4 research outputs found

    Random sampling of colourings of sparse random graphs with a constant number of colours

    Get PDF
    In this work we present a simple and efficient algorithm which, with high probability, provides an almost uniform sample from the set of proper k-colourings on an instance of a sparse random graph G(n,d/n), where k=k(d) is a sufficiently large constant. Our algorithm is not based on the Markov Chain Monte Carlo method (M.C.M.C.). Instead, we provide a novel proof of correctness of our Algorithm that is based on interesting "spatial mixing" properties of colourings of G(n,d/n). Our result improves upon previous results (based on M.C.M.C.) that required a number of colours growing unboundedly with n.Comment: 30 pages 0 figures, uses fullpage.st

    Deterministic counting of graph colourings using sequences of subgraphs

    Full text link
    In this paper we propose a deterministic algorithm for approximately counting the kk-colourings of sparse random graphs G(n,d/n)G(n,d/n). In particular, our algorithm computes in polynomial time a (1±n−Ω(1))(1\pm n^{-\Omega(1)})approximation of the logarithm of the number of kk-colourings of G(n,d/n)G(n,d/n) for k≥(2+ϵ)dk\geq (2+\epsilon) d with high probability over the graph instances. Our algorithm is related to the algorithms of A. Bandyopadhyay et al. in SODA '06, and A. Montanari et al. in SODA '06, i.e. it uses {\em spatial correlation decay} to compute {\em deterministically} marginals of {\em Gibbs distribution}. We develop a scheme whose accuracy depends on {\em non-reconstruction} of the colourings of G(n,d/n)G(n,d/n), rather than {\em uniqueness} that are required in previous works. This leaves open the possibility for our schema to be sufficiently accurate even for k<dk<d. The set up for establishing correlation decay is as follows: Given G(n,d/n)G(n,d/n), we alter the graph structure in some specific region Λ\Lambda of the graph by deleting edges between vertices of Λ\Lambda. Then we show that the effect of this change on the marginals of Gibbs distribution, diminishes as we move away from Λ\Lambda. Our approach is novel and suggests a new context for the study of deterministic counting algorithms
    corecore