31,162 research outputs found

    Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices

    Full text link
    We consider N×NN\times N Hermitian random matrices with i.i.d. entries. The matrix is normalized so that the average spacing between consecutive eigenvalues is of order 1/N1/N. We study the connection between eigenvalue statistics on microscopic energy scales η1\eta\ll1 and (de)localization properties of the eigenvectors. Under suitable assumptions on the distribution of the single matrix elements, we first give an upper bound on the density of states on short energy scales of order ηlogN/N\eta \sim\log N/N. We then prove that the density of states concentrates around the Wigner semicircle law on energy scales ηN2/3\eta\gg N^{-2/3}. We show that most eigenvectors are fully delocalized in the sense that their p\ell^p-norms are comparable with N1/p1/2N^{{1}/{p}-{1}/{2}} for p2p\ge2, and we obtain the weaker bound N2/3(1/p1/2)N^{{2}/{3}({1}/{p}-{1}/{2})} for all eigenvectors whose eigenvalues are separated away from the spectral edges. We also prove that, with a probability very close to one, no eigenvector can be localized. Finally, we give an optimal bound on the second moment of the Green function.Comment: Published in at http://dx.doi.org/10.1214/08-AOP421 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Structured Random Matrices

    Full text link
    Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understood are matrices that are endowed with an arbitrary structure, such as sparse Wigner matrices or matrices whose entries possess a given variance pattern. The challenge in investigating such structured random matrices is to understand how the given structure of the matrix is reflected in its spectral properties. This chapter reviews a number of recent results, methods, and open problems in this direction, with a particular emphasis on sharp spectral norm inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and Applications" (Springer

    Introduction to Random Matrices

    Get PDF
    These notes provide an introduction to the theory of random matrices. The central quantity studied is τ(a)=det(1K)\tau(a)= det(1-K) where KK is the integral operator with kernel 1/\pi} {\sin\pi(x-y)\over x-y} \chi_I(y). Here I=j(a2j1,a2j)I=\bigcup_j(a_{2j-1},a_{2j}) and χI(y)\chi_I(y) is the characteristic function of the set II. In the Gaussian Unitary Ensemble (GUE) the probability that no eigenvalues lie in II is equal to τ(a)\tau(a). Also τ(a)\tau(a) is a tau-function and we present a new simplified derivation of the system of nonlinear completely integrable equations (the aja_j's are the independent variables) that were first derived by Jimbo, Miwa, M{\^o}ri, and Sato in 1980. In the case of a single interval these equations are reducible to a Painlev{\'e} V equation. For large ss we give an asymptotic formula for E2(n;s)E_2(n;s), which is the probability in the GUE that exactly nn eigenvalues lie in an interval of length ss.Comment: 44 page

    Products of Random Matrices

    Get PDF
    We derive analytic expressions for infinite products of random 2x2 matrices. The determinant of the target matrix is log-normally distributed, whereas the remainder is a surprisingly complicated function of a parameter characterizing the norm of the matrix and a parameter characterizing its skewness. The distribution may have importance as an uncommitted prior in statistical image analysis.Comment: 9 pages, 1 figur

    Two-band random matrices

    Full text link
    Spectral correlations in unitary invariant, non-Gaussian ensembles of large random matrices possessing an eigenvalue gap are studied within the framework of the orthogonal polynomial technique. Both local and global characteristics of spectra are directly reconstructed from the recurrence equation for orthogonal polynomials associated with a given random matrix ensemble. It is established that an eigenvalue gap does not affect the local eigenvalue correlations which follow the universal sine and the universal multicritical laws in the bulk and soft-edge scaling limits, respectively. By contrast, global smoothed eigenvalue correlations do reflect the presence of a gap, and are shown to satisfy a new universal law exhibiting a sharp dependence on the odd/even dimension of random matrices whose spectra are bounded. In the case of unbounded spectrum, the corresponding universal `density-density' correlator is conjectured to be generic for chaotic systems with a forbidden gap and broken time reversal symmetry.Comment: 12 pages (latex), references added, discussion enlarge

    Testing of random matrices

    Get PDF
    Let nn be a positive integer and X=[xij]1i,jnX = [x_{ij}]_{1 \leq i, j \leq n} be an n×nn \times n\linebreak \noindent sized matrix of independent random variables having joint uniform distribution \hbox{Pr} {x_{ij} = k \hbox{for} 1 \leq k \leq n} = \frac{1}{n} \quad (1 \leq i, j \leq n) \koz. A realization M=[mij]\mathcal{M} = [m_{ij}] of XX is called \textit{good}, if its each row and each column contains a permutation of the numbers 1,2,...,n1, 2,..., n. We present and analyse four typical algorithms which decide whether a given realization is good
    corecore