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Abstract 

The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International 

Space Station has offered for the first time a dedicated space-borne hyperspectral sensor 

specifically designed for remote sensing of the coastal environment. However, several 

processing steps are required to convert calibrated top-of-atmosphere radiances to the desired 

geophysical parameter(s). These steps add various amounts of uncertainty that can 

cumulatively render the geophysical parameter imprecise and potentially unusable if the 

objective is to analyze trends and/or seasonal variability. This research presented here has 

focused on: (1) atmospheric correction of HICO imagery; (2) retrieval of bathymetry using an 

improved implementation of a shallow water inversion algorithm; (3) propagation of 

uncertainty due to environmental noise through the bathymetry retrieval process; (4) issues 

relating to consistent geo-location of HICO imagery necessary for time series analysis, and; 

(5) tide height corrections of the retrieved bathymetric dataset. The underlying question of 
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whether a temporal change in depth is detectable above uncertainty is also addressed. To this 

end, nine HICO images spanning November 2011 to August 2012, over the Shark Bay World 

Heritage Area, Western Australia, were examined. The results presented indicate that 

precision of the bathymetric retrievals are dependent on the shallow water inversion 

algorithm used. Within this study, an average of 70% of pixels for the entire HICO-derived 

bathymetry dataset achieved a relative uncertainty of less than ±20%. A per-pixel t-test 

analysis between derived bathymetry images at successive timestamps revealed observable 

changes in depth to as low as 0.4 m. However, the present geolocation accuracy of HICO is 

relatively poor and needs further improvements before extensive time series analysis can be 

performed. 

 

1.0 Introduction 

Detecting change in the near-shore coastal marine environment is necessary for 

understanding mechanisms that drive change in these dynamic systems. One important 

challenge for coastal marine managers is detecting change in bathymetry over large areas in a 

timely manner. With such information, informed decisions can be made for efficient and 

effective management of these fragile ecosystems (Fabbri, 1998; Galparsoro et al., 2010). 

The bathymetry of the near-shore could change seasonally or in response to acute 

disturbances, such as storms and extreme weather events (Morton, 2002; Morton and 

Sallenger, 2003), or human induced disturbances such as dredging (Cooper et al., 2007). 

These changes can have flow-on impacts to the marine flora and fauna that the marine 

resource managers are tasked to protect. As such, accurate bathymetric monitoring techniques 

that are time and cost effective are required to assess any residual geological and ecological 

impacts. 
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Accurate bathymetry maps can be achieved using active remote sensing such as an 

airborne LiDAR system (Irish and Lillycrop, 1999; Guenther et al., 2000). However, frequent 

long-term monitoring of large coastal areas can be costly even with airborne systems. 

Satellite-based passive remote sensing offers an even more cost effective means of obtaining 

bathymetry maps as it can repeatedly sample large areas (hundreds to thousands of square 

kilometers) frequently (Green et al., 1996). The temporal resolution and large spatial 

coverage makes satellite remote sensing ideal for monitoring changes in bathymetry over 

large areas. 

One of the first quantitative methods of measuring bathymetry from multispectral 

imagery was proposed by Polcyn et al. (1970). This method manipulates the ratio of two 

spectral indices to generate a semi-empirical relationship for depth. This algorithm can 

remove the influence of varying water clarity and bottom reflectance only in very specific 

conditions (see Polcyn et al., 1970) that are rarely encountered in the coastal ocean. 

Lyzenga (1978) proposed a linearized multiband bathymetry algorithm that corrects 

for bottom type variation. This algorithm however requires a depth calibration from in situ 

depth data and, as such, the approach is scene-specific (Paredes and Spero, 1983; Lyzenga, 

1985; Clark et al., 1987) though has been shown to give improved results over the band ratio 

algorithm of Polcyn et al. (1970) (Clark et al., 1987). Practical complications arise when a 

scene has varying water clarity and undefined depths when the water leaving reflectance of a 

shallow area is less than that over deep water (Philpot, 1989). Other algorithms that use in 

situ depth data for tuning empirical coefficients include Dierssen et al. (2003) and Stumpf et 

al. (2003), both of which use spectral band ratios. 

Although the algorithms proposed by Lyzenga (1978), Dierssen et al. (2003) and 

Stumpf et al. (2003) can be accurate with imagery that fit their empirical constraints, they still 

require in situ depth data which often is not available, historically or con-currently. Thus for 
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the purposes of transferability between sensors and scenes, it is crucial to have bathymetric 

algorithms that circumvent the need for in situ data. 

Semi-analytical, physics-based shallow water inversion algorithms (HOPE in Lee et 

al., 1998; 1999; BRUCE in Klonowski et al., 2007; SAMBUCA in Wettle and Brando, 2006 

and Brando et al., 2009) and Look-up-table (LUT) techniques (CRISTAL in Mobley et al., 

2005; ALLUT in Hedley et al., 2009) designed for hyperspectral sensors, appear to be more 

suitable for retrieving bathymetry, water column inherent optical properties (IOPs) and for 

rudimentary benthic classification (Dekker and Phinn et al. 2011). An advantage of semi-

analytical algorithms is their non-reliance on possibly erroneous assumptions of uniform 

water IOPs or bottom reflectance, or crude corrections (e.g. the deep water radiance 

correction). Instead, semi-analytical algorithms are derived from radiative transfer theory 

making them more analytically exact with lower sources of model error. Consequently, they 

have been used to retrieve bathymetry with relatively high accuracy from airborne 

hyperspectral imagery captured over optically complex coastal marine environments (Mobley 

et al., 2005; Klonowski et al., 2007; Brando et al., 2009; Hedley et al., 2009; Dekker and 

Phinn et al., 2011). 

Shallow water semi-analytical inversion algorithms rely on spectral matching and/or 

optimization routines which require image data with enough spectral bands in the visible 

domain (typically: 400 – 800 nm) to resolve subtle optical signatures. Hyperspectral image 

data with a modest signal-to-noise ratio (SNR) can achieve this (Philpot et al., 2003). 

Moreover, the spectral information provided by hyperspectral imagery minimizes non-

uniqueness issues, resulting in lower confidence interval limits of the retrieved parameters 

(Defoin-Platel and Chami, 2007; Mobley et al., 2005). The lack of accessible hyperspectral 

satellite imagery has limited the applicability of the physics-based semi-analytical algorithms 

to airborne hyperspectral imagery. However, there have been a few examples in the literature, 
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such as Lee et al. (2007), who used HOPE to retrieve the spatial distribution of water 

absorption, depth and bottom reflectance from Hyperion imagery of Looe Key, Florida, USA. 

Although the Hyperion sensor has over 200 spectral bands between 430-2400 nm, it 

was designed primarily for land-use applications and as such has a relatively low SNR that 

ranges from 50-150 (Ungar, 2003). Over dark targets, such as water, a low SNR effectively 

creates a „noisier‟ signal and subtle changes in the reflectance spectrum may not be 

differentiated above the noise inherent to the sensor (Hu et al., 2012). This confounds the 

remote sensing signal leading to non-uniqueness and hence higher uncertainty of the retrieved 

parameter(s). However, as stated by Lee et al. (2007), many shallow coastal areas are subject 

to high water turbidity resulting from suspended sediment run-off or where the water-leaving 

radiance signal has significant contribution from a bright bottom substrate, thus in such cases, 

Hyperion may have a high enough SNR to afford results with higher confidence. These 

represent a limited range of coastal environmental conditions suitable for Hyperion 

applications, as these waters may also be subject to highly absorbing waters (due to 

phytoplankton and/or colored dissolved organic matter), dark bottom substrates (such as 

seagrass and algae), and large bathymetric ranges that requires higher SNR for more accurate 

assessments. 

The Hyperspectral Imager for the Coastal Ocean (HICO) is the first prototype, low 

cost sensor onboard the International Space Station designed with the necessary 

specifications for remote sensing of a diverse range of coastal marine environments (Lucke et 

al., 2011). HICO has a spatial resolution of 96 × 96 m at nadir with 87 contiguous spectral 

bands between 400-900 nm. HICO's SNR varies spectrally but is generally greater than 200 

between 400 and 600 nm, and ranges from 100-200 between 600 and 700 nm (Lucke et al., 

2011). These sensor attributes make HICO suitable for analyzing the spectral and spatial 

complexity encountered in many coastal marine environments throughout the globe. 
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To date, there has been limited work reported on the routine monitoring of 

bathymetry using standardized processing of satellite hyperspectral imagery. In this paper, 

the semi-analytical Bottom Reflectance Un-mixing Computation of the Environment 

inversion algorithm (BRUCE: Klonowski et al., 2007) is used to retrieve bathymetry from 

multi-temporal HICO imagery of the Shark Bay World Heritage Area, Western Australia. We 

focus on the Faure Sill, a shallow region within Shark Bay noted for its unique seascape and 

ecological features. The aims of this research were: (1) to test whether a change in 

bathymetry is measurable above statistical uncertainty through time; (2) examine the 

robustness of the Tafkaa (Gao et al. 2000) atmospheric model when applied to HICO imagery 

whose spectral range does not extend beyond 900 nm; (3) to determine the precision of a 

HICO-derived bathymetric dataset using an improved implementation of the BRUCE model, 

specifically redesigned to allow uncertainty propagation; (4) compare tide correction 

techniques and; (5) to study the geolocation accuracy of HICO imagery and its implication to 

routine monitoring. 

 

2.0 Methodology 

2.1 Study area and HICO imagery 

Shark Bay is a World Heritage Area located in the northwest of Western Australia 

(Figure 1), covering an area of ~14 000 km
2
. This shallow coastal bay has two major sub-

embayments orientated in a NW-SE direction; Freycinet Reach, located to the west of the 

Peron peninsula, and Hopeless Reach on the east. In this case study we limit our analysis to 

Hopeless Reach with focus on the Faure Sill; a shallow (1-2 m in depth) region ~30 km long 

and ~15 km wide, containing several narrow water channels (5-6 m in depth) extending into 

Hamelin Pool and which run parallel to the tidal currents (Walker et al., 1988; Burling et al., 

2003). Shark Bay's seascape, ecology and corresponding hydrodynamics are inter-related and 
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unique. Semi-enclosed by three islands, Shark Bay experiences limited oceanic exchange and 

mixing, and combined with low annual rainfall (low land runoff) results in calm waters 

(Department of Environment and Conservation, no date). These are favorable conditions for 

seagrasses which cover ~4200 km
2
 of Shark Bay (Walker et al., 1988). These extensive 

seagrass meadows influence the sedimentation processes within Shark Bay and over time 

have created large sand banks (e.g. the Faure Sill) that restrict water movement into Hamelin 

Pool, a unique hypersaline region inhabited by stromatolites (Logan and Cebulski, 1970).  

A total of nine HICO images, each with a central image coordinate of ~25.9 

°S/113.9 °E, were captured over Shark Bay, Western Australia, from 19 November 2011 to 8 

August 2012. Pseudo true color imagery of the HICO dataset are displayed in Figure 2. Two 

different swath orientations of HICO were observed: NW-SE and SW-NE, with the Faure Sill 

captured within successive swaths. Though each swath had the same coverage/footprint, they 

often appeared to have a slight translational drift (illustrated in Figure 1). 

All HICO image data and geographic look-up-tables (GLTs) used in this study were 

accessed through the Oregon State University, College of Earth, Ocean, and Atmospheric 

Sciences, HICO web portal (hico.coas.oregonstate.edu). Note, the distributed HICO level-1B 

(L1B) calibrated radiance files had both spectral and radiometric vicarious calibrations (Gao 

et al., 2012) and, second order light effect corrections applied (Li et al., 2012). 
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Figure 1: Shark Bay, Western Australia, with the Faure Sill located between the two curved black dotted 

lines. The solid black and dot-dot-dashed grey rectangles show the different approximate orientations of 

the HICO swaths. The dashed black rectangle illustrates the translational drift in the HICO swath 

position. 
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Figure 2: pseudo true color composites of the HICO remote sensing reflectance imagery over Shark Bay, 

WA, on: (a) 19-Nov-2011; (b) 14-Dec-11; (c) 21-Jan-2012; (d) 07-Feb-12; (e) 27-Feb-12; (f) 02-Apr-12; (g) 

01-Jun-12; (h) 04-Jun-12, and; (i) 08-Aug-12. The apparent illumination variation between these images 

is due to the different scaling used to generate the pseudo true color composites. 

 

2.2 Atmospheric Correction 

The Second Simulation of the Satellite Signal in the Solar Spectrum (6S) 

implementation of Tafkaa algorithm (Gao et al., 2000) was used to atmospherically correct 

the L1B, calibrated top-of-atmosphere radiance imagery. The standard Tafkaa 6S algorithm 

uses several bands greater than 900 nm to estimate key atmospheric parameters - namely, the 

aerosol model, the aerosol optical thickness, AOT, at 550 nm, the vertical column water 

vapor, ozone concentration and the atmospheric and aerosol models in a per-pixel basis (Gao 

et al., 2000). However, HICO lacks any SWIR and IR (> 900 nm) bands and thus limits the 

application of Tafkaa 6S. Previous research has highlighted the importance of selecting 
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appropriate AOT values for Tafkaa when atmospherically correcting HICO scenes (Paterson 

and Lamela, 2011). Therefore, within this study, coincident MODerate resolution Imaging 

Spectroradiometer (MODIS) Level-2 data of Shark Bay were used to estimate the AOT at 

550 nm, vertical column water vapor, CLMVAP, and ozone concentration which were then 

used to parameterize the Tafkaa 6S algorithm. The MODIS imagery of Shark Bay, were 

downloaded from the Ocean Biology Processing Group data browse website 

(http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am) and processed from raw radiance 

counts (level 0) to calibrated Top-Of-Atmosphere radiance (level-1B). The standard MODIS 

ocean color atmospheric correction algorithm (Ahmad et al., 2010; Bailey et al., 2010) 

implemented in SeaDAS 6.4 was then used to obtain the three atmospheric properties. 

Simplified at-nadir viewing geometry was assumed and the Tafkaa 6S aerosol and 

atmospheric model were fixed to “maritime” and “mid-latitude summer” respectively for all 

HICO scenes as these were deemed the most appropriate for Shark Bay. Hence Tafkaa 6S 

was not used to solve for any atmospheric properties using HICO‟s NIR bands; rather it 

removed the atmospheric radiance signal based on predefined inputs. Note: (1) MODIS data 

were not used to select these Tafkaa 6S models; (2) the vertical pressure, temperature and 

relative humidity profiles are described in the atmospheric model; (3) given the atmospheric 

model and the atmospheric water vapor, Tafkaa 6S then determines the vertical structure of 

the water vapor (Montes et al., 2004), and; (4) the aerosols in Tafkaa 6S all assume 70% 

relative humidity (Montes et al., 2004). 
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Table 1: MODIS-derived vertical column of water vapor (CLMVAP), aerosol optical thickness at 550 nm 

(AOT) and ozone concentration, with the solar-viewing geometries for each HICO overpass of Shark Bay, 

WA. The time presented is in Australian Western Standard Time (WST; UTC +8 hours). Here θs, θv and 

φ are the viewing solar, viewing zenith and relative azimuth angles respectively. 

HICO 

overpass 

MODIS 

overpass 

CLMVAP 

(cm) 

AOT  

(550 nm) 

Ozone 

(atm-cm) 

θs (°) θv (°) φ (°) 

19-Nov-11, 

1632 hrs 

19-Nov, 

1435 hrs 

1.8 0.08 0.28 60.02 21.4 -214.1 

14-Dec-11, 

1539 hrs 

14-Dec, 

1425 hrs 

2.0 0.1 0.27 45.25 6.3 -128.6 

21-Jan-12, 

1538 hrs 

21-Jan, 

1350 hrs 

2.7 0.15 0.26 42.45 23.2 -41.98 

07-Feb-12, 

1722 hrs 

07-Feb, 

1435 hrs 

3.0 0.15 0.25 66.50 36.6 -128.96 

27-Feb-12, 

0940 hrs 

27-Feb, 

1410 hrs 

3.0 0.35 0.25 45.47 13.4 58.35 

02-Apr-12, 

1035 hrs 

02-Apr, 

1440 hrs 

2.3 0.055 0.26 41.06 20.8 1.12 

01-Jun-12, 

1038 hrs 

01-Jun*, 

0005 hrs  

1.7 0.035 0.26 53.99 16.1 16.93 

04-Jun-12, 

0932 hrs 

04-Jun, 

1355 hrs 

1.0 0.035 0.26 63.31 4.09 2.25 

08-Aug-12, 

1625 hrs 

08-Aug, 

1440 hrs 

1.45 0.045 0.27 71.00 16.7 -165.56 

* MODIS Terra 

 

The lack of concurrent in situ above-water radiometry/photometry and AERONET data 

prevented a quantitative measure of the accuracy of the atmospheric correction. However, a 

cursory evaluation of the atmospheric correction was performed by examining the reflectance 
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spectra for two locations representing: (i) bright shallow water (25.907 °S/113.934 °E), and 

(ii) quasi-deep water (25.718 °S/113.978 °E), through time. It should be noted that 

atmospheric correction removes approximately 90% of the signal that any satellite sensor 

records. Thus under- or over-corrections and spectral artifacts introduced to Rrs can be 

delineated from changes in the optical properties of the water column at these positions 

through time. 

 

2.3 Retrieval of bathymetry using the BRUCE model 

According to Lee et al. (1998, 1999), the hyperspectral sub-surface remote sensing 

reflectance signal, rrs(λ), of a shallow water pixel can be modeled as a function of the total in-

water spectral absorption and backscattering coefficients, a(λ) and bb(λ), the spectral benthic 

albedo, ρ(λ), the geometric depth (which we are attempting to solve for), H, the sub-surface 

solar zenith angle, θw, and the sub-surface viewing angle from nadir, θv. 

    ( )   ( ( )   ( )    ( )      ) (1) 

The view and solar geometries can be considered as fixed, or known. The total absorption 

coefficient is a function of the absorption of pure water, phytoplankton and color dissolved 

organic and detrital matter (CDM), whilst the backscattering coefficient is function of the 

backscattering of pure water and suspended particulates, as given by, 

 

 ( )    ( )      ( )     
      (     ) 

  ( )     ( )   (
   

 
)
   

 

 ( )  ∑    ( )

   

   

 

(2) 

where aw and bbw are the spectral absorption and backscattering coefficients of pure water, 

respectively. aϕ is the spectral absorption coefficient of phytoplankton normalized at 440 nm; 

Bi is the bottom albedo coefficient at 550 nm and i is spectral irradiance reflectance 
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normalized at 550 nm of benthic class i, respectively. The scalars P and G are the magnitudes 

of the absorption coefficients of phytoplankton and CDM respectively, whilst X is the 

magnitude of the particulate backscattering coefficient. Thus, the shallow water forward 

model can be expressed as: 

    ( )   (               ) (3) 

Though the spectral shapes and slopes of the optically active in-water constituents and 

benthic end-members were predefined and fixed, their magnitudes (P, G, X, Bi), including the 

depth, are solved using the Levenberg-Marquardt algorithm. This non-linear least-squares 

optimization compares sensor-derived with modeled rrs values, and once the solution 

converges, the best fit values of P, G, X, Bi and H are deemed to have been solved. Further 

comprehensive detail of physics-based semi-analytical shallow water inversion algorithms 

can be found in Dekker and Phinn et al. (2011) and references therein. 

