9,315 research outputs found

    Number variance for hierarchical random walks and related fluctuations

    Full text link
    We study an infinite system of independent symmetric random walks on a hierarchical group, in particular, the c-random walks. Such walks are used, e.g., in population genetics. The number variance problem consists in investigating if the variance of the number of "particles" N_n(L) lying in the ball of radius L at a given time n remains bounded, or even better, converges to a finite limit, as L→∞L\to \infty. We give a necessary and sufficient condition and discuss its relationship to transience/recurrence property of the walk. Next we consider normalized fluctuations of N_n(L) around the mean as n→∞n\to \infty and L is increased in an appropriate way. We prove convergence of finite dimensional distributions to a Gaussian process whose properties are discussed. As the c-random walks mimic symmetric stable processes on R, we compare our results to those obtained by Hambly and Jones (2007,2009), where the number variance problem for an infinite system of symmetric stable processes on R was studied. Since the hierarchical group is an ultrametric space, corresponding results for symmetric stable processes and hierarchical random walks may be analogous or quite different, as has been observed in other contexts. An example of a difference in the present context is that for the stable processes a fluctuation limit process is a centered Gaussian process which is not Markovian and has long range dependent stationary increments, but the counterpart for hierarchical random walks is Markovian, and in a special case it has independent increments

    Short note on the emergence of fractional kinetics

    Get PDF
    In the present Short Note an idea is proposed to explain the emergence and the observation of processes in complex media that are driven by fractional non-Markovian master equations. Particle trajectories are assumed to be solely Markovian and described by the Continuous Time Random Walk model. But, as a consequence of the complexity of the medium, each trajectory is supposed to scale in time according to a particular random timescale. The link from this framework to microscopic dynamics is discussed and the distribution of timescales is computed. In particular, when a stationary distribution is considered, the timescale distribution is uniquely determined as a function related to the fundamental solution of the space-time fractional diffusion equation. In contrast, when the non-stationary case is considered, the timescale distribution is no longer unique. Two distributions are here computed: one related to the M-Wright/Mainardi function, which is Green's function of the time-fractional diffusion equation, and another related to the Mittag-Leffler function, which is the solution of the fractional-relaxation equation

    The evolution of the cover time

    Full text link
    The cover time of a graph is a celebrated example of a parameter that is easy to approximate using a randomized algorithm, but for which no constant factor deterministic polynomial time approximation is known. A breakthrough due to Kahn, Kim, Lovasz and Vu yielded a (log log n)^2 polynomial time approximation. We refine this upper bound, and show that the resulting bound is sharp and explicitly computable in random graphs. Cooper and Frieze showed that the cover time of the largest component of the Erdos-Renyi random graph G(n,c/n) in the supercritical regime with c>1 fixed, is asymptotic to f(c) n \log^2 n, where f(c) tends to 1 as c tends to 1. However, our new bound implies that the cover time for the critical Erdos-Renyi random graph G(n,1/n) has order n, and shows how the cover time evolves from the critical window to the supercritical phase. Our general estimate also yields the order of the cover time for a variety of other concrete graphs, including critical percolation clusters on the Hamming hypercube {0,1}^n, on high-girth expanders, and on tori Z_n^d for fixed large d. For the graphs we consider, our results show that the blanket time, introduced by Winkler and Zuckerman, is within a constant factor of the cover time. Finally, we prove that for any connected graph, adding an edge can increase the cover time by at most a factor of 4.Comment: 14 pages, to appear in CP

    On the spatial Markov property of soups of unoriented and oriented loops

    Full text link
    We describe simple properties of some soups of unoriented Markov loops and of some soups of oriented Markov loops that can be interpreted as a spatial Markov property of these loop-soups. This property of the latter soup is related to well-known features of the uniform spanning trees (such as Wilson's algorithm) while the Markov property of the former soup is related to the Gaussian Free Field and to identities used in the foundational papers of Symanzik, Nelson, and of Brydges, Fr\"ohlich and Spencer or Dynkin, or more recently by Le Jan

    The lineage process in Galton--Watson trees and globally centered discrete snakes

    Full text link
    We consider branching random walks built on Galton--Watson trees with offspring distribution having a bounded support, conditioned to have nn nodes, and their rescaled convergences to the Brownian snake. We exhibit a notion of ``globally centered discrete snake'' that extends the usual settings in which the displacements are supposed centered. We show that under some additional moment conditions, when nn goes to +∞+\infty, ``globally centered discrete snakes'' converge to the Brownian snake. The proof relies on a precise study of the lineage of the nodes in a Galton--Watson tree conditioned by the size, and their links with a multinomial process [the lineage of a node uu is the vector indexed by (k,j)(k,j) giving the number of ancestors of uu having kk children and for which uu is a descendant of the jjth one]. Some consequences concerning Galton--Watson trees conditioned by the size are also derived.Comment: Published in at http://dx.doi.org/10.1214/07-AAP450 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore