9,795 research outputs found

    Random walker image registration with inverse consistency

    Full text link
    One important property of a registration solution is in-verse consistency. While often overlooked, this property is critical in many medical applications, including radiation-therapy treatment planning and unbiased atlas-construction. In this paper, we propose a novel extension to the graph-based random walker image registration (RWIR) algorithm to ensure its inverse consistency. In contrast to many exist-ing inverse-consistent algorithms, where two bi-directional transformations are independently sought and subsequently averaged, we calculate both transformations simultaneously by performing a constrained graph labeling in a common domain onto which both images are mapped, and employ a set of coupled labels so that both transformations are computed within a single optimization step. As our results on synthetic and real problems involving cardiac, thigh and brain images demonstrate, our method not only improved in-verse consistency of RWIR, but also statistically significantly improved its accuracy. Comparison to another state-of-the-art symmetric algorithm on various datasets also gave highly encouraging results. 1

    A Solution for Multi-Alignment by Transformation Synchronisation

    Full text link
    The alignment of a set of objects by means of transformations plays an important role in computer vision. Whilst the case for only two objects can be solved globally, when multiple objects are considered usually iterative methods are used. In practice the iterative methods perform well if the relative transformations between any pair of objects are free of noise. However, if only noisy relative transformations are available (e.g. due to missing data or wrong correspondences) the iterative methods may fail. Based on the observation that the underlying noise-free transformations can be retrieved from the null space of a matrix that can directly be obtained from pairwise alignments, this paper presents a novel method for the synchronisation of pairwise transformations such that they are transitively consistent. Simulations demonstrate that for noisy transformations, a large proportion of missing data and even for wrong correspondence assignments the method delivers encouraging results.Comment: Accepted for CVPR 2015 (please cite CVPR version

    MCMC methods for functions modifying old algorithms to make\ud them faster

    Get PDF
    Many problems arising in applications result in the need\ud to probe a probability distribution for functions. Examples include Bayesian nonparametric statistics and conditioned diffusion processes. Standard MCMC algorithms typically become arbitrarily slow under the mesh refinement dictated by nonparametric description of the unknown function. We describe an approach to modifying a whole range of MCMC methods which ensures that their speed of convergence is robust under mesh refinement. In the applications of interest the data is often sparse and the prior specification is an essential part of the overall modeling strategy. The algorithmic approach that we describe is applicable whenever the desired probability measure has density with respect to a Gaussian process or Gaussian random field prior, and to some useful non-Gaussian priors constructed through random truncation. Applications are shown in density estimation, data assimilation in fluid mechanics, subsurface geophysics and image registration. The key design principle is to formulate the MCMC method for functions. This leads to algorithms which can be implemented via minor modification of existing algorithms, yet which show enormous speed-up on a wide range of applied problems

    SITReg: Multi-resolution architecture for symmetric, inverse consistent, and topology preserving image registration

    Full text link
    Deep learning has emerged as a strong alternative for classical iterative methods for deformable medical image registration, where the goal is to find a mapping between the coordinate systems of two images. Popular classical image registration methods enforce the useful inductive biases of symmetricity, inverse consistency, and topology preservation by construct. However, while many deep learning registration methods encourage these properties via loss functions, none of the methods enforces all of them by construct. Here, we propose a novel registration architecture based on extracting multi-resolution feature representations which is by construct symmetric, inverse consistent, and topology preserving. We also develop an implicit layer for memory efficient inversion of the deformation fields. Our method achieves state-of-the-art registration accuracy on two datasets

    Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia

    Get PDF
    The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International Space Station has offered for the first time a dedicated space-borne hyperspectral sensor specifically designed for remote sensing of the coastal environment. However, several processing steps are required to convert calibrated top-of-atmosphere radiances to the desired geophysical parameter(s). These steps add various amounts of uncertainty that can cumulatively render the geophysical parameter imprecise and potentially unusable if the objective is to analyze trends and/or seasonal variability. This research presented here has focused on: (1) atmospheric correction of HICO imagery; (2) retrieval of bathymetry using an improved implementation of a shallow water inversion algorithm; (3) propagation of uncertainty due to environmental noise through the bathymetry retrieval process; (4) issues relating to consistent geo-location of HICO imagery necessary for time series analysis, and; (5) tide height corrections of the retrieved bathymetric dataset. The underlying question of whether a temporal change in depth is detectable above uncertainty is also addressed. To this end, nine HICO images spanning November 2011 to August 2012, over the Shark Bay World Heritage Area, Western Australia, were examined. The results presented indicate that precision of the bathymetric retrievals is dependent on the shallow water inversion algorithm used. Within this study, an average of 70% of pixels for the entire HICO-derived bathymetry dataset achieved a relative uncertainty of less than ± 20%. A per-pixel t-test analysis between derived bathymetry images at successive timestamps revealed observable changes in depth to as low as 0.4 m. However, the present geolocation accuracy of HICO is relatively poor and needs further improvements before extensive time series analysis can be performed
    corecore