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Abstract 

Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of 
constant symbols denoting arbitrary elements of L), and let S and T be an arbitrary 
finite set of finite-arity relations on D. We denote the problem of determining the 
satisfiability of finite conjunctions of relations in S applied to variables (to vari- 
ables and symbolri in C) by SAT(S) (by SATc(S).) Here, we study simultaneously 
the complexity of decision, counting, maximization and approximate maximization 
problems, for unquantified, quantified and stochastically quantified formulas. 

We present simple yet general techniques to characterize simultaneously, the com- 
plexity or efficient approximability of a number of versions/variants of the problems 
SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such 
D, C, S, T .  These versions/variants include decision, counting, maximization and 
approximate maximization problems, €or unquantified, quantified and stochastically 
quantified formulas. Our unified approach is based on the following two basic con- 
cepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic repre- 
sent abili ty. 

Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94] Our 
techniques and results reported here also provide significant steps towards obtaining 
dichotomy theorems, for a number of the problems above, including the problems 
MAX-&-SAT( S) ,  and MAX-S-SAT(S). The discovery of such dichotomy the- 
orems, for unquantified formulas, has received significant recent attention in the 
literature [CF+93,CF+94,Cr95,KSW97]. 

Preprint submitted to Elsevier Science 29 May 2001 
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1 Introduction and motivation 

Over the past, thirty years, researchers in theoretical computer science, AI, op- 
erations research, and computational algebra have studied versions/variants 
of CNF satisfiability, constraint satisfaction problems, and algebraic satisfia- 
bility problems (i.e. the problems SAT(F) where F is an algebraic structure). 
Two important reasons for the extensive research are the following: 
A. Versions/variants of these problems are widely applicable in modeling 
both real-life and abstract mathematical problems. 

SSAT, have played fundamental roles in the development 
ity theory, providing prototypical complete problems for various complexity 
classes. 
The results, concepts, and techniques reported here are relevant to the 
following topical areas of this ongoing research: 
1. the complexity of 3SAT and more generally Boolean congtraint satisfaction 
problems, e.g. [Sc78,GJ79,FV93,JCG97,CJ+OO] 
2. the development of dichotomy type results for decision and op- 
timization versions of Boolean constraint Satisfaction problems, e.g. 
[HSM94,HSMOla,Cr95,KSW97,MH+94,LMP99], 
3. the Complexity and (non)-approximability of PSPACE-hard 

' quantified and stochastic Boolean satisfiability problems, e.g., 
" [ FY 79, Pa94, Pa8 5,  CF+93, C F + 94, M H + 94 ,HS M94, LMS96, LMP991, 
' 4. the complexity of decision and optimization problems, when instances are 

succinctly specified, e.g. [Le83,LW92,0r82,MH+94]1, and 
5. the complexity of solving systems of equations on various algebraic 
structures, e.g. [AC+98,Le83,GJ79,IM83,LW87,AB88,HSMOlb]. 
Here combining these lines of research we study the complexity and efficient 
approximability of quantified and stochastic constraint satisfaction problems. 
The research program also spans complexity and approximability of solving 
quantified and stochastically quantified systems of equations on various alge- 
braic structures - due to space limitations we will not discuss these topics in 
detail. We recall preliminary definitions that will be helpful in understand- 

Some of the work done while the author was visiting the Basic and Applied Sim- 
ulation Sciences Group at the Los Alamos National Laboratory. supported by the 
Department of Energy under Contract W-7405-ENG-36. Also partially supported 
by NSF Grant CCR94-06611. 

' B. These problems, especially versions/variants of the pro 

-~ 

Supported by Department of Energy under Contract W-7405-ENG-36. 
Research supported in part by NSF Grant CCR94-06611. 