Within this study we have used the BRUCE model, developed by Klonowski et al. (2007). 

This semi-analytical shallow water model is a variant of the Hyperspectral Optimization 

Process Exemplar model, HOPE, proposed by Lee et al. (1998; 1999). The difference arises 

in the parameterization of the benthic albedo, ρ(λ). Unlike HOPE, which considers the net 

benthic albedo is due to only a single benthic substrate, BRUCE assumes the net benthic 

albedo to be a spectral mixture of three benthic end-members. In this research, we express the 

bottom albedo as a linear mix of two benthic classes, sand and mixed seagrass (50% 

Posidonia australis and 50% Amphibolis antartica). These two species of seagrass were 

previously recorded as the most dominant across Shark Bay (Walker et al., 1988). The 

irradiance reflectance spectra of sand, P. australis and A. antartica were measured using a 

handheld hyperspectral radiometer during a field campaign to Shark Bay. 

Tafkaa 6S outputs Rrs that are not corrected for specular reflection of direct solar and 

sky radiance from the ocean surface (Montes et al., 2004). Thus before implementing the 
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non-linear least squares optimization, the Rrs spectra were corrected for sunglint 

contamination using a correction scheme based on Lee et al. (1999) and Goodman et al. 

(2008), 

 

   ( )      
   ( )       

               ,   
   (   )   - 

      (   
   (   )    

   (   )) 

(4) 

where γ is the lowest Rrs
raw

 value between 640 and 750 nm. Note that γ was included to avoid 

negative reflectances if the Rrs
raw

 of a wavelength shorter than 750 nm was less than that at 

750 nm. Whilst there are other sun-glint corrections in the literature (see Kay et al., 2009), 

Goodman et al. (2008), used a similar correction to equation 4 and obtained quite accurate 

depth retrievals for shallow waters of Kaneohe Bay, Hawaii. Sub-surface remote sensing 

reflectances were then computed using (Lee et al., 1999; IOCCG, 2006), 

    ( )   
   

(           )
 (5) 

A two-step inversion approach was used to retrieve depth that included: (1) a brief 

search of the parameter space for the optimal initial guess parameters used in the BRUCE 

model, and; (2) the uncertainty propagation scheme proposed by Hedley et al. (2010; 2012). 

As stated by Hedley et al. (2010), the uncertainty procedure begins with computing 

the spectral covariance matrix from a homogeneous deep water region of the image. The 

Cholesky decomposition matrix, L, is then calculated from the covariance matrix. The 

procedure then iterates through the rrs image where, for each pixel, the L matrix is used to 

compute 20 noise-perturbed rrs spectra, rrs+ δrrs. Each spectrally correlated noise term, δrrs, is 

generated by product multiplication of the L matrix by an n-band vector, whose values are 

normally distributed random numbers (μ = 0, σ = 1). The BRUCE model, through non-linear 

least squares optimization provided by the Levenberg-Marquardt (L-M) algorithm, then 

retrieves the values of P, G, X, H, Bsand and Bseagrass for each noise-perturbed rrs spectrum. 
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The mean and standard deviation are then computed for each parameter set, where the former 

is taken to be the actual retrieved parameter value and the latter its uncertainty. 

 

In the standard implementation of BRUCE, the initial guess parameters used to 

initiate the L-M optimization routine are kept constant for all pixels in an image. However, 

analysis (results not presented here) has shown that different initial guess values lead to 

different local minima having different Euclidean distances. Here, the Euclidean distance is 

defined as, 

                     √∑(       ̂     )
 

 

 

 (6) 

where rrs,i and  ̂     are the sensor-derived and modeled subsurface remote sensing reflectance 

at waveband i, respectively. To assist the L-M optimization in locating the best local 

minimum, an update-repeat process was used. This procedure began by inverting the rrs 

spectrum of a given pixel to solve for the in-water optical parameters, depth and bottom 

albedo coefficients. If this initial inversion achieved a Euclidean distance of ≤ 1.0×10
-4

, the 

optimal set of model parameters were then used as initial guesses for inverting the set of 

noise perturbed spectra, rrs+ δrrs. If, however, the Euclidean distance of the initial L-M fit 

was greater than this threshold, the procedure entered a „repeat‟ stage, where the initial 

optimal set of model parameters were randomly perturbed by 10% of their value and used as 

the initial guess for the subsequent inversion attempt. This process was repeated until either 

the Euclidean distance fell below this threshold, or if this repetition occurred more than four 

times. In the latter case, the set of optimized values that generated the lowest Euclidean 

distance was used as the initial guess for inverting the set of noise perturbed spectra. A 

comparison between this improved method and the standard approach will be presented 

elsewhere. 
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A simple pixel-by-pixel land masking procedure was also performed during the 

inversion process, whereby a pixel is identified as “land” if its Rrs(750 nm) > Rrs(400 nm). 

 

2.4 Smoothing techniques 

The most noticeable artifact in the retrieved bathymetry and bottom albedo images 

was the amount of impulse (i.e. salt-and-pepper speckling) noise present. Using a median 

filter would reduce this effect and replace the values of impulse noise pixels with a 

reasonable estimate; however it would also cause blurring of regions where impulse noise 

pixels are absent and thereby cause information loss. To limit the blurring of unaffected 

image regions, we opted for a three step smoothing approach designed to eliminate impulse 

noise pixels, reduce the magnitude of random (systematic) noise as well as preserving image 

sharpness. This smoothing approach is as follows: (1) An impulse noise detection algorithm 

was applied to the image, generating a binary, 'impulse' - 'not impulse', image; (2) an adaptive 

median filter on these „impulse‟ pixels was applied, and; (3) a second order binomial average 

kernel was applied to all pixels in the image. Steps (1) and (2) could be replaced by a LUM 

(Hardie and Boncelet, 1993) or center weighted median filters (Ko and Lee, 1991), however 

for the bathymetry image a more manual and flexible definition of a impulse noise is desired 

– which can be changed according to the user‟s prior knowledge. Additionally, step (2) 

allows the median filter to change size according to the number of other unwanted pixels in 

the kernel. 

For the impulse noise detection algorithm, a 3×3 square pixel region was created and 

centered on a given pixel of the raw image. The absolute differences between the value of the 

central pixel and the values of the eight surrounding pixels were then computed. The central 

pixel was then classified as „impulse noise‟ if the differences are greater than a given 

threshold for more than four of its surrounding pixels. For bathymetry images, this threshold 
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was set to a value of 2.0 m, whilst for the bottom albedos of sand and seagrass, thresholds of 

0.1 and 0.01 were used respectively. Note that this kernel was not centered on pixels that 

were flagged as land or clouds. 

Typically, a 3×3 median filter kernel is used to replace impulse noise pixels, as it 

finds an estimate from the most immediate surrounds; however each raw image also 

contained unwanted land, cloud or other impulse noise pixels. Such undesired pixels can 

heavily contaminate a 3×3 pixel neighborhood, thereby reducing the number of pixels from 

which the median value is calculated. Thus we have opted for an adaptive approach whereby 

the kernel size of the median filter is increased if more than 50% of its pixels are undesired 

(i.e. cloud, land or other impulse noise pixels). Within this approach, the maximum kernel 

size was set to 15×15, whereby the kernel cannot increase past this size and the median value 

calculation is forced even if the condition was not met. 

 The third step of the smoothing approach involved iterating a second order binomial 

smoother through all pixels of the image (except the edges), whose image kernel is given by 

equation (7) (Jahne, 2005), 

                   
 

  
[
   
   
   

] (7) 

Applying this kernel to a given pixel replaced its value with a centrally weighted 

average of its pixel neighborhood.  

The uncertainty products (H, Bsand and Bseagrass) were also modified during the 

adaptive median filtering and binomial smoothing stages. In the former, the uncertainty of a 

given impulse noise pixel was replaced by that of the selected pixel, whilst in the latter the 

kernel of equation (7) was convolved through the resultant uncertainty image. 

 

2.5 Tide height correction of bathymetric products 



18 

 

Delineating the changes in depth caused by resuspension and sedimentation from 

changes in tide heights is an important task in detecting trends and seasonal changes in 

bathymetry. Ideally, the retrieved bathymetric data are corrected for tidal influences to a 

common tidal datum such as lowest astronomical tide, LAT. However, water level data 

measured by in situ gauges was not available for the Faure Sill. This prevented direct 

correction of tidal influences observed in the set of bathymetry images through time 

(henceforth referred to as bathymetry time series). Two approaches to tide correction were 

investigated, the first consisting of harmonic tidal analysis and the second based on image 

analysis. 

