research

The lineage process in Galton--Watson trees and globally centered discrete snakes

Abstract

We consider branching random walks built on Galton--Watson trees with offspring distribution having a bounded support, conditioned to have nn nodes, and their rescaled convergences to the Brownian snake. We exhibit a notion of ``globally centered discrete snake'' that extends the usual settings in which the displacements are supposed centered. We show that under some additional moment conditions, when nn goes to ++\infty, ``globally centered discrete snakes'' converge to the Brownian snake. The proof relies on a precise study of the lineage of the nodes in a Galton--Watson tree conditioned by the size, and their links with a multinomial process [the lineage of a node uu is the vector indexed by (k,j)(k,j) giving the number of ancestors of uu having kk children and for which uu is a descendant of the jjth one]. Some consequences concerning Galton--Watson trees conditioned by the size are also derived.Comment: Published in at http://dx.doi.org/10.1214/07-AAP450 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/03/2019