10,361 research outputs found

    Beta-Product Poisson-Dirichlet Processes

    Get PDF
    Time series data may exhibit clustering over time and, in a multiple time series context, the clustering behavior may differ across the series. This paper is motivated by the Bayesian non--parametric modeling of the dependence between the clustering structures and the distributions of different time series. We follow a Dirichlet process mixture approach and introduce a new class of multivariate dependent Dirichlet processes (DDP). The proposed DDP are represented in terms of vector of stick-breaking processes with dependent weights. The weights are beta random vectors that determine different and dependent clustering effects along the dimension of the DDP vector. We discuss some theoretical properties and provide an efficient Monte Carlo Markov Chain algorithm for posterior computation. The effectiveness of the method is illustrated with a simulation study and an application to the United States and the European Union industrial production indexes

    Perpendicular Reading of Single Confined Magnetic Skyrmions

    Get PDF
    Thin-film sub-5 nm magnetic skyrmions constitute an ultimate scaling alternative for future digital data storage. Skyrmions are robust non-collinear spin-textures that can be moved and manipulated by small electrical currents. We show here an innovative technique to detect isolated nanoskyrmions with a current-perpendicular-to-plane geometry, which has immediate implications for device concepts. We explore the physics behind such a mechanism by studying the atomistic electronic structure of the magnetic quasiparticles. We investigate how the isolated skyrmion local-density-of-states which tunnels into the vacuum, when compared to the ferromagnetic background, is modified by the site-dependent spin-mixing of electronic states with different relative canting angles. Local transport properties are sensitive to this effect, as we report an atomistic conductance anisotropy of over 20% for magnetic skyrmions in Pd/Fe/Ir(111) thin-films. In single skyrmions, engineering this spin-mixing magnetoresistance possibly could be incorporated in future magnetic storage technologies

    Thermodynamics of protein folding: a random matrix formulation

    Full text link
    The process of protein folding from an unfolded state to a biologically active, folded conformation is governed by many parameters e.g the sequence of amino acids, intermolecular interactions, the solvent, temperature and chaperon molecules. Our study, based on random matrix modeling of the interactions, shows however that the evolution of the statistical measures e.g Gibbs free energy, heat capacity, entropy is single parametric. The information can explain the selection of specific folding pathways from an infinite number of possible ways as well as other folding characteristics observed in computer simulation studies.Comment: 21 Pages, no figure

    Multiple scattering of light by atoms with internal degeneracy

    Full text link
    An analytical microscopic theory for the resonant multiple scattering of light by cold atoms with arbitrary internal degeneracy is presented. It permits to calculate the average amplitude and the average intensity for one-photon states of the full transverse electromagnetic field in a dilute medium of unpolarized atoms. Special emphasis is laid upon an analysis in terms of irreducible representations of the rotation group. It allows to sum explicitly the ladder and maximally crossed diagrams, giving the average intensity in the Boltzmann approximation and the interference corrections responsible for weak localization and coherent backscattering. The exact decomposition into field modes shows that the atomic internal degeneracy contributes to the depolarization of the average intensity and suppresses the interference corrections. Static as well as dynamic quantities like the transport velocity, diffusion constants and relaxation times for all field modes and all atomic transitions are derived.Comment: Corrected minor errors. Slightly extended version of the article appeared in prin

    Long-range correlation energy calculated from coupled atomic response functions

    Get PDF
    An accurate determination of the electron correlation energy is essential for describing the structure, stability, and function in a wide variety of systems, ranging from gas-phase molecular assemblies to condensed matter and organic/inorganic interfaces. Even small errors in the correlation energy can have a large impact on the description of chemical and physical properties in the systems of interest. In this context, the development of efficient approaches for the accurate calculation of the long-range correlation energy (and hence dispersion) is the main challenge. In the last years a number of methods have been developed to augment density functional approximations via dispersion energy corrections, but most of these approaches ignore the intrinsic many-body nature of correlation effects, leading to inconsistent and sometimes even qualitatively incorrect predictions. Here we build upon the recent many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.Comment: 15 pages, 3 figure
    corecore