 

2.5.1 Harmonic Tidal Analysis 

Water height data, above LAT, at five minute intervals were obtained from the 

Carnarvon tide station (approximately 120 km NW of Faure Sill) from December 2011 to 

November 2012 – courtesy of the Western Australian Department of Transport. In the 

harmonic analysis, we followed Burling et al. (2003) and assumed that the tide height is the 

summation of the M2, S2, K1 and O1 tidal constituents, 

       ( )   ̅    ∑     (      )

 

   

 (8) 

where h  is the mean sea height and ai, σi and gi are the amplitude (cm), frequency 

(radians/hour) and phase (radians) of tidal constituent i, respectively. The frequencies, σ, of 

each tidal constituent are known parameters and were obtained from Doodson and Warburg 

(1941). With  ̅ set as the mean sea height of the Carnarvon data, equation (8) was used to 

estimate the water heights at Monkey Mia and Hamelin Pool using: (a) the modeled 

amplitudes presented by Burling (1998), and; (b) phases derived from harmonic analysis of 

Monkey Mia and Hamelin Pool tide times. 2 hours and 2 minutes were added (+02:02 hrs) to 

the tide times of the Carnarvon water height data to estimate the Monkey Mia tide times, as 
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recommended by the Australian Bureau of Meteorology. Thirty-two minutes were subtracted 

(-0:32 hrs) from the tide times of the Carnarvon dataset to approximate the Hamelin Pool tide 

times. Harmonic analysis, in this case, simply involved fitting equation (8) to the 

approximated tide times using L-M least squares minimization, over multiple time series - 

each being a three day interval with the HICO overpass being the central point. Finally, the 

average water height between these two locations (Monkey Mia and Hamelin Pool) was then 

used to correct for the tide over the Faure Sill. 

 

2.5.2 Image based empirical tidal correction 

In the image based approach, an offset is added to each bathymetry image, that 

normalizes the bathymetry time series to an arbitrary reference depth (tidal datum). This 

method began by locating those pixels, P(i,j), in the bathymetry time series, H(i,j,t), that 

consistently had a depth of less than three meters through time, 

  (   )    (   )        (     )                          (9) 

where i and j represent the spatial coordinates, t the time and N is the number of bathymetry 

images in the time series. This constraint effectively excluded any deep water pixel that may 

have been incorrectly assigned a depth less than three meters through the inversion process at 

one or more instances in time. Thus the pixels of the set P(i, j) consisted of only shallow 

water pixels where the signal-to-noise ratio (SNR) was highest and where the retrieved depth 

was expected to be most accurate. Two medians were then computed: (1)  ( )̃, the median 

depth of pixels P(i, j) in each bathymetry image, and; (2)     ̃, the median depth of pixels 

P(i, j) taken across the entire bathymetry time series. This latter median was used as a 

reference depth to generate an offset value, ΔH(t), 



20 

 

 

  ( )    ( )̃       ̃ 

     ( )     , (   )-          ( )      , (   )-  

(10) 

adding ΔH(t) to its respective bathymetry image normalized it with respect to     ̃, and in so 

doing minimized the tidal influence across the dataset. In some instances the value of ΔH(t) 

was greater than the minimum depth in the bathymetry image, and to avoid over-correction 

issues ΔH(t) was set to this minimum. 

 

2.6 Geo-registration  

For the purpose of time series analysis in detecting changes in depth, each HICO 

swath was overlaid on the same raster grid to ensure geospatial consistency through time. 

This was performed by first geo-referencing each HICO image with the provided geographic 

lookup tables (GLTs) where an additional rotation was added to orientate north as “up”. This 

was followed by geo-registration where the geo-referenced image was warped by 

translation/scaling/rotation using at least thirteen ground control points selected from Google 

Earth
TM

 imagery of Shark Bay. In the absence of accurately registered digital maps of the 

area, we have assumed the Google Earth imagery to be an accurate reference, noting that a 

relative, geospatial consistency through time was sought after, rather than absolute 

geolocation accuracy. 

Due to the lack of man-made features in the Shark Bay region, distinct and spatially 

invariant land features were chosen as ground control points (GCPs). The central position of 

nine different birridas (see Figure 3) - salty depressions that are either circular, oval or 

irregularly shaped (Department of Environment and Conservation n.d) – and four other 

landscape features formed the 13 common GCPs (Figure 3) used in the geo-registration. 

Additional GCPs that corresponded to roads, distinct sections of rivers, dry inland lakes and 

tips of islands were also used. Note that these additional GCPs were different for each HICO 
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swath due to cloud cover and the changing swath orientation and translational drift (see 

Figure 1). 

 

 
Figure 3: The 13 common ground control points used in the geo-registering of HICO imagery of Shark 

Bay, Western Australia, and the four test locations for geospatial consistency. The HICO image (19 Nov 

2011) displayed has been geo-referenced with the geographic lookup table.  

 

3.0 Results and Discussion 

3.1 Evaluation of Tafkaa-6S atmospheric correction 

Figure 4 shows the reflectance spectra of two separate pixels through time: a quasi-

deep water and shallow submerged sand pixel. The left-hand panels (Figure 4a and 4c) and 

right-hand panels (Figure 4b and 4d) in this figure show the Rrs before and after sun-glint 

correction, respectively. The reflectance spectra of the shallow submerged sand pixel (Figure 
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4a) exhibits three spectral artifacts: (1) an upward spectral shift occurring from 400 – 450 nm 

(e.g. 27 February- and 02 April 2012); (2) negative reflectance values from 400 – 420 nm 

(e.g. 08 August- and 04 June-2012), and; (3) negative reflectance values beyond 600 nm (e.g. 

21 January- and 27 February-2012). 

The first spectral artifact, according to Goodman et al. (2008), can be "considered a 

function of uncorrected sunglint effects" and "attributed to artifact suppression algorithms". 

The cause of the second spectral artifact is uncertain, however it could arise from an over-

estimation of either the radiance of Rayleigh scattering or from the atmospheric aerosol 

model at the blue wavelength region. This second spectral artifact has been observed in 

remote sensing reflectance spectra of optically deep water pixels by other researchers (see 

Fig. 9c in Gao et al., 2000; and Fig. 6b and 7b in Goodman et al., 2003). This spectral artifact 

was noted specifically for HICO by Moses et al. (2014) and was remedied by assuming very 

low aerosol loadings when applying Tafkaa-6S. Assuming AOT, CLMVAP, and Ozone 

values derived from MODIS were best approximations for Shark Bay, the second spectral 

effect may then be due to the atmospheric and/or aerosol models used within Tafkaa-6S. It is 

likely the atmospheric and aerosol models used may be sub-optimal for the semi-arid coastal 

climate of Shark Bay however, improvements to these models is beyond the scope of this 

work. Further, Goodman et al. (2008) noted that using full geometry implementations of 

Tafkaa (i.e. with cross-track pointing information) the type of spectral effects seen here might 

be reduced. The third artifact is more problematic with respect to accurate retrieval of 

geophysical parameters using the BRUCE model. 

When examining Figure 4a, the reflectance spectra of the quasi-deep water pixel on 

both 21 January 2012 and 27 February 2012 appear to have similar spectral shapes to those of 

the other dates, with the main difference being a vertical offset/shift. This implies an over-

correction of the atmospheric signal that may be due to an over-estimation of one or more 
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MODIS-derived atmospheric parameters, which were used as inputs to Tafkaa-6S. Indeed, 

the vertical column water vapor and AOT for these two dates were amongst the highest (see 

Table 1). After sun-glint correction, the third spectral artifact is removed but accentuates the 

second spectral artifact (see Figure 4b). 

 

 

Figure 4: The remote sensing reflectance spectra of a quasi-deep water pixel (a), (25.718 °S/113.978 °E), 

and a shallow water pixel with a sandy bottom (c), (25.907 °S/113.934 °E), through time. (b) and (d) show 

the sun-glint corrected Rrs spectra of (a) and (c) respectively. Note that the wavelengths past 750-nm are 

not used in the inversion procedure and are not displayed in (b) and (d). 

 

Analysis of the reflectance spectra of the shallow water pixel (Figure 4c) also shows 

the occurrence of the three spectral artifacts. However, the magnitude of the reflectance 

spectra is significantly larger than the magnitude of these spectral artifacts. Moreover these 

artifacts have marginal impacts across the water penetrating bands between 450 and 600 nm, 

and as such are deemed less likely to dramatically impair depth retrievals. Negative 
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reflectances at long wavelengths (third spectral artifact) after Tafkaa's atmospheric 

correction, was also observed by Goodman et al. (2008) over bright shallow water (sandy 

substrate) pixels. Goodman et al. (2008), illustrated that this spectral feature does not 

undermine accurate depth retrievals, as the de-glinting procedure effectively normalizes the 

reflectance at 750 to low positive values (see Figure 4d). 

This comparison has shown the addition of three anomalous spectral artifacts to the 

remote sensing reflectance spectra after Tafkaa-6S atmospheric correction. The magnitude of 

these spectral noise are comparable to that of the water-leaving reflectance for deep water 

pixels, which may lead to inaccurate IOP retrievals. However, as the purpose of this study 

was to retrieve water column depth, the Tafkaa-derived HICO Rrs values over shallow water 

pixels were deemed suitable in accordance with Goodman et al. (2008). 

 

3.2 Bathymetry retrievals and smoothing techniques 

Figure 5 illustrates the step-wise modification of the HICO-derived water column 

depth product of Shark Bay, 19 November 2011, using the proposed smoothing algorithm. 

Two cross-sectional profiles are presented, each containing: the raw HICO-derived depth 

(black curves); pixels classified as impulse noise (red triangles); (c) the depth after impulse 

noise removal (blue curves), and; the depth after subsequent application of the second order 

binomial spatial smoother (pink curves). Figure 5 also shows the depth uncertainty profile 

and its subsequent modification. 

The raw depth profiles (Figure 5) demonstrate how impulse noise pixels introduce 

unrealistic and abrupt changes in the depth product. These pixels were predominantly 

encountered when the depth of the immediate neighborhood was greater than 4.0 m. 

Additionally, their uncertainties approached, and at times exceeded 100%, of the actual 

retrieved depth value. Analysis showed that the Rrs spectra of impulse noise pixels whose 
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depths have been estimated to over 7.0 m resembled that of quasi-optically deep water (e.g. 

