214 research outputs found

    Random clustering ferns for multimodal object recognition

    Get PDF
    The final publication is available at link.springer.comWe propose an efficient and robust method for the recognition of objects exhibiting multiple intra-class modes, where each one is associated with a particular object appearance. The proposed method, called random clustering ferns, combines synergically a single and real-time classifier, based on the boosted assembling of extremely randomized trees (ferns), with an unsupervised and probabilistic approach in order to recognize efficiently object instances in images and discover simultaneously the most prominent appearance modes of the object through tree-structured visual words. In particular, we use boosted random ferns and probabilistic latent semantic analysis to obtain a discriminative and multimodal classifier that automatically clusters the response of its randomized trees in function of the visual object appearance. The proposed method is validated extensively in synthetic and real experiments, showing that the method is capable of detecting objects with diverse and complex appearance distributions in real-time performance.Peer ReviewedPostprint (author's final draft

    Online learning and detection of faces with low human supervision

    Get PDF
    The final publication is available at link.springer.comWe present an efficient,online,and interactive approach for computing a classifier, called Wild Lady Ferns (WiLFs), for face learning and detection using small human supervision. More precisely, on the one hand, WiLFs combine online boosting and extremely randomized trees (Random Ferns) to compute progressively an efficient and discriminative classifier. On the other hand, WiLFs use an interactive human-machine approach that combines two complementary learning strategies to reduce considerably the degree of human supervision during learning. While the first strategy corresponds to query-by-boosting active learning, that requests human assistance over difficult samples in function of the classifier confidence, the second strategy refers to a memory-based learning which uses ¿ Exemplar-based Nearest Neighbors (¿ENN) to assist automatically the classifier. A pre-trained Convolutional Neural Network (CNN) is used to perform ¿ENN with high-level feature descriptors. The proposed approach is therefore fast (WilFs run in 1 FPS using a code not fully optimized), accurate (we obtain detection rates over 82% in complex datasets), and labor-saving (human assistance percentages of less than 20%). As a byproduct, we demonstrate that WiLFs also perform semi-automatic annotation during learning, as while the classifier is being computed, WiLFs are discovering faces instances in input images which are used subsequently for training online the classifier. The advantages of our approach are demonstrated in synthetic and publicly available databases, showing comparable detection rates as offline approaches that require larger amounts of handmade training data.Peer ReviewedPostprint (author's final draft

    POL-LWIR Vehicle Detection: Convolutional Neural Networks Meet Polarised Infrared Sensors

    Get PDF
    For vehicle autonomy, driver assistance and situational awareness, it is necessary to operate at day and night, and in all weather conditions. In particular, long wave infrared (LWIR) sensors that receive predominantly emitted radiation have the capability to operate at night as well as during the day. In this work, we employ a polarised LWIR (POL-LWIR) camera to acquire data from a mobile vehicle, to compare and contrast four different convolutional neural network (CNN) configurations to detect other vehicles in video sequences. We evaluate two distinct and promising approaches, two-stage detection (Faster-RCNN) and one-stage detection (SSD), in four different configurations. We also employ two different image decompositions: the first based on the polarisation ellipse and the second on the Stokes parameters themselves. To evaluate our approach, the experimental trials were quantified by mean average precision (mAP) and processing time, showing a clear trade-off between the two factors. For example, the best mAP result of 80.94% was achieved using Faster-RCNN, but at a frame rate of 6.4 fps. In contrast, MobileNet SSD achieved only 64.51% mAP, but at 53.4 fps.Comment: Computer Vision and Pattern Recognition Workshop 201
    • …
    corecore