7,315 research outputs found

    Comparing mixing times on sparse random graphs

    Full text link
    It is natural to expect that nonbacktracking random walk will mix faster than simple random walks, but so far this has only been proved in regular graphs. To analyze typical irregular graphs, let GG be a random graph on nn vertices with minimum degree 3 and a degree distribution that has exponential tails. We determine the precise worst-case mixing time for simple random walk on GG, and show that, with high probability, it exhibits cutoff at time h1logn\mathbf{h}^{-1} \log n, where h\mathbf{h} is the asymptotic entropy for simple random walk on a Galton--Watson tree that approximates GG locally. (Previously this was only known for typical starting points.) Furthermore, we show that this asymptotic mixing time is strictly larger than the mixing time of nonbacktracking walk, via a delicate comparison of entropies on the Galton-Watson tree

    The Support of Open Versus Closed Random Walks

    Get PDF
    A closed random walk of length ? on an undirected and connected graph G = (V,E) is a random walk that returns to the start vertex at step ?, and its properties have been recently related to problems in different mathematical fields, e.g., geometry and combinatorics (Jiang et al., Annals of Mathematics \u2721) and spectral graph theory (McKenzie et al., STOC \u2721). For instance, in the context of analyzing the eigenvalue multiplicity of graph matrices, McKenzie et al. show that, with high probability, the support of a closed random walk of length ? ? 1 is ?(?^{1/5}) on any bounded-degree graph, and leaves as an open problem whether a stronger bound of ?(?^{1/2}) holds for any regular graph. First, we show that the support of a closed random walk of length ? is at least ?(?^{1/2} / ?{log n}) for any regular or bounded-degree graph on n vertices. Secondly, we prove for every ? ? 1 the existence of a family of bounded-degree graphs, together with a start vertex such that the support is bounded by O(?^{1/2}/?{log n}). Besides addressing the open problem of McKenzie et al., these two results also establish a subtle separation between closed random walks and open random walks, for which the support on any regular (or bounded-degree) graph is well-known to be ?(?^{1/2}) for all ? ? 1. For irregular graphs, we prove that even if the start vertex is chosen uniformly, the support of a closed random walk may still be O(log ?). This rules out a general polynomial lower bound in ? for all graphs. Finally, we apply our results on random walks to obtain new bounds on the multiplicity of the second largest eigenvalue of the adjacency matrices of graphs

    Deterministic Approximation of Random Walks in Small Space

    Get PDF
    We give a deterministic, nearly logarithmic-space algorithm that given an undirected graph G, a positive integer r, and a set S of vertices, approximates the conductance of S in the r-step random walk on G to within a factor of 1+epsilon, where epsilon>0 is an arbitrarily small constant. More generally, our algorithm computes an epsilon-spectral approximation to the normalized Laplacian of the r-step walk. Our algorithm combines the derandomized square graph operation [Eyal Rozenman and Salil Vadhan, 2005], which we recently used for solving Laplacian systems in nearly logarithmic space [Murtagh et al., 2017], with ideas from [Cheng et al., 2015], which gave an algorithm that is time-efficient (while ours is space-efficient) and randomized (while ours is deterministic) for the case of even r (while ours works for all r). Along the way, we provide some new results that generalize technical machinery and yield improvements over previous work. First, we obtain a nearly linear-time randomized algorithm for computing a spectral approximation to the normalized Laplacian for odd r. Second, we define and analyze a generalization of the derandomized square for irregular graphs and for sparsifying the product of two distinct graphs. As part of this generalization, we also give a strongly explicit construction of expander graphs of every size

    Gap Amplification for Small-Set Expansion via Random Walks

    Get PDF
    In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we show that an instance of the Small-Set Expansion Problem with completeness ϵ\epsilon and soundness 12\frac{1}{2} is at least as difficult as Small-Set Expansion with completeness ϵ\epsilon and soundness f(ϵ)f(\epsilon), for any function f(ϵ)f(\epsilon) which grows faster than ϵ\sqrt{\epsilon}. We achieve this amplification via random walks -- our gadget is the graph with adjacency matrix corresponding to a random walk on the original graph. An interesting feature of our reduction is that unlike gap amplification via parallel repetition, the size of the instances (number of vertices) produced by the reduction remains the same

    Perfect state transfer, graph products and equitable partitions

    Full text link
    We describe new constructions of graphs which exhibit perfect state transfer on continuous-time quantum walks. Our constructions are based on variants of the double cones [BCMS09,ANOPRT10,ANOPRT09] and the Cartesian graph products (which includes the n-cube) [CDDEKL05]. Some of our results include: (1) If GG is a graph with perfect state transfer at time tGt_{G}, where t_{G}\Spec(G) \subseteq \ZZ\pi, and HH is a circulant with odd eigenvalues, their weak product G×HG \times H has perfect state transfer. Also, if HH is a regular graph with perfect state transfer at time tHt_{H} and GG is a graph where t_{H}|V_{H}|\Spec(G) \subseteq 2\ZZ\pi, their lexicographic product G[H]G[H] has perfect state transfer. (2) The double cone K2+G\overline{K}_{2} + G on any connected graph GG, has perfect state transfer if the weights of the cone edges are proportional to the Perron eigenvector of GG. This generalizes results for double cone on regular graphs studied in [BCMS09,ANOPRT10,ANOPRT09]. (3) For an infinite family \GG of regular graphs, there is a circulant connection so the graph K_{1}+\GG\circ\GG+K_{1} has perfect state transfer. In contrast, no perfect state transfer exists if a complete bipartite connection is used (even in the presence of weights) [ANOPRT09]. We also describe a generalization of the path collapsing argument [CCDFGS03,CDDEKL05], which reduces questions about perfect state transfer to simpler (weighted) multigraphs, for graphs with equitable distance partitions.Comment: 18 pages, 6 figure

    Recent results of quantum ergodicity on graphs and further investigation

    Get PDF
    We outline some recent proofs of quantum ergodicity on large graphs and give new applications in the context of irregular graphs. We also discuss some remaining questions.Comment: To appear in "Annales de la facult\'e des Sciences de Toulouse
    corecore