1,576 research outputs found

    Monochromatic cycle covers in random graphs

    Full text link
    A classic result of Erd\H{o}s, Gy\'arf\'as and Pyber states that for every coloring of the edges of KnK_n with rr colors, there is a cover of its vertex set by at most f(r)=O(r2logr)f(r) = O(r^2 \log r) vertex-disjoint monochromatic cycles. In particular, the minimum number of such covering cycles does not depend on the size of KnK_n but only on the number of colors. We initiate the study of this phenomena in the case where KnK_n is replaced by the random graph G(n,p)\mathcal G(n,p). Given a fixed integer rr and p=p(n)n1/r+εp =p(n) \ge n^{-1/r + \varepsilon}, we show that with high probability the random graph GG(n,p)G \sim \mathcal G(n,p) has the property that for every rr-coloring of the edges of GG, there is a collection of f(r)=O(r8logr)f'(r) = O(r^8 \log r) monochromatic cycles covering all the vertices of GG. Our bound on pp is close to optimal in the following sense: if p(logn/n)1/rp\ll (\log n/n)^{1/r}, then with high probability there are colorings of GG(n,p)G\sim\mathcal G(n,p) such that the number of monochromatic cycles needed to cover all vertices of GG grows with nn.Comment: 24 pages, 1 figure (minor changes, added figure

    Vertex covers by monochromatic pieces - A survey of results and problems

    Get PDF
    This survey is devoted to problems and results concerning covering the vertices of edge colored graphs or hypergraphs with monochromatic paths, cycles and other objects. It is an expanded version of the talk with the same title at the Seventh Cracow Conference on Graph Theory, held in Rytro in September 14-19, 2014.Comment: Discrete Mathematics, 201

    A semi-exact degree condition for Hamilton cycles in digraphs

    Full text link
    The paper is concerned with directed versions of Posa's theorem and Chvatal's theorem on Hamilton cycles in graphs. We show that for each a>0, every digraph G of sufficiently large order n whose outdegree and indegree sequences d_1^+ \leq ... \leq d_n^+ and d_1^- \leq >... \leq d_n^- satisfy d_i^+, d_i^- \geq min{i + a n, n/2} is Hamiltonian. In fact, we can weaken these assumptions to (i) d_i^+ \geq min{i + a n, n/2} or d^-_{n - i - a n} \geq n-i; (ii) d_i^- \geq min{i + a n, n/2} or d^+_{n - i - a n} \geq n-i; and still deduce that G is Hamiltonian. This provides an approximate version of a conjecture of Nash-Williams from 1975 and improves a previous result of K\"uhn, Osthus and Treglown

    Random Perfect Graphs

    Full text link
    We investigate the asymptotic structure of a random perfect graph PnP_n sampled uniformly from the perfect graphs on vertex set {1,,n}\{1,\ldots,n\}. Our approach is based on the result of Pr\"omel and Steger that almost all perfect graphs are generalised split graphs, together with a method to generate such graphs almost uniformly. We show that the distribution of the maximum of the stability number α(Pn)\alpha(P_n) and clique number ω(Pn)\omega(P_n) is close to a concentrated distribution L(n)L(n) which plays an important role in our generation method. We also prove that the probability that PnP_n contains any given graph HH as an induced subgraph is asymptotically 00 or 12\frac12 or 11. Further we show that almost all perfect graphs are 22-clique-colourable, improving a result of Bacs\'o et al from 2004; they are almost all Hamiltonian; they almost all have connectivity κ(Pn)\kappa(P_n) equal to their minimum degree; they are almost all in class one (edge-colourable using Δ\Delta colours, where Δ\Delta is the maximum degree); and a sequence of independently and uniformly sampled perfect graphs of increasing size converges almost surely to the graphon WP(x,y)=12(1[x1/2]+1[y1/2])W_P(x, y) = \frac12(\mathbb{1}[x \le 1/2] + \mathbb{1}[y \le 1/2])
    corecore