32 research outputs found

    A PCP Characterization of AM

    Get PDF
    We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a `PCP characterization' of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class. To test this notion, we pose some `Randomized Optimization Hypotheses' related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses appear over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there exist hard-on-average optimization problems of a particularly elegant form. All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page

    Mastermind is NP-Complete

    Full text link
    In this paper we show that the Mastermind Satisfiability Problem (MSP) is NP-complete. The Mastermind is a popular game which can be turned into a logical puzzle called Mastermind Satisfiability Problem in a similar spirit to the Minesweeper puzzle. By proving that MSP is NP-complete, we reveal its intrinsic computational property that makes it challenging and interesting. This serves as an addition to our knowledge about a host of other puzzles, such as Minesweeper, Mah-Jongg, and the 15-puzzle

    Trainyard is NP-Hard

    Get PDF
    Recently, due to the widespread diffusion of smart-phones, mobile puzzle games have experienced a huge increase in their popularity. A successful puzzle has to be both captivating and challenging, and it has been suggested that this features are somehow related to their computational complexity \cite{Eppstein}. Indeed, many puzzle games --such as Mah-Jongg, Sokoban, Candy Crush, and 2048, to name a few-- are known to be NP-hard \cite{CondonFLS97, culberson1999sokoban, GualaLN14, Mehta14a}. In this paper we consider Trainyard: a popular mobile puzzle game whose goal is to get colored trains from their initial stations to suitable destination stations. We prove that the problem of determining whether there exists a solution to a given Trainyard level is NP-hard. We also \href{http://trainyard.isnphard.com}{provide} an implementation of our hardness reduction

    The Complexity of Local Proof Search in Linear Logic (Extended Abstract)

    Get PDF
    AbstractProof search in linear logic is known to be difficult: the provability of propositional linear logic formulas is undecidable. Even without the modalities, multiplicative-additive fragment of propositional linear logic, mall, is known to be PSPACE-complete, and the pure multiplicative fragment, mll, is known to be np-complete. However, this still leaves open the possibility that there might be proof search heuristics (perhaps involving randomization) that often lead to a proof if there is one, or always lead to something close to a proof. One approach to these problems is to study strategies for proof games. A class of linear logic proof games is developed, each with a numeric score that depends on the number of certain preferred axioms used in a complete or partial proof tree. Using recent techniques for proving lower bounds on optimization problems, the complexity of these games is analyzed for the fragment mll extended with additive constants and for the fragment MALL. It is shown that no efficient heuristics exist unless there is an unexpected collapse in the complexity hierarchy

    Solving Mahjong Solitaire boards with peeking

    Full text link
    We first prove that solving Mahjong Solitaire boards with peeking is NP-complete, even if one only allows isolated stacks of the forms /aab/ and /abb/. We subsequently show that layouts of isolated stacks of heights one and two can always be solved with peeking, and that doing so is in P, as well as finding an optimal algorithm for such layouts without peeking. Next, we describe a practical algorithm for solving Mahjong Solitaire boards with peeking, which is simple and fast. The algorithm uses an effective pruning criterion and a heuristic to find and prioritize critical groups. The ideas of the algorithm can also be applied to solving Shisen-Sho with peeking.Comment: 10 page
    corecore