2 



ing our results. let D be an arbitra not necessarily finite) set of cardi- 
nality > 2; C is a finite set of constant symbols denoting distinct elements 
of R; and S,T are finite sets of finite-arity relations on D. An S-clause (a 
constmt-free S-clause) is a relation in S applied to  variables and constants 
in C (to variables, onlg.) An S-formula (a constant-free S-formula) is a finite 
nonempty conjunction of S-clauses (of constant-free S-clauses.) By Rep( S) 
(by Repc(S)) ,  we mean the set of all finite-arity relations on D denoted by 
existentially-quantified conjunctions of constant-free (of arbitrary) S-clauses. 
Let Dk-Relations denote the set of all finite arity relations over a domain D 
of cardinality k .  We use Rep(S)  = Dk-RELATIONS to  mean that all finite 
arity relations on DI, can be equivalently represented as finite existentially- 
quantified conjunctions of relations in S applied to variables (to variables and 
constant symbols in C). An S-formula is satisfiable if all of its clauses are 
simultaneously satisfiable. Quantified and (when D is finite) stochastically- 
quantified S-formulas and their satisfiabdity problems are defined as generally 
assumed in the literature. Consequently, a quantified S-formula is satisfiable 
iff it has at least one proof-tree. We follow [Pa85,LMP99], for the definition of 
the random quantifier. The difference being that [Pa851 only allows existential 
and random quantifiers in stochastic formulas, while [LMP99] also allows uni- 
versal quantifiers. (Both [l?a85,LMP99] only consider stochastically-quantified 
Boolean formulas. Thus Papadimitriou (Pa851 introduced the stochastic sat- 
isjiability problem defined as follows: A problem instance is assumed to be of 
the forrn- 

where R is the random quantifier-there zs a random assignment of truth-values 
to the variable with equiprobable values of 1 and 0 ,  E denotes expectation, and 
f is a 3-CNF formula. Under the equiprobable assumption, such a formula F is 
satisfiable iff there is a ”proof-tree” for F such that at least 1/2 of its leaves 
evaluate to True. We leave the discussion of the extensions needed to Pa- 
padimitriou’s definition to define the STOCHASTIC SATISFIABILITY problems 
of [LMP99] to the full paper (or see [LMP99].) Finally as observed above by 

, C, S, the allowed quantifiers, etc., a large number of problems in 
science, operations research, AI, etc., can be expressed both nat- 

urally and directly in terms of S-, quantified S-,or stochastically-quantified 
S-formulas. We defined the problems SAT(S), SATc(S), . . ., S-SATc(S) 
above, We also consider the following optimization versions of these decision 
problems: 
1. the problems MAX-SAT(S), MAX-SATc(S), MAX-Q-SAT(S), 
MAX-Q-SATc(S), MAX-S-SAT(S), MAX-S-SATc(S), as defined in 
[PY91,CF+93,CF+94]; 
2. the problems MAX-NSF-SAT(S),  MAX-NSF-Q-SAT(S), and MAX- 
NSF- S-SAT(S), that  entail finding the maximum number of szmultaneously 

i 

. ! .  
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satisfiable formulas, quantified formulas, and stochastically-quantified formu- 
las (this last so that the probability of each simultaneously-satisfied formula 
is greater than some given fixed rational threshold 0 (0 < 0 5 1)) in a given 
finite sequence of such formulas; 
3. the problems MAX-Q-FORMULA-SAT(S) and MAX-S- 
FORMULA-SAT( S )  defined as in [CF+93,HSM94]; and 
4. (for finite domains U )  the problems MAX-SATISFYING-ASSIGN-SAT( S )  
and MAX-DONES-SAT(S) as defined for 3CNF formulas in [Kr88,PR93] 
and their extensions to quantified and stochastically-quantified formulas with 
free variables. 
Our main result can be viewed as relative complexity result and can be stated 
roughly as follows: Let S and T be defined over finite domains (not neces- 
sarily the same), Let S c Rep(T). Then, the problem SAT(S) is reducible to 
the problem SAT(T)  by a reduction R(S,T) such that: 
( 1 )  The reduction R(S,T) is a 1-strongly-local-replacement-reduction. Con- 

sequently, it can be translated into O(n  * logn) time- and linear size- 
bounded reductions RQ(S,T) and RS(S,T) of the problems Q-SAT(S) 
and S-SAT(S) to the problems Q-SAT(T) and S-SAT(”), respectively. 
These last two reductions preserve a number of structural properties of 

addition such a reduction R(S,T) can be constructed effi- 
ciently from any representation of S E S by relations in T. 