Figure 4a). In such cases, the bottom contribution to the Rrs are either weak or non-existent 

where the geometric depth would be large or precluded by highly absorbing waters. The 

likely cause for the deeper impulse noise pixels is a low SNR (after atmospheric and sun-glint 

correction), and where the BRUCE model translates a change in the rrs to large changes in 

depth (this is explained further in the discussion of Figure 6). The BRUCE model can also 

compensate for a shallower depth by either increasing the water column turbidity or 

decreasing the benthic albedo coefficient (darker substrate). This phenomenon creates those 

impulse noise pixels whose depths are unexpectedly shallower than the surrounding pixels. 
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Figure 5: Illustration of the three stage smoothing technique applied to HICO derived depth product of 

Shark Bay on 19 November 2011. Cross-sectional profiles at row number 1604 (top two panels) and at 

1686 (bottom two panels). (a) and (c) contain: the raw depth (black dot-dash); impulse pixels (red 

triangles); depth product after impulse noise pixel removal (solid blue curve), and; the subsequent 

smoothed depth product. (b) and (d) are the uncertainty profiles of (a) and (c) respectively, and contain: 

the initial uncertainty (black dot-dash); pixels identified as outliers (red triangles), and; the final modified 

uncertainty product (pink). 
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As shown in Figure 5, the proposed impulse noise detection algorithm and 

subsequent adaptive median filter approach successfully identified impulse noise pixels and 

replaced their depth value with a reasonable estimate. Application of a second order binomial 

smoothing kernel then afforded a reasonable spatial uniformity. The smoothed bathymetry 

images of Shark Bay from 19-Nov-11 to 08-Aug-12 are displayed in Figure 7, and show a 

high level of consistency in depth between different timestamps. In the uncertainty inversion 

approach, proposed by Hedley et al. (2010), the Cholesky decomposition matrix, L, was used 

to add spectrally correlated noise to the sensor-derived rrs spectra. During per-pixel inversion, 

the L matrix remained constant with only its magnitude randomly changed. This generated a 

spectral noise term, δrrs, that is absolute rather than relative to the magnitude of rrs, which 

thus formed an inverse relationship between ||rrs|| and its relative uncertainty. In other words, 

the relative uncertainty in rrs for dark or highly absorbing water pixels will be larger than for 

bright shallow water pixels. This is illustrated in Figure 6, which shows the pseudo SNR at 

550 nm plotted against the relative uncertainty of the retrieved depth. Here, the pseudo SNR 

was: (a) derived from rrs spectra, i.e. HICO data that has undergone atmospheric, sunglint and 

air-to-water corrections, and; (b) computed for each pixel in a HICO scene by dividing the 

average, µ, of each set of 20 noise perturbed rrs spectra at 550 nm by the standard deviation, 

σ, at this water penetrating wavelength, 



28 

 

     (      )   
 ,*   (   )       (   )+       -

 ,*   (   )       (   )+       -
 (11) 

 

 

Figure 6: Relative uncertainty of the retrieved depth vs. pseudo SNR at 550 nm, obtained from HICO 

images of Shark Bay on (a) 14-Dec-11; (b) 02-Apr-12; (c) 04-Jun-12, and; (d) 08-Aug-12. Note: (1) vertical 

axes are displayed in logarithmic form; (2) 35 000 random data points, with depth > 0.3 m, were 

presented for each panel, and; (3) the summed spectral variance, taken from the deep water region of the 

given HICO rrs
deglinted

 image are also presented. 

 

Figure 6 shows a non-linear relationship between the pseudo SNR and the relative 

uncertainty of the retrieved depth of four HICO scenes of Shark Bay. From Figure 6, we can 

see that when the SNR is above 20, the relative uncertainty of the retrieved depth is less than 

10%. This is an adequate outcome, and analysis of the entire HICO time series for Shark Bay 
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showed that on average 89% of pixels with a retrieved depth less than 5 m had a SNR greater 

than 20. This average decreases to 74% for pixels whose depths ranged between 5 and 10 m, 

and to 49% for pixels with a retrieved depth greater than 10 m. Below a SNR of 20, the 

relative uncertainty in the retrieved depth drastically increases, in most cases to greater than 

100%. Such high uncertainties mainly occur for pixels with a retrieved depth greater than 8 

meters. 

This behavior can be attributed to the absolute noise term added during the 

inversion; where, as the SNR decreases below 20, the magnitude of δrrs starts to become 

comparable to ||rrs||. Given the exponential relationship between rrs and depth in the shallow 

water model; the BRUCE model translates this perturbation of rrs to large changes in depth, 

and hence why the retrieved depth varies so greatly within the set of 20 noise perturbed rrs 

spectra for low SNR pixels – e.g. the deeper impulse noise pixels observed in Figure 5. 

Conversely, over bright substrates, where ‖    ( )‖    ‖   ( )‖, δrrs is translated to smaller 

changes in depth. These relationships are demonstrated in Figure 5, where pixels with a 

modeled depth less than 6 m generally had a relative depth uncertainty of less than 10%, and 

where this relative uncertainty would at times increase with depth. 

Figure 6 also shows that when environmental noise is included, arising from 

atmospheric, sun-glint and water-to-air interface corrections, the SNR of HICO – which was 

initially estimated at approximately 200 at 550 nm (see Lucke et al., 2011) - drops to less 

than 150 for most cases. This corresponds to an increase in the noise component by a factor 

of ≥1.3. While this is a modest increase, it does illustrate the importance of accurately 

removing contaminating signals in a bid to avoid non-uniqueness issues, which lead to higher 

uncertainties in the retrievals of depth. 
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Figure 7: Smoothed bathymetry images (before geo-referencing) derived from HICO imagery of the 

Shark Bay region, from 19-Nov-11 to 08-Aug-12. Note: for simplicity the bathymetry image of 02-Apr-12 

is not displayed; black water pixels (e.g. 12-Jan-12 and 27-Feb-12) had Rrs(750) > Rrs(400) and were not 

processed, and; blue and white represent shallow and deeper areas respectively. 
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3.3 Tide corrections 

3.3.1 Harmonic Tidal Analysis 

Removing the influence of tide is an important task in delineating changes caused by 

resuspension and sedimentation from changes in tide heights, particularly since tides can 

form a significant portion of the variance observed in raw bathymetry products (Egbert and 

Erofeeva, 2002). 

The harmonic tidal analysis begins by extracting the phases of the major tidal 

constituents from time-adjusted (+02:02 Hrs and -0:32 Hrs) Carnarvon tide data (Figure 8a). 

The correlation coefficients of the curves in Figure 8a are given in Table 2 and with r
2
 > 0.96 

for all dates, demonstrates high confidence in the values of the modeled phases. The slight 

differences between the observed and modeled tide heights in Figure 8a are likely due to 

wind induced waves, which do not affect the accuracy of the retrieved phases. Applying these 

phases with the respective amplitudes taken from Burling et al. (2003), generates modeled 

tide curves for Monkey Mia and Hamelin Pool as illustrated in Figure 8b for 14 December 

2011. 
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Figure 8: Harmonic tidal analysis for a 3 day interval centered on the HICO overpass of 14 December 

2011: (a) Time adjusted Carnarvon tide height data for Monkey Mia (+2:02 hrs - Black dots) and 

Hamelin Pool (-0:32 hrs - Grey dots) overlaid with the respective modeled tide curves using equation (8); 

(b) Modeled tide curves for Monkey Mia (Black line) and Hamelin Pool (Grey line). The triangles in (b) 

display the modeled water level height at the time of the HICO overpass at Monkey Mia and Hamelin 

Pool. 

 

One and a half day intervals about the HICO overpass were used to compute the 

phases of the major tidal constituents as these produced higher correlation coefficients than 

an expanded time series. The modeled tide heights and their uncertainty at the time of each 

HICO overpass for Monkey Mia, Hamelin Pool and Faure Sill are given in Table 2. The 

Faure Sill, being a shallow water region containing several narrow water channels (of depths 

greater than 6 m) exhibits complex tidal harmonics (Burling et al., 2003). Modeling these 

harmonics are beyond the scope of this paper, however previous research has shown that the 
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Faure Sill diminishes the amplitudes and creates lag in the phases of the tidal constituents 

(Burling et al., 2003). The net result is a lower tidal height and range in Hamelin Pool than in 

Monkey Mia. This is observed in the modeled tide data (Table 2), where the tide range at 

Monkey Mia and Hamelin Pool are 81.14 cm and 64.71 cm respectively. Additionally, Table 

2 suggests little variation in the expected water level height between successive HICO 

overpasses; evident by the modeled tide ranges of less than 1 m and a standard deviation of 

tide heights less than 30 cm for Monkey Mia and Hamelin Pool. Indeed a tide height range of 

approximately 1 m over Shark Bay has been noted by Walker et al. (1988) and modeled by 

Burling et al. (2003). 

 

Table 2: Modeled tide heights (cm), above LAT, during each HICO overpass time for Monkey Mia, 

Hamelin Pool and the Faure Sill. Also present are the: standard deviation and range of these tide heights, 

and; correlation coefficients of the tide height curves used to extract the M2, S2, K1, and O1 tide 

constituent phases from the time adjusted Carnarvon data. 

