2,202 research outputs found

    Random Broadcast Based Distributed Consensus Clock Synchronization for Mobile Networks

    Get PDF
    Clock synchronization is a crucial issue for mobile ad hoc networks due to the dynamic and distributed nature of these networks. In this paper, employing affine models for local clocks, a random broadcast based distributed consensus clock synchronization algorithm is proposed. In the absence of transmission delays, we theoretically prove the convergence of the proposed scheme, which is further illustrated by numerical results. In addition, it is concluded from simulations that the proposed scheme is scalable and robust to transmission delays as well as different accuracy requirements

    Adaptive Synchronization of Robotic Sensor Networks

    Full text link
    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, we present the application and the evaluation of the existing synchronization methods on robotic sensor networks. We show through simulations that Adaptive Value Tracking synchronization is robust and efficient under mobility. Hence, deducing the time synchronization problem in robotic sensor networks into a dynamic value searching problem is preferable to existing synchronization methods in the literature.Comment: First International Workshop on Robotic Sensor Networks part of Cyber-Physical Systems Week, Berlin, Germany, 14 April 201

    Task allocation in group of nodes in the IoT: A consensus approach

    Get PDF
    The realization of the Internet of Things (IoT) paradigm relies on the implementation of systems of cooperative intelligent objects with key interoperability capabilities. In order for objects to dynamically cooperate to IoT applications' execution, they need to make their resources available in a flexible way. However, available resources such as electrical energy, memory, processing, and object capability to perform a given task, are often limited. Therefore, resource allocation that ensures the fulfilment of network requirements is a critical challenge. In this paper, we propose a distributed optimization protocol based on consensus algorithm, to solve the problem of resource allocation and management in IoT heterogeneous networks. The proposed protocol is robust against links or nodes failures, so it's adaptive in dynamic scenarios where the network topology changes in runtime. We consider an IoT scenario where nodes involved in the same IoT task need to adjust their task frequency and buffer occupancy. We demonstrate that, using the proposed protocol, the network converges to a solution where resources are homogeneously allocated among nodes. Performance evaluation of experiments in simulation mode and in real scenarios show that the algorithm converges with a percentage error of about±5% with respect to the optimal allocation obtainable with a centralized approach

    PADS: Practical Attestation for Highly Dynamic Swarm Topologies

    Full text link
    Remote attestation protocols are widely used to detect device configuration (e.g., software and/or data) compromise in Internet of Things (IoT) scenarios. Unfortunately, the performances of such protocols are unsatisfactory when dealing with thousands of smart devices. Recently, researchers are focusing on addressing this limitation. The approach is to run attestation in a collective way, with the goal of reducing computation and communication. Despite these advances, current solutions for attestation are still unsatisfactory because of their complex management and strict assumptions concerning the topology (e.g., being time invariant or maintaining a fixed topology). In this paper, we propose PADS, a secure, efficient, and practical protocol for attesting potentially large networks of smart devices with unstructured or dynamic topologies. PADS builds upon the recent concept of non-interactive attestation, by reducing the collective attestation problem into a minimum consensus one. We compare PADS with a state-of-the art collective attestation protocol and validate it by using realistic simulations that show practicality and efficiency. The results confirm the suitability of PADS for low-end devices, and highly unstructured networks.Comment: Submitted to ESORICS 201

    Distributed Local Linear Parameter Estimation using Gaussian SPAWN

    Full text link
    We consider the problem of estimating local sensor parameters, where the local parameters and sensor observations are related through linear stochastic models. Sensors exchange messages and cooperate with each other to estimate their own local parameters iteratively. We study the Gaussian Sum-Product Algorithm over a Wireless Network (gSPAWN) procedure, which is based on belief propagation, but uses fixed size broadcast messages at each sensor instead. Compared with the popular diffusion strategies for performing network parameter estimation, whose communication cost at each sensor increases with increasing network density, the gSPAWN algorithm allows sensors to broadcast a message whose size does not depend on the network size or density, making it more suitable for applications in wireless sensor networks. We show that the gSPAWN algorithm converges in mean and has mean-square stability under some technical sufficient conditions, and we describe an application of the gSPAWN algorithm to a network localization problem in non-line-of-sight environments. Numerical results suggest that gSPAWN converges much faster in general than the diffusion method, and has lower communication costs, with comparable root mean square errors

    Cooperative Synchronization in Wireless Networks

    Full text link
    Synchronization is a key functionality in wireless network, enabling a wide variety of services. We consider a Bayesian inference framework whereby network nodes can achieve phase and skew synchronization in a fully distributed way. In particular, under the assumption of Gaussian measurement noise, we derive two message passing methods (belief propagation and mean field), analyze their convergence behavior, and perform a qualitative and quantitative comparison with a number of competing algorithms. We also show that both methods can be applied in networks with and without master nodes. Our performance results are complemented by, and compared with, the relevant Bayesian Cram\'er-Rao bounds
    corecore