolving an open problem of Friedgut, Kahn, and Wigderson (2002). Our lower bound is based on the information-theoretic techniques first introduced to lower bound the randomized decision tree complexity of the recursive majority function. We also show that the public-coin partition bound, the best known lower bound method for randomized decision tree complexity subsuming other general techniques such as block sensitivity, approximate degree, randomized certificate complexity, and the classical adversary bound, also lower bounds randomized subcube partition complexity. This shows that all these lower bound techniques cannot prove optimal lower bounds for randomized decision tree complexity, which answers an open question of Jain and Klauck (2010) and Jain, Lee, and Vishnoi (2014).Comment: 16 pages, 1 figur

    NP-hardness of circuit minimization for multi-output functions

    Get PDF
    Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n ? {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless ? = ??, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions
    corecore