Date and Time 

(WST) 

Monkey Mia Hamelin Pool Faure Sill 

r
2
 

Modeled tide 

height (cm) 
r

2
 

Modeled tide 

height (cm) 

Modeled tide 

height (cm) 

19-Nov-2011, 

1632 hrs 
0.983 124.28 ± 0.01 0.978 114.06 ± 0.04 119.17 ± 0.05 

14-Dec-2011, 

1539 hrs 
0.991 135.21 ± 0.22 0.995 120.23 ± 0.18 127.72 ± 0.40 

21-Jan-2012, 

1538 hrs 
0.983 112.43 ± 0.35 0.991 132.98 ± 0.18 122.70 ± 0.54 

07-Feb-2012, 

1722 hrs 
0.988 115.25 ± 0.44 0.994 133.82 ± 0.19 124.54 ± 0.63 

27-Feb-2012, 

0940 hrs 
0.981 95.19 ± 0.02 0.991 121.92 ± 0.02 108.55 ± 0.05 

02-Apr-2012, 

1035 hrs 
0.966 125.91 ± 0.18 0.983 128.12 ± 0.22 127.01 ± 0.40 

01-Jun-2012, 

1038 hrs 
0.973 173.39 ± 0.18 0.990 127.11 ± 0.07 150.25 ± 0.25 

04-Jun-2012, 

0932 hrs 
0.990 165.61 ± 0.10 0.994 149.56 ± 0.06 157.58 ± 0.15 

08-Aug-2012, 

1625 hrs 
0.962 118.60 ± 0.31 0.988 92.99 ± 0.22 105.79 ± 0.54 

Standard 

deviation of tide 

heights (cm) 

N/A 26.55 N/A 19.30 20.24 

Tide range (cm) N/A 81.14 ± 0.20 N/A 64.71 ± 0.28 69.04 ± 0.69 
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Although the modeled tide heights at Monkey Mia and Hamelin Pool appear 

reasonable based on evidence from the literature, the estimated tide heights over the Faure 

Sill can be subject to large errors. These errors arise when averaging the tide height between 

Monkey Mia and Hamelin Pool, which may over simplify the complexity of the shallow 

water tidal harmonics present over the Faure Sill. In this region, shallow water tidal 

constituents may cause constructive or destructive interference with the M2, S2, K1, O1 

harmonics, increasing or decreasing the tide height respectively (Doodson and Warburg, 

1941). However, with the absence of accurate three-dimensional tide modeling (e.g. Burling 

et al., 2003), adopting the average is the most pragmatic approach. 

 

3.3.2 Image based tide correction 

To gauge if a tidal signal exists in the HICO derived bathymetry dataset, the 

predicted tide heights at Monkey Mia (taken from Table 2) were plotted against the median 

HICO derived depth of the shallow water region on the northern side of Faure Island (Figure 

9). This island is approximately in line with Monkey Mia, and as modeled by Burling (1998), 

experiences very similar tidal harmonics. Figure 9 shows a strong positive correlation (R
2
 = 

0.90) between the predicted tide heights and the HICO derived bathymetry prior to tide 

correction, that is, the bathymetry increases with the tide height. Note that a 1:1 line was not 

expected because: (a) the predicted tide heights are given above LAT; (b) Burling (1998) 

obtained a normalized RMS of 7% between the predicted and observed tide heights at 

Monkey Mia with the modeled tidal amplitudes and phases, and; (c) potential random offsets 

in the bathymetry data caused by sub-optimal atmospheric/sun-glint/air-water interface 

corrections. Despite this Figure 9 implies that the variation in depth between HICO derived 

bathymetry images are related to tide, and not solely due to random offsets. 
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Figure 9: Predicted tide heights at Monkey Mia against the median depth of the shallow water pixels 

surrounding the northern section of Faure Island. The predicted tide heights were taken from Table 2, 

whilst the median shallow water depths were taken from HICO derived bathymetry prior to tide 

correction. The nine data points represent the nine HICO scenes. 

 

The image based tide correction technique is illustrated in Figure 10a. This figure 

shows the median shallow water depth,  ( )̃, computed for each HICO image of Shark Bay. 

The black horizontal line is the reference depth,     ̃, from which the offset of each 

bathymetry image is calculated. The reference depth in this case is the median water depth 

computed from all nine HICO scenes. Note that if tide data of the region of interest is 

available, then the mean water level height or the lowest astronomical tide may instead be 

used as the reference depth. 

How well the image based and harmonic analysis techniques minimize the tidal 

influence across the bathymetry time series was tested by computing the standard error in the 
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means (SEM). Here, the mean represents the average depth of the shallow water pixels, 

<H(t)>, of each bathymetry image in the time series. Note that applying a tide correction 

technique to the bathymetry dataset would ideally correct water height variations to a 

reference depth, and hence yield a SEM near zero. Table 3, shows <H(t)> and the SEM for 

the uncorrected, image based and harmonic analysis corrected bathymetry images. 

 

Table 3: The mean depth of the shallow water pixels, <H(t)>, for each HICO derived bathymetry image. 

The standard error in the means (SEM) of the uncorrected, image based and harmonic tide correction 

techniques are also presented. 

Tide method 
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SEM 

Uncorrected 0.91 0.91 1.13 1.41 0.80 1.02 1.42 1.38 1.34 0.24 

Image based 

correction 
1.26 1.20 1.26 1.56 1.20 1.24 1.13 1.20 1.17 0.12 

Harmonic analysis 

correction 
-0.29 -0.36 -0.10 0.16 -0.28 -0.25 -0.08 -0.20 0.28 0.22 

 

As indicated in Table 3, tidal influences over Shark Bay exhibit a SEM of 24 cm 

with a tidal range of 62 cm. The tidal range is consistent to that modeled using the harmonic 

tidal analysis (Table 2). However, the harmonic analysis tide correction method did not 

significantly reduce the variability between the bathymetry images, having also overcorrected 

the depth of the shallow water pixels as noted by the negative averages displayed in Table 3. 

These results suggest that tide correction based on harmonic analysis is inaccurate and does 

not adequately represent the tidal harmonics encountered over the Faure Sill. In contrast, the 

image based tide correction approach produces a bathymetry times series with an SEM of 12 

cm, indicating that the variations due to tide have at least been minimized. Note that the 

reason the image based tide correction did not generate an SEM of zero is due to the 

inclusion of the constraint that forces ΔH(t) to equal the minimum depth (see equation 10) – 
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for some images – to avoid overcorrection. Thus not all bathymetry images were fully 

normalized to the imposed reference depth. Figure 10b and 10c show histograms of the depth 

of the shallow water pixels for each bathymetry image, before and after empirical tide 

correction, and illustrate the normalization achieved by this method. It should be noted that 

the corrected depth values obtained from this empirical method are relative to an arbitrary 

reference depth, rather than an absolute tide datum such as LAT. 

These results suggest that unless the local tidal dynamics of the region of interest are 

well characterized, large errors can arise when using tide data recorded at distant tide stations. 

The lack of in situ tide data in close proximity to the region of interest is a constant issue 

faced for the majority of remote and inaccessible regions for remote sensing studies. 

Although global tide models are in existence (e.g. Finite Element Solution 2012, Lyard et al., 

2006 ; Topex Poseidon crossover solution 7.2, Egbert and Erofeeva, 2002), their spatial 

resolutions are coarse (ranging from 1/16° to 1/4° longitude and latitude) and do not extend to 

semi-enclosed embayment's such as Shark Bay. The image based tide correction circumvents 

the need for a historic tide dataset and eliminates errors from tide models. Although this 

approach does require at least two bathymetry images of the region of interest at different 

times, it is the most pragmatic and easiest to implement. Future research would be to compare 

the empirical tide correction results with estimates obtained from a harmonic analysis whose 

tidal constituents are derived from high resolution remote sensing imagery, as presented by 

Mied et al. (2013). 
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Figure 10: (a) illustration of the empirical tide correction technique applied to the HICO dataset of Shark 

Bay. The horizontal black line represents the reference depth. Histograms of the depth of shallow water 

pixels (less than 3 m depth) before (b) and after tide correction (c). 

 

3.4 Geo-registration 

To test the geo-spatial consistency, the spatial „pixel drift‟ of four test pixels was 

analyzed between HICO images. Pixels A, B, C and D, displayed in Figure 3, correspond to 

different land and seascape features, specifically: A and B are pixels within the birradas 

(described in section 2.3) on the Peron peninsula (25.918 °S/113.737 °E) and Faure Island 

(25.838 °S/113.862 °E), respectively; C is an intersection point of a distinct and seemingly 
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invariant water channel on the Faure Sill (25.959 °S/113.779 °E) and; D is the southernmost 

tip of Pelican Island (23.854 °S/114.019°E ). A seascape feature (pixel C) was also included 

because the majority of GCPs were on the coastal regions surrounding the Faure Sill, and 

solely choosing test points near these GCPs may bias the result. Additionally, the area 

surrounding pixel C appeared in both true color and bathymetry imagery to be invariant 

through time as expected by the qausi-stable nature of Shark Bay‟s geology. 

The Euclidean distance was used to measure the drift of a given test pixel from its 

reference position, 
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 ( (  )   (  ))
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         (       )

        
 

     

             
 

(12) 

Where φ(Ar) and ϑ(Ar) are the latitude and longitude coordinates for test pixel A in 

an arbitrary reference image, and φ(Ai) and ϑ (Ai) are the latitude and longitude coordinates 

for test pixel A on subsequent HICO images. We set the HICO image of Shark Bay captured 

on 19 November as the reference image, and as such the Euclidean distances from equation 

(12) are relative measures but still illustrate geo-spatial consistency through time. Note that 

these Euclidean distances were converted to kilometers for ease of interpretation, and are 

presented in Figure 11. 
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Figure 11: Geo-spatial consistency of each HICO image of Shark Bay, relative to 19 November 2011, after 

(a) Geo-referencing using the provided GLT files, and (b) subsequent Geo-registration using the ground 

control points. NW-SE and SW-NE refers to the HICO swath orientation. 

