214,093 research outputs found

    Dynamic criticality far-from-equilibrium: one-loop flow of Burgers-Kardar-Parisi-Zhang systems with broken Galilean invariance

    Full text link
    Burgers-Kardar-Parisi-Zhang (KPZ) scaling has recently (re-) surfaced in a variety of physical contexts, ranging from anharmonic chains to quantum systems such as open superfluids, in which a variety of random forces may be encountered and/or engineered. Motivated by these developments, we here provide a generalization of the KPZ universality class to situations with long-ranged temporal correlations in the noise, which purposefully break the Galilean invariance that is central to the conventional KPZ solution. We compute the phase diagram and critical exponents of the KPZ equation with 1/f1/f-noise (KPZ1/f_{1/f}) in spatial dimensions 1≤d<41\leq d < 4 using the dynamic renormalization group with a frequency cutoff technique in a one-loop truncation. Distinct features of KPZ1/f_{1/f} are: (i) a generically scale-invariant, rough phase at high noise levels that violates fluctuation-dissipation relations and exhibits hyperthermal statistics {\it even in d=1}, (ii) a fine-tuned roughening transition at which the flow fulfills an emergent thermal-like fluctuation-dissipation relation, that separates the rough phase from (iii) a {\it massive phase} in 1<d<41< d < 4 (in d=1d=1 the interface is always rough). We point out potential connections to nonlinear hydrodynamics with a reduced set of conservation laws and noisy quantum liquids.Comment: 29 pages, 11 figures, 1 table, 54 references, v2 as publishe

    Two-dimensional droplet spreading over random topographical substrates

    Full text link
    We examine theoretically the effects of random topographical substrates on the motion of two-dimensional droplets via appropriate statistical approaches. Different random substrate families are represented as stationary random functions. The variance of the droplet shift at both early times and in the long-time limit is deduced and the droplet footprint is found to be a normal random variable at all times. It is shown that substrate roughness decreases droplet wetting, illustrating also the tendency of the droplet to slide without spreading as equilibrium is approached. Our theoretical predictions are verified by numerical experiments.Comment: 12 pages, 5 figure

    Accurate estimators of power spectra in N-body simulations

    Full text link
    abridged] A method to rapidly estimate the Fourier power spectrum of a point distribution is presented. This method relies on a Taylor expansion of the trigonometric functions. It yields the Fourier modes from a number of FFTs, which is controlled by the order N of the expansion and by the dimension D of the system. In three dimensions, for the practical value N=3, the number of FFTs required is 20. We apply the method to the measurement of the power spectrum of a periodic point distribution that is a local Poisson realization of an underlying stationary field. We derive explicit analytic expression for the spectrum, which allows us to quantify--and correct for--the biases induced by discreteness and by the truncation of the Taylor expansion, and to bound the unknown effects of aliasing of the power spectrum. We show that these aliasing effects decrease rapidly with the order N. The only remaining significant source of errors is reduced to the unavoidable cosmic/sample variance due to the finite size of the sample. The analytical calculations are successfully checked against a cosmological N-body experiment. We also consider the initial conditions of this simulation, which correspond to a perturbed grid. This allows us to test a case where the local Poisson assumption is incorrect. Even in that extreme situation, the third-order Fourier-Taylor estimator behaves well. We also show how to reach arbitrarily large dynamic range in Fourier space (i.e., high wavenumber), while keeping statistical errors in control, by appropriately "folding" the particle distribution.Comment: 18 Pages, 9 Figures. Accepted for publication in MNRAS. The Fourier-Taylor module as well as the associated power spectrum estimator tool we propose is available as an F90 package, POWMES, at http://www.projet-horizon.fr or on request from the author
    • …
    corecore