(2) The reduction RQ(S,T) and RS(S,T) preserves a number of global 
properties of proof and partial-proof-trees including the ratio of true 
leaves to leaves. It can be modified efficiently into an O(n  - logn) 
time- and linear size-bounded A-reduction of the problems MAX-NSF- 
Q-SAT( S ) ,  MAX-Q-FORMULA-SAT( S) MAX-NSF-%SAT( S) and 
MAX-S-FORMULA-SAT(S) into the problems MAX-NSF-Q-SAT(T), 
MAX- Q- FORMULA- S AT ( T )  , MAX- N S F- S- S AT ( T )  and MAX- S- 
FORMULA-SAT (T) , respectively. In addition, we have identified several 
natural sufficient conditions on a representation of S by T, for the cor- 
responding reductions R(S,T) and RQ(S,T) to be parsimonious, L, pre- 
serve planarity of instances, etc. 

Important Note: For clarity, we have stated the above results for finite 
domains. In case of quantified formulas, the above results can be easily ex- 
tended when the underlying domains are infinite. Similar extension requires 
some care for stochastic formulas due to  the technical issues of defining the 
right probability rneasure. 
Our potentially most important contributions are the identification and 
subsequent formalization of the few basic concepts and the derivation of 

A MAX-Satisfying-Assignment of a formula is a satisfying assignment to the 
variables of the formula, that is lexicographically maximum: hence the restriction to 
finite domains D. A MAX-DONES-satisfying assignment is a satisfying assignment 
with the maximum number of designated variables set equal to 1. 
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their complexity-theoretic properties, that suffice to prove these results 
naturally, fairly directly, and simultaneousky. In the companion papers 
[HSMOla,HSMOlb], we demonstrate how these concepts can be used to char- 
acterize the complexity and efficient approximiability of versions/variants of 
determining the satisfiability of unquantijed systems of equations and/or 
constraints on many algebraic structures. Below, we briefly discuss how our 
results/techniques/constructions, for versions/variants of the algebraic sat- 
isfaction problems SAT(F), can be extended to apply to  quantijed and 
stochastically-quantified algebraic satisfaction problems. 

Example 1: The generalized CNF satisfiability problems SAT(S) and 
SAT,(S) generalize the problems 3SAT, 1-3SAT , NAE-SSAT, etc. in 
[GJ'IS]. For example, let EO(z,  y, x )  be the ternary logical relation given by 
((11 O , O ) ,  (0,1,0), ( O , O ,  1)). Then, the problem EXACTLY-I-IN-EX~-MONO- 
SAT is the same as the problem SAT((E0)) .  An instance of the above 
problem might consist of the set of variables x , y , x , w  and the formula 
E;' = EO(z,  y, x )  A EO($, y, w) A EO($, w, 2). It is easy to see that  F is sat- 
isfiable by setting x = 1 and setting all otheF variables to  0. Let f be an 
S-formula with rn clauses and 7ti literals in clause i, 1 5 i 5 m. The size of f 

denoted b i  size( f )  is given by O( ni). Let C be a set'of clauses defined over 

a set of variables V .  We will use F(C, V )  to denote thi? formula obtained by 
the conjunction of clauses in C. By appropriately defining unary, binary and 
ternary versions of the relation EO, i t  is possible to define 1-3-SAT problem. 
Our general results in many cases do not depend on the domain being binary 
or even finite. Similarly, it is possible to have finite or infinite constraint rela- 
tions. This happens naturally, when we deal with algebraic constraints where 
constraints can be specified using algebraic (in)equations. 

Example 2: Extensions of constraint satisfaction problems to quantified and 
stochastically quantified constraint satisfaction problems is done by allowing 
one to use first order quantifiers. Consider again the EO relation as defined 
in Example 1. An instance I of Q-SAT(EO) might look like Vx 3y Vz 3w F ,  
where F is as defined above. Then it can be verified that I is not satisfi- 
able. Moreover, Rx 39 Rz 3w F is also not satisfiable. On the other hand 
Vx 37~ Vz 3wl'v''q3w~ ( (EO($ ,  y, w1) A EO(z ,  y, wa)) is satisfiable. 

Important Note: The abstract contains only a discussion of the results, 
overview of techniques used and significance of the results. Full proofs and 
detailed definitions are developed in the full paper that can be obtained 
f rom the authors. Formsd definitions of these problems can be found in 
lCF+93. CF+9L, LMP99.HSM9.L. LMS96l. 

