25,882 research outputs found

    Computer model calibration with large non-stationary spatial outputs: application to the calibration of a climate model

    Get PDF
    Bayesian calibration of computer models tunes unknown input parameters by comparing outputs with observations. For model outputs that are distributed over space, this becomes computationally expensive because of the output size. To overcome this challenge, we employ a basis representation of the model outputs and observations: we match these decompositions to carry out the calibration efficiently. In the second step, we incorporate the non-stationary behaviour, in terms of spatial variations of both variance and correlations, in the calibration. We insert two integrated nested Laplace approximation-stochastic partial differential equation parameters into the calibration. A synthetic example and a climate model illustration highlight the benefits of our approach

    A Riemannian-Stein Kernel Method

    Full text link
    This paper presents a theoretical analysis of numerical integration based on interpolation with a Stein kernel. In particular, the case of integrals with respect to a posterior distribution supported on a general Riemannian manifold is considered and the asymptotic convergence of the estimator in this context is established. Our results are considerably stronger than those previously reported, in that the optimal rate of convergence is established under a basic Sobolev-type assumption on the integrand. The theoretical results are empirically verified on S2\mathbb{S}^2
    corecore