 

Figure 11a shows that simply geo-referencing a HICO swath with the provided GLT 

can generate geo-spatial inconsistencies greater than 10 km. The largest geo-spatial 

inconsistency is encountered when the scene is imaged with different swath orientations. For 

example, the reference image had a NW-SE orientation whilst the images on the 14 

December 2011, 7 February, 27 February, and 8 August 2012 had a SW-NE orientation and 

where the test pixels encountered drifts greater than 20 km from their reference positions 
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(Figure 11a). In contrast, those dates that were imaged with the same swath orientation (21 

January, 1 June, 4 June 2012) exhibited much lower geospatial inconsistencies (< 17 km). 

Such large relative geospatial displacements will introduce significant errors into change 

detection analysis, where a change in the geophysical parameter of a pixel is likely due to an 

evaluation at different locations rather than a temporal change (Townshend et al., 1992). By 

performing a series of mis-registration simulations on Landsat imagery, Dai and Khorram 

(1998) showed that a geolocation accuracy of less one fifth (<0.20) of a pixel is needed to 

detect 90% of real temporal changes. For HICO this equates to achieving 20 m geolocation 

accuracy. 

Manual geo-registration using GCPs taken from Google Earth
TM

 imagery 

significantly improved the geospatial consistency, where the test pixels were now within 300 

m of the reference pixels (Figure 11b). However, this geospatial consistency is still relatively 

large compared to the 100 x 100 m HICO pixel footprint. Furthermore, this result is poor 

compared to other operational satellites, such as MODIS and MERIS both of which achieve 

sub-pixel geolocation accuracies of ~50 m (Wolfe et al., 2002) and 77 m (Bicheron et al., 

2011), respectively and whose ground sampling distance are at least twice as much as that of 

HICO. This highlights the need for an improved HICO geolocation algorithm that will 

increase the geolocation accuracy of the resultant GLTs and/or an improved method of using 

GCPs for subsequent geo-registration. The manual geo-registration employed here has 

proved troublesome due to: (a) the slight translational drift of the HICO swath, which 

prohibits the use of a consistent set of GCPs; (b) the amount of GCPs needed to achieve a 

geo-spatial consistency of less than 300 m, and; (c) cloud cover, which when present will 

compromise the accuracy of the geo-registration. 

Fortunately, since the commencement of this research, and as part of the transition 

of HICO data to NASA, the Naval Research Laboratory (NRL) has improved the geolocation 
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accuracies of the provided GLTs to 200-300 m. This improved HICO data is now available 

through NASA‟s Ocean Biology Processing Group‟s data portal 

(http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). 

 

3.5 Change detection 

The ability to detect change in a geophysical parameter from multi-temporal 

remotely sensed imagery is a key outcome in ecosystem monitoring (Coppin et al., 2004). 

However, literature on detecting change above the uncertainty of multi-temporal datasets is 

sparse, with exception of Shi and Ehlers (1996) and Hester et al. (2010). This section will 

assess this ability using the HICO-derived, tide corrected, bathymetry dataset. To this end, it 

is assumed that each geo-registered bathymetry image has sufficient geolocation accuracy to 

assess temporal change. A two sample, per-pixel, t-test was used to accept or reject the null 

hypotheses of equal depth (i.e. no change) between pixels (i, j, t1) and (i, j, t2). As described 

in section 2.3, the retrieved depth and its uncertainty were the average and standard deviation, 

respectively, calculated from a set of 20 noise-perturbed spectra. This is analogous to 

performing a t-test on two independent sample means, assuming unequal variance, both with 

a sample size of 20. Here, the upper and lower tail of the Student's t cumulative distribution 

function at the calculated t statistic and degree of freedom are used to compute the p value. The 

null hypothesis of “no change in depth” is rejected for pixels with p < 0.05 (5% significance 

level). 

Figure 12 shows empirically tide corrected bathymetry profiles at row number 1686 

for each geo-registered bathymetry image. The uncertainty of the retrieved depth is overlaid 

around the average depth. This figure illustrates that for shallow waters, of depth less than 6 

m, the inversion routine presented can retrieve consistent depths through time – even in the 

presence of sub-optimal atmospheric correction. However, as the retrieved depth increases, so 

http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi
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does its temporal variability, as illustrated by the quasi-deep water pixels of the Faure Sill 

channels A and B in Figure 12. This temporal variability is unlikely caused by natural 

phenomena, and is more likely the result of variable quality of atmospheric correction and 

shallow water model inversion. As noted in Section 3.1, the magnitude of spectral noise 

introduced to Rrs from atmospheric correction becomes comparable to the reflectance signal 

as the geometric depth increases. As such, this spectral noise coupled with sun-glint 

correction would decrease the accuracy in the retrieved depth over quasi-deep water more 

than it would for shallow water pixels and effectively creates the observed temporal 

variability in deep water pixels. 
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Figure 12: Cross-sectional depth profiles of the Faure Sill, at row 1686, taken from geo-registered HICO derived bathymetry images. The solid black line and grey 

envelope surrounding it represents the retrieved depth and its uncertainty respectively. Highlighted are two sets of deep water channels, A and B, located at column 

positions 950-1050 and 1280-1380 respectively. The depth of these channels show high temporal variability, the cause of which is discussed in the text.
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Despite the normalization of the bathymetry dataset to a common depth; changes 

unrelated to tide are expected due to the frequent movement of tidal sandbanks across the 

Faure Sill. Figure 13 shows changes in the HICO-derived, tide corrected bathymetry across 

the Faure Sill between the dates of: (a) 14 December 2011 and 21 January 2012; (b) 21 

January- and 27 February-2012; (c) 27 February- and 04 June-2012 and; (d) 04 June- and 08-

August-2012. In this figure, pixels that observed a change had: (1) a difference in depth 

greater than the baseline variability, and; (2) a p value less than 0.05 (5% interval) at the 

calculated degree of freedom. Otherwise pixels were classified as having 'no change' and 

displayed as grey. Here, we define the baseline variability as the residual random fluctuations 

within the tide corrected bathymetry dataset. Recall that the SEM of the image-based tide 

corrected bathymetry dataset was 0.12 m (see Table 3). Hence, the bathymetry varied on 

average by 12 cm between each successive timestamp. We set the baseline variability to 

equal three times the SEM (i.e. 0.36 m), which would encompass: random offsets in depth 

due to imperfect atmospheric/sun-glint/air-to-water interface corrections, and; imperfect tide 

normalization. Therefore any changes in depth greater than the baseline variability of 0.36 m, 

which are statistically significant with regards to the uncertainty, are plausible and not due to 

random depth fluctuations caused by corrections performed in the processing. 

The change detection analysis shown in figure 13 does not include the bathymetry 

images on 7
th

 February and 2
nd

 April 2012, as the bathymetry profiles of these dates (see 

Figure 12) appear inaccurate. This is evident from the derived depth values of channels A and 

B when compared to the other profiles. Furthermore these two bathymetry images were 

included (results not presented here), the change detection analysis afforded significant, yet 

unrealistic changes in depth across the Faure Sill. Additionally, deep-water pixels were 

flagged in figure 13, due to their temporal variability as noted in figure 12. 



46 

 

For the purpose of change detection, separate image based tide corrections were 

performed for the different regions of Shark Bay, shown by the dashed magenta regions in 

Figure 13a. These regions were: (1) the eastern and western shallow areas of Hamelin Pool, 

and: (2) the Wooramel bank containing water channels orientated perpendicular to the coast. 

These two additional tide corrected subsets were merged to the tide corrected bathymetry 

dataset of the Faure Sill (Section 3.3.2) to form a complete tide corrected bathymetry image 

of lower Shark Bay for each HICO overpass. This latter dataset was used to assess the 

temporal changes in depth with the method described above. 

Separate tide correction over Hamelin Pool and the Wooramel bank were performed 

to take into account the differing tidal variations across the Shark Bay region. For instance, 

the tidal regime at Hamelin Pool is particularly complex in which the astronomical tide 

accounts for only 15% of the variation in water height (Burne and Johnson, 2012). Over this 

enclosed embayment, the mean sea-level varies in an irregular manner due to seasonal winds. 

Specifically southerly winds, that during summer, when they are more persistent and 

strongest, act to reduce the mean sea level by approximately 50 cm compared to that in 

winter when the southerly winds subside (Burne and Johnson, 2012). 



47 

 

 

Figure 13: Change detection analysis of HICO-derived, tide corrected bathymetry of the Faure Sill 

between the dates of: (a) 14-Dec-2011 and 21-Jan-2012; (b) 21-Jan- and 27-Feb-2012; (c) 27-Feb- and 04-

Jun-2012 and; (d) 04-Jun- and 08-Aug-2012. Deep-water and land are presented as dark and black pixels 

respectively. The blue and green circles in (b) and (c) highlight regions of change discussed in the text. 

Separate image-based tide corrections were performed for the dashed magenta presented in (a).
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The HICO-derived bathymetry dataset spans both summer and winter and thus it is 

likely that the Faure Sill, Hamelin Pool and the Wooramel bank have substantially different 

tide heights. The normalization to a reference depth over the Faure Sill can therefore 

introduce large artificial depth changes at the other regions, and as such, separate image-

based tide corrections were performed. It should be noted that separate regional tide 

correction and subsequent merging to a single bathymetric image can only be used to analyze 

temporal changes; as these images would contain steps in the depth between adjacent tide 

corrected regions. Tidal modeling would be necessary to interpolate (either linearly or non-

linearly) the tide correction offsets for the different regions to generate a homogeneous tide 

corrected bathymetry image. However this is beyond the scope of this study. 

The change detection analysis (Figure 13) indicates constant bathymetry for the 

majority of the Faure Sill. Thought there are three regions that experience bathymetric 

fluctuations between the five successive dates. These regions are predominantly shallow 

water areas: (i) on the western and eastern sides of Hamelin Pool; (ii) on the southern Faure 

Sill (see blue circle in figure 13b), and; (iii) on the Wooramel bank (green circle in figure 

13c). 

The extent of change observed ranged between approximately -1.6 m (shallower) 

and 1.6 m (deeper); this appears to be an unrealistic depth change in the timeframe of one 

month. For example on the western shallow regions of Hamelin Pool, the depth decreased by 

approximately 1 m from 27 February to 4 June 2012. This is unlikely to occur as the benthos 

of this region consists of hard microbial pavement that is not susceptible to erosion from 

water movement (Jahnert and Collins, 2011). Although the deposition of motile sediment and 

its subsequent removal is possible, the extent of change observed through the HICO-derived 

bathymetry is unlikely. However, we are encouraged by the spatial consistency of several 

features in this region, whose depth fluctuates through time. 
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The change in depth detected on the southern Faure Sill between 21 January and 27 

February 2012 (blue circle in Figure 13b) and 27 February and 4 June 2012 (Figure 13c) 

appears to be due to a plume of turbid water at this location on the 27 February (see red 

square in Figure 14). The true color imagery on 27 February does indicate the formation of 

new water channels; however the change detection (Figure 13) shows that the bathymetry at 

this date is approximately 1 m shallower than on 21 January – contrary to the formation of 

new water channels. Additionally, Rrs spectra of this region indicate higher absorption 

between 400 to 500 nm than the adjacent areas, suggestive of higher CDM/phytoplankton. 

The retrieved model parameters over the plume on 27 February 2012 are: aϕ(440) = 0.11 m
-1

, 

adg(440) = 0.18 m
-1

, bbp(550) = 0.12 m
-1

, depth = 0.50 m, Bsand = 0.115, and Bseagrass = 0.005. 

The same region on the 21 January 2012 had lower IOP values, larger depth and a brighter 

substrate: aϕ(440) = 0.035 m
-1

, adg(440) = 0.07 m
-1

, bbp(550) = 0.035 m
-1

, depth = 3.5 m, Bsand 

= 0.45, and Bseagrass = 0.02. Given the high IOPs, very shallow depth and low bottom albedo 

coefficients implies that the bottom contribution to Rrs is very low or non-existent over this 

plume, and as such the retrieved depth is unreliable. In operational satellite processing, such 

pixels should be flagged as deep-water pixels and not used in the change detection analysis. 

The shallow water region with water channels orientated perpendicular (green circle 

in figure 13) appears to have undergone changes in depth due to resuspension and movement 

of sediment near the mouth of the Wooramel River. This was observed on the 14 December 

2011, where the sediment plume appeared to enter the numerous channels and flow 

northward (figure 14). It is possible that some sediment would have settled down, given that 

modeled tidal flow (Burling, 1998) is perpendicular to the channels‟ orientation (i.e. trapping 

sediment) with a modeled speed of approximately 0.5 m/s at high and low tide (Burling, 

1998). Retrieved bbp(550) imagery on 21 January 2012 revealed that the amount of suspended 

sediment in the water column was considerably less, and where the change detection analysis 



50 

 

showed an increase in depth by approximately 1.2 m (Figure 13a). In other words, on the 14 

December the water channels were 1.2 m shallower, presumably due to the high sediment 

deposition that was subsequently eroded over 38 days until 21 January 2012. Note the 

fluctuating depth changes (shallower, then deeper) for these channels are observed in figures 

13b and 13c, due to more resuspension and movement of sediment from the mouth of the 

Wooramel River on 27 February 2012. 

 

 

Figure 14: HICO derived pseudo true color images of: the shallow water region parallel to the coast, north of the 

Wooramel River (top panels), and; the Faure Sill (bottom panels). The top panels show sediment flowing north from 

the Wooramel River, and through the seagrass channels orientated perpendicular to the coast, indicated by the red 

circle. The red square on 27-Feb-2012 highlights a plume of turbid water on the southern Faure Sill (bottom panel). 
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The change detection analysis highlights that though some of the changes observed 

are feasible, the extent of change (approximately 1 m) is unlikely. The magnitude of detected 

change depends on the accuracy and precision of the depth retrievals and on the tide 

correction scheme. Firstly a relatively high precision is needed to detect change above the 

uncertainty. Here the low relative uncertainty in the retrieved depths of shallow water pixels 

(< 10%, see Figure 6) allowed the detection of subtle changes to as low as 40 cm (see Figure 

13). Secondly, high accuracy in the retrieved depth (prior to tide correction) is required to 

infer accurate magnitudes of change. This in turn necessitates adequate atmospheric 

correction and a robust optimization scheme that converges to the global minimum. Here, the 

sub-optimal radiometric corrections have likely reduced the accuracy, particularly over the 

quasi-deep water pixels, whilst the convergence to local minima is the likely cause of the 

inaccuracy in some shallow water pixels. Future improvements to atmospheric and sun-glint 

corrections and optimization schemes will increase the accuracy in change detection analysis, 

however, this study has shown that even with sub-optimal corrections, it is possible to detect 

change above the uncertainty in the retrievals due to environmental and sensor noise. 

 

4.0 Conclusion 

The accuracy and precision of the HICO-derived bathymetry dataset was dependent 

on the quality of the atmospheric/sun-glint correction and on the BRUCE shallow water 

semi-analytical inversion scheme respectively. For many atmospheric correction algorithms, 

such as Tafkaa (Gao et al., 2000), the lack of spectral bands past 900 nm inhibits the selection 

of the appropriate atmospheric aerosol model and an estimation of vertical column water 

vapor in a per-pixel basis. To overcome this information gap, coincident MODIS level-2 

products of the Shark Bay region were processed and used to obtain several of the input 

parameters that Tafkaa-6S required. This study has shown that the procedure introduced three 
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spectral artifacts to the remote sensing reflectance spectra. Unfortunately, the high absorption 

of light in the water column throughout Shark Bay causes the magnitude of the water-leaving 

reflectance to become comparable to that of the spectral artifacts – particularly over quasi-

deep and optically deep water pixels. This potentially leads to inaccurate depth retrievals over 

these pixels. Conversely, the accuracy of the depth retrievals for shallow water were shown to 

be not greatly affected as the magnitude of Rrs for these pixels were substantially higher 

relative to the spectral artifacts. 

Addition of spectral artifacts enhanced the complexity of the parameter space with 

the addition of more local minima. To increase the likelihood of the L-M algorithm localizing 

to a global minimum, a brief search of parameter space was performed to locate the 

parameter values that corresponds to a local minimum with the lowest Euclidean distance. 

These parameter values were then passed as the initial values to the uncertainty inversion 

scheme proposed by Hedley et al. (2010). This per-pixel parameter space „update-repeat‟ 

search and uncertainty determination afforded improved retrievals of bathymetry, where the 

majority of the bathymetry image had a relative uncertainty of less than 20%. A per-pixel t-

test analysis between bathymetry images at consecutive timestamps revealed the ability to 

detect changes in HICO-derived depth to as low as 0.4 m. This reinforces the use of satellite-

based hyperspectral remote sensing techniques in analyzing time series datasets when 

uncertainty is taken into account. 

HICO‟s ability to detect temporal change is not only dependent on precision of the 

bathymetric dataset but also on its geolocation accuracy. Thorough geo-registration using 

ground control points taken from Google Earth
TM

 imagery has increased the relative 

geolocation accuracy, from more than 30 km using the distributed geographic lookup tables, 

to better than 300 m (i.e. 3 pixels). However, despite this improvement, analyzing temporal 

change from remotely sensed imagery requires sub-pixel geolocation accuracy, that is, less 
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than 100 m for HICO. Thus enabling time series analysis of HICO data requires further work 

in either creating automated geo-registration algorithms. 

Relating changes in bathymetry to factors such as sedimentation/erosion necessitates 

the removal of the tidal contribution to the retrieved water column depth. Correcting tide 

height over the Faure Sill has proved problematic. An empirical tide correction scheme is 

presented that corrects each bathymetry image in the time series to a reference depth. This 

reference depth is arbitrary and in this case was set to the median depth across the time series. 

However, this reference depth can be set to a datum such as lowest astronomical tide or mean 

water height if these values are known for the region. Even so, with this image based 

normalization of depth, it was shown that detecting changes in depth due to 

sedimentation/deposition of as low as 0.4 m is possible. The fluctuating changes in depth 

(increasing then decreasing) of several spatially consistent features are particularly 

encouraging. Though the extent of change is at present over-estimated, improvements to 

atmospheric/sun-glint/air-to-water interface corrections would directly enhance the accuracy 

of the depth retrievals and hence extent of change.  

The issues faced here in regards to atmospheric and sun-glint corrections are by no 

means inherent to HICO, but to all ocean color sensors. Though HICO was built as a 

prototype low cost sensor, its data can be manipulated to retrieve precise bathymetry. The 

development of future sensors that have: (1) higher SNR and SWIR bands in combination 

with more advanced atmospheric/sunglint correction and in water inversion algorithms could 

substantially improve bathymetry retrievals, and; (2) sophisticated geo-location and –

registration algorithms to afford sub-pixel geolocation accuracies will also lead to the ability 

in monitoring changes in the bathymetry of key coastal regions. 
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