I 

i=m 

i = 2  
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2 Summary of results 

As mentioned earlier, the focus of this paper is to  develop a unified technique 
for characterizing the computational complexity and efficient approximability 
of quantified and stochastic satisfiability problems. For most part, we concen- 
trate on the quantified and stochastic versions of the problems; the results 
for unquantified versions are derived in-situ. Specific results obtained in this 
paper are summarized in Figures 1 and 2. The general contributions of this 
paper include the following. 
(1) An infinite class of quantified and stochastic constraint satisfaction prob- 
lems is formalized. The type of problems studied include: decision, counting 
and optimization versions of these problems. Furthermore, combining these 
with the recent ideas of Littman et. al. we can define more general variants of 
the problem in which we vary the quantifiers and their semantics, We suspect 
that  these infinite classes of problerns will play a role similar to that already 
played by their unquantified counterparts in the earlier development of com- 
plexity theory. Of special note is the formalism of optimization and counting 
versions of these problems: these problems have not be been defined and stud- 
ied in the literature prior to  this paper. Recently there has been interest in 
studying the approximability of PSPACE-hard optimization problems: 

(2) Two simple yet important concepts: local replacements/reductions and 
' relational representability are formalized. We derive the basic complexity the- 

oretic properties related to these concepts. Using these concepts, we propose 
unified methods for characterizing simultaneously, the decision, optimization, 
approximate optimization and counting complexity of quantified and stochas- 
tic constraint satisfaction problems. 

(3) We derive very general sufficient conditions and generic reductions that 
simultaneously show that the decision and the approximate optimization 
problems are hard for their respective complexity classes. There has been 
a recent interest in studying the approximability of PSPACE-hard optimiza- 
tion problems. Our general results yield an infinite set of maximization ver- 
sions of stochastic and quantified constrained satisfaction problems that are 
PSPACE-hard to approximate beyond a certain fixed constant and another 
infinite set that are PSPACE-hard to approximate for any ne, E > 0. Since 
the influential paper by Papadimitriou and Yannakakis on MAX SNP, there 
has been interest in finding logical/algebraic characterization of NP-hard op- 
timization problems that are hard to  approximate within different factors. The 
results for MAX.-Q-SAT(S), MAX-S-SAT(S) MAX-NSF-Q-SAT(S) and 
MAX-NSF-S-SAT( S) provide similar algebraic characterizations of quanti- 
fied and stochastic PSPACE-hard optimization problems. 
We now discuss some of the specific results obtained in  this paper and simul- 
taneously contrast them with known results from the literature. These results 
are summarized in Figures 1 and 2.  In order to allow for an easy comparison 
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between the results obtained here and the results obtained earlier by other 
researchers, we summarize both the results. Previous results are summarized 
in Figure 1 and new results are summarized in Figure 2. Moreover, previous 
results and our results are in 1-1 correspondence in terms of the numbering 
used. So for instance, 3(b) in Part 1, summarizes the earlier result on non- 
approximability of MAX-Q-3SAT, our result is given as 3(b) in Part 2. 
Much of this discussion, but by no means all, is limited to finite sets D, since 
all hardness results given here are tight when D is finite. Almost all resulting 
reductions are local. Thus, they are O(n.logn) time-, linear size-, and O(logn) 
space-bounded. 

Part I : Summary of related ~ results applicable to  
this paper 

, (1) [Sc78,CES85,MS81]:The problems T and 3-COLORABLE 
, GRAPH are NQL-complete. The lems 'Ex-~SAT, EXACTLY~- 

EX3MONOSAT, NAE-EX3SA'I', D'S-MONOTONE-3SAT are 
<!;,-complete for NP. 

(2) [Sc78,Pa85]:The problems SAT( S) and SATc(S) are NP-complete 
and the problems Q-SAT(S) and Q- ) are PSPACE-complete, 
for all finite sets S of finite-ari ean relations such that 
Repc(S)-BOOLEAN-RELATIONS a. The problem S-3SAT is PSPACE- 
complete. 

(3) (a) [ALM+98,PY91]: The problems MAX-3SAT and MAX-NAE- 
3SAT are MAX SNP-complete. Consequently, there exists E > 0 
for which approximating these two problems within E times optimum 
is NP-hard. 

(b) [CF+93]: 3 E > 0 for which approximating the problem MAX-Q- 
3SAT within E times optimum is PSPACE-hard. 

(c) [CF+94]: 3 E > 0 for which approximating the problem MAX-S- 
3SAT within E times optimum is PSPACE-hard. 

I 

(4) (a) [PR93]:The problem MAX-NSF-3SAT is MAX Ill-complete. Con- 
sequently for all E > 0 approximating this problem within E times 
optimum is NP-hard. 

(b) [CF+93]:For all E > 0 approximating the problem MAX-Q- 
FORMULA-3SAT within E times optimum is PSPACE-hard. 

a This is the terminology used in [Sc78] to say that we can represent all finite 
arity-Boolean relations. 

- ~ 

?ig, 1, Summary of results for constrained satisfaction problems obtained earlier. 

, 
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Part 2: Summary of the results obtained in this 
Paper 

Let IC 2 2. Let S be a finite set of finite-arity relations on Dh, where IC denotes 
the size of D, such that Rep(S)  = &-RELATIONS. a Then the following hold: 

(1) The problems SAT(S) and SATc(S) are both NQL-complete and 
complete for NP. 

(2) The problems Q-SAT(S), &-SATc(S), are PSPACE-complete. Letting 
k = 2, the problem S-SAT(S) and S-SATc(S) are PSPACE-complete. 

(3) Let IC 2 2. Let S be any finite set of finite-arity relations on DI, such that 
Rep(S)  == Dk-RELATIONS. Then, the following hold: 
(a) The problem MAX-SAT(S) is MAX SNP-complete. Consequently, 

there exists E > 0 such that approximating the problem within E times 
optimum is NP-hard. 

(b) 3 E > 0 for which approximating the problems MAX-Q-SAT(S) 
within E times optimum is PSPACE-hard. 

(c) Letting k = 2, 3 E > 0 for which approximating the problems MAX- 
S-SAT(S) within E times optimum is PSPACE-hard. 

(4) Let S and 'I'be finite sets of finite-arity relations onan arbitrary nonempty 
set D. Let E > 0. Then, the following hold: 
(a) The problem SAT(S) is O(n Zogn) time-, linear size-, and O(logn) 

space-bounded reducible to the problem of approximating the prob- 
lem MAX-NSF-SAT(S) within a factor of e times optimum. There- 
fore whenever the problem SAT(S) is NP-hard, approximating the 
problem MAX-NSF-SAT(S) within E times optimum is NP-hard. 

(b) The problems Q-SAT(S), Q-SAT(S) are O(n Zogn) time-, linear 
size-, and O(Zogn) space-bounded reducible to the problems of ap- 
proximating the problems MAX-NSF-Q-SAT(S), MAX-NSF-S- 
SAT(S), respectively, within a factor of a' times optimum. 

a Like in Boolean case, this means that all finite arity relations on Dk can 
be equivalently represented as finite existentially-quantified conjunctions of 
relations in S applied to variables (to variables and constant symbols in C). 

Fig. 2. Summary of our results for constrained satisfaction problems. The results 
are organized in a 1-1 correspondence with the results in Figure 1. 

2.1 Extensions 

As mentioned earlier, the results outlined here can be extended in at least two 
different directions, We briefly discuss these extensions. 
Succinctly specified quantified formulas. By using the succinct specifica- 
tions studied in [LW92,MH+94,Or82], it is possible to  define hierarchically and 
periodically/dynamically specified quantified and stochastically quantified for- 
mulas. The techniques developed here and in [HSMOla,HSMOlb,MH+94] can 
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be combined to  yield appropriate upper and lower bounds for such problems. 
Quantified System of Equations. Let F be an algebraic structure. The 
formalism of constraint satisfaction problems can be extended to define the 
We denote the problem of determining the number of satisfying assignment 
of an S-formula, determining the solvability of a system of equations on F 
and counting the number of solutions to a system of equations on an alge- 
braic structure F by #-SAT(S), SA'I'(F) and #-SAT(F) respectively. We 
define the corresponding quantified and stochastically quantified versions by 
#-&-SAT(S), Q-SAT(F), #-Q-SAT(F),  #-S-SAT(S), S-SAT(F) and #- 
S-SAT( F) respectively. The techniques developed here and in [HSMOla] can 
be naturally adapted to characterize the computational complexity of such 
problems. Based on the comprehensive discussion [LMP99,LMS96], we be- 
lieve that these problems provide a rich collection of problems that might 
have wide applicability in AI literature. 

2.2 Discussion and Signtficance 

We discuss some of the above specific results in some detail. Note that some 
of the results that follow as corollaries of our general theorems have also 
been obtained previously by us or other researchers. Our purpose here is to 
demonstrate the effectiveness of the unified approach and to  show that general 
results presented contain much of the earlier results as subsets of the general 
results. Moreover, the unified approach yields a large collection of new results 
that are reported for the first, time in the literature. We make the following 
additional observations about the results summarized above. 
First, note that several simple but fundamental properties of our model, that 
generalize those of previous models such as the generalized CNF satisfiability 
problems, the constrained satisfiability problems, and the classes of graphical 
problems ECC and LCC of [Sc78,FV93, JCG97,CJ+OO, JCG971, respectively. 
1. Most of our constructions hold, for domains D of arbitrary not necessarily 
finite cardinality. Moreover, they hold for problems expressed in terms of fairly 
arbitrary sets of algebraically-expressed constraints S on D, In particular, 
these sets of constraints also need not be finite. 
2. Most of our constructions use the Boolean operator and, only in the sense 
of simultaneously satisfiable over the domain U and given set of constraints 
from S. 
3. All of our constructions are explicitly expressed as strongly-local graph 
/hypergraph replacements. This guarantees their extensibility. 

Second, the problems MAX-Q-SAT(S) and MAX-S-SAT(S) are 
PSPACE-hard (as opposed to NP-hard) to approximate beyond a fixed 
constant (a separate constant for each problem). Moreover MAX-NSF-Q- 
SAT(S) and MAX-NSF-S-SAT(S) are PSPACE-hard within any nE fac- 
tor. Thus our results provide natural algebraic classes of optimization problems 
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that  can be potentially used for proving non-approximability of PSPACE- 
hard optimization problems. The un-quantified version of these problems have 
been used in the past, to derive a number of non-approximability results. Sim- 
ilar results can be now obtained in a game theoretic setting. 
Third, except for results in [FV93,JCG97] on when the problems SAT(S) 
are polynomially solvable and the well-known results that, the problems IC- 
COLORABLE-GRAPH and MAX-IC-COLORABLE-GRAPH are NP- and MAX 
SNP-complete, respectively, very few general hardness results were known 
previously for sets of relations on sets D such that 3 5 101 < 00. 

Fourth, most of our reductions showing hardness are reductions that relate 
simultaneously the complexities of decision, counting, maximization, or ap- 
proximate maximization variants of the variant constraint satisfaction prob- 
lems. For e.g. the same basic reduction can be simultaneously used to show 
that Q-1-3SAT is PSPACE-hard, MAX-Q-1-3SAT is PSPACE-hard to 
approximate beyond a certain constant, #-&-l-SSAT is #-PSPACE-hard, 
etc. Furthermore, generally, the reduction simultaneoiisly also preserve the 
underlying graph theoretic structure of the problem instances. For want of a 
better term, we call these single multi-purpose reductions SIMULTANEOUS- 
reductions. 
Our results extend earlier results and/or answer open problems in the lit- 
erature. These include: (i) Ladner [La89,BMS81] to identify new natural 
#PSPACE-hard and -complete counting problems, (ii)Condon, Feigenbaum, 
Lund and Shor [CF+93,CF+94] to identify natural classes of PSPACE-  
hard optimization problems with provably PSPACE-hard E-approxihation 
problems, (iii) work of Papadimitriou [Fa851 on Stochastic satisfiability prob- 
lems (where only S-3SAT was considered) and (iv) Schaefer [Sc78] on quan- 
tified generalized satisfiability problems extending it to non-Boolean do- 
main and providing tighter reductions). Progress is made on the approx- 
imability of the problems MAX-S-SAT(S) and MAX-Q-SAT(S): a sig- 
nificant step towards obtaining a dichotomy theorems for these problems. 
recently there has been substantial interest in obtaining dichotomy results 
for decision, optimization and counting versions of satisfiability problems. 
[CF+93,CF+94,Cr95,KSW97,LMP99]. While (non)-approximability of NP- 
hard optimization problems has received a lot of attention over the recent 
years, approximahility of PSPACE-hard optimization problems has only been 
studied by us [HSM94,MH+94] for quantified and succinctly specified prob- 
lems, by Condon, Feigenbaum, Lund and Shor [CF+93,CF+94] for quantified 
and stochastic satisfiability problems and by Lincoln, Mitchell and Scederov 
in the context of linear logic [LMS96]. 

