137 research outputs found
Application of interactive computer graphics in wind-tunnel dynamic model testing
The computer-controlled data-acquisition system recently installed for use with a transonic dynamics tunnel was described. This includes a discussion of the hardware/software features of the system. A subcritical response damping technique, called the combined randomdec/moving-block method, for use in windtunnel-model flutter testing, that has been implemented on the data-acquisition system, is described in some detail. Some results using the method are presented and the importance of using interactive graphics in applying the technique in near real time during wind-tunnel test operations is discussed
A system identification technique based on the random decrement signatures. Part 1: Theory and simulation
Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The mathematics of the technique is presented in addition to the results of computer simulations conducted to demonstrate the prediction of the response of the system and the random forcing function initially introduced to excite the system
Evaluation of four subcritical response methods for on-line prediction flutter onset in wind-tunnel tests
The methods were evaluated for use in tests where the flutter model is excited solely by airstream turbulence. The methods were: randomdec, power-spectral-density, peak-hold, and cross-spectrum. The test procedure was to maintain a constant Mach number (M) and increase the dynamic pressure (g) in incremental steps. The test Mach numbers were 0.65, 0.75, 0.82, 0.90, and 1.15. The four methods provided damping trends by which the flutter mode could be tracked and extrapolated to a flutter-onset q. A hard flutter point was obtained at M = 0.82. The peak-hold and cross-spectrum methods gave reliable results and could be most readily used for on-line testing. At M = 0.82, a p-k analysis predicted the same flutter mode as the experiment but a 6-percent lower flutter q. At the subcritical dynamic pressures, calculated damping values were appreciably lower than measured data
Determination of subcritical damping by moving-block/randomdec applications
Two techniques are described which allow the determination of subcritical dampings and frequencies during aeroelastic testing of flight vehicles. The moving-block technique is shown to have the advantage of being able to provide damping and frequency information for each mode which might be present in a signal trace, but it has the disadvantage of requiring that the structure be excited transiently. The randomdec technique requires only random turbulence for excitation, but the randomdec signature is difficult to analyze when more than one mode is present. It is shown that by using the moving-block technique to analyze the randomdec signatures, the best features of both methods are gained. Examples are presented illustrating the direct application of the moving-block method to model helicopter rotor testing and application of the combined moving-block/randomdec method to flutter studies of two fixed-wing models
YF-16 flight flutter test procedures
The Random Decrement technique (Randomdec) was incorporated in procedures for flight testing of the YF-16 lightweight fighter prototype. Damping values obtained substantiate the adequacy of the flutter margin of safety. To confirm the structural modes which were being excited, a spectral analysis of each channel was performed using the AFFTC time/data 1923/50 time series analyzer. Inflight test procedure included the careful monitoring of strip charts, three axis pulses, rolls, and pullups
Modal identification of structures from the responses and random decrement signatures
The theory and application of a method which utilizes the free response of a structure to determine its vibration parameters is described. The time-domain free response is digitized and used in a digital computer program to determine the number of modes excited, the natural frequencies, the damping factors, and the modal vectors. The technique is applied to a complex generalized payload model previously tested using sine sweep method and analyzed by NASTRAN. Ten modes of the payload model are identified. In case free decay response is not readily available, an algorithm is developed to obtain the free responses of a structure from its random responses, due to some unknown or known random input or inputs, using the random decrement technique without changing time correlation between signals. The algorithm is tested using random responses from a generalized payload model and from the space shuttle model
Optimum design of structures of composite materials in response to aerodynamic noise and noise transmission
Elastic wave propagation and attenuation in a model fiber matrix was investigated. Damping characteristics in graphite epoxy composite materials were measured. A sound transmission test facility suitable to incorporate into NASA Ames wind tunnel for measurement of transmission loss due to sound generation in boundary layers was constructed. Measurement of transmission loss of graphite epoxy composite panels was also included
Development and demonstration of a flutter-suppression system using active controls
The application of active control technology to suppress flutter was demonstrated successfully in the transonic dynamics tunnel with a delta-wing model. The model was a simplified version of a proposed supersonic transport wing design. An active flutter suppression method based on an aerodynamic energy criterion was verified by using three different control laws. The first two control laws utilized both leading-edge and trailing-edge active control surfaces, whereas the third control law required only a single trailing-edge active control surface. At a Mach number of 0.9 the experimental results demonstrated increases in the flutter dynamic pressure from 12.5 percent to 30 percent with active controls. Analytical methods were developed to predict both open-loop and closed-loop stability, and the results agreed reasonably well with the experimental results
A system identification technique based on the random decrement signatures. Part 2: Experimental results
Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The results of an experiment conducted on an offshore platform scale model to verify the validity of the technique and to demonstrate its application in damage detection are presented
The Application of Recent Techniques in Flight Flutter Testing
The relative merits of sinusoidal excitation versus random atmospheric turbulence was investigated. The randomdec and autocorrelation methods were used to analyze data from a Learjet flight test. A parameter identification digital program, using least squares approach, was developed to determine the aeroelastic characteristics of a two mode system. The flight test program, computer program, and data reduction procedure is presented. Final results of the two modes of excitation obtained by Randomdec method are discussed
- …