3 Overall technique 

Our methodology is based upon the following two simple yet powerful con- 
cepts. 
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1. Relational Representability: As the name suggests, letting S and T be 
sets of relations/algebraic constraints on a common domain D, the intuitive 
concept that  the relations in S are expressible (or extending the terminology 
from [Sc78] are representable) by finite conjunctions of the relations in T. This 
is formalized in Definition 1 below: 
Definition 1 (1) W e  denote the set of all finite-arity relations on a 

non-empty set D logicallg equivalent t o  finite existentially-quantified 
conjunctions of relations/algebraic constraints in S applied to variables 
(to variables and constant symbols an C )  b y  R e p ( S )  (by R e p c ( S ) . )  

(2) W e  say that a relation S is, and a set of relations S are, representable 
(constant-free representable) b y  a set of relations/algebraic constraints T 
if and only if S E R e p c ( T )  (S E R e p ( T ) )  and S C R e p c ( T )  (S c 
R e p ( T )  , respectively,) 

Note: Throughout this paper Rep(S)  denotes the set of relations expressible by 
constqnt-free S-jormulas; and Repc(  S )  denotes the set of relations expressible 
by S-formulas with constants from C .  
Variaqts of the concepts of Definition 1 on Eative representability of 
ordered-pairs (S,T) of sets of relations, henc denoted collectively by 
relational representability, are well known, especially in mathematical logic. 
Previously in complexity theory, relational repre tability as used here and 
the individual constraint satisfaction problems s ed have usually been re- 
stricted to  finite sets S of finite-arity relations on finite sets D, generally the 
set (0 , l ) .  Additionally, their uses are generally restricted to formulas or (oc- 
casionally also to  quantified formulas), [Ho97,CES85,GJ79, JCG97,Sc78]. In 
contrast, our results apply with the exception of the problems S-SAT(S) to  
both finite and infinite domains and sets of rela,tions/constraints. 

For any set D and finite sets of finite-arity relations S and T on D, if S c 
Rep(T) (or S c Repc(T)) ,  then 

(1) the problem SAT(S) is 1-strongly local reducible to t+he problem SAT(T) 

(2) the problem Q-SAT(S) is efficiently reducible to the problem Q-SAT(T) 

(01: SATctT)), 

(or Q-SATc(T)), and 

(3) (when D is finite) the problem S-SAT(S) is efficiently reducible to the 
problem S-SAT(T) (or S-SATc(T)). 

(4) Moreover often, the reductions of items 1-3 can also be used to relate the 
relative complexities of the associated MAX- problems. 

Fig. 3. Meta-Result 2. Relational Representability and Strongly-Local Reductions. 

2. Local Replacements: Let IC 2 1. The second basic component of our 
methodology consists of the formalization and systematic investigation of the 
properties of the classes of I%-strongly-local and Ic-strongly-local-enforcer re- 
placements and reduction#, especially with respect to constraint satisfaction 

11 



problems. The basic idea of local reductions is not new and can be traced 
back to  [GJ79] for decision problems, and recently in [HSM94,KSW97,Cr95] 
for optimization problems. The new contribution of this and companion pa- 
pers is to formalize the complexity theory properties of such reductions. I n  
contrast, previous researchers, e. 9. [GJ79, CES851, have discussed eficient re- 
ductions by local replacement; but they have not gone far in formalizing, or in 
ch aract erizing the comp lezi t y- theore tic properties of, their concepts. 
Let IC 2 1. Let Dl,& be nonempty sets. Let S with JSJ = p and T with 
IT1 = q be finite nonempty sets of finite-arity relations on D1 and D2, re- 
spectively. We define k-strongly-local and Ic-strongly-local-enforcer reductions 
of the problem SAT(S) to the problem SAT(T) to be k-strongly-local and 
k-strongly-Zocal-enforcer replacements from the set of all S-formulas to the set 
of all T-formulas, that are also reductions Intuitively, Vk, in k-strongly-local 
replacements we have templates, to  be treated as macros, with the same tem- 
plate for each variable and distinct templates for each S-clause. Details about 
macro expansions and the the way the variables are replaced depend very 
simply on the value of k. Figure 3 shows how local replacement/reductions 
and relational representability can be combined to obtain efficient reductions 
between classes of satisfiability problems. 
Acknowledgement: We thank Anne Condon, Joan Feigenbaum and Gabriel 
Istrate for interesting discussions on related topics and pointers to related 
literature. 
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