3,308 research outputs found

    Algebraic and Combinatorial Methods in Computational Complexity

    Get PDF
    At its core, much of Computational Complexity is concerned with combinatorial objects and structures. But it has often proven true that the best way to prove things about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The PCP characterization of NP and the Agrawal-Kayal-Saxena polynomial-time primality test are two prominent examples. Recently, there have been some works going in the opposite direction, giving alternative combinatorial proofs for results that were originally proved algebraically. These alternative proofs can yield important improvements because they are closer to the underlying problems and avoid the losses in passing to the algebraic setting. A prominent example is Dinur's proof of the PCP Theorem via gap amplification which yielded short PCPs with only a polylogarithmic length blowup (which had been the focus of significant research effort up to that point). We see here (and in a number of recent works) an exciting interplay between algebraic and combinatorial techniques. This seminar aims to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic and combinatorial methods in a variety of settings

    Sparse multivariate polynomial interpolation in the basis of Schubert polynomials

    Full text link
    Schubert polynomials were discovered by A. Lascoux and M. Sch\"utzenberger in the study of cohomology rings of flag manifolds in 1980's. These polynomials generalize Schur polynomials, and form a linear basis of multivariate polynomials. In 2003, Lenart and Sottile introduced skew Schubert polynomials, which generalize skew Schur polynomials, and expand in the Schubert basis with the generalized Littlewood-Richardson coefficients. In this paper we initiate the study of these two families of polynomials from the perspective of computational complexity theory. We first observe that skew Schubert polynomials, and therefore Schubert polynomials, are in \CountP (when evaluating on non-negative integral inputs) and \VNP. Our main result is a deterministic algorithm that computes the expansion of a polynomial ff of degree dd in Z[x1,,xn]\Z[x_1, \dots, x_n] in the basis of Schubert polynomials, assuming an oracle computing Schubert polynomials. This algorithm runs in time polynomial in nn, dd, and the bit size of the expansion. This generalizes, and derandomizes, the sparse interpolation algorithm of symmetric polynomials in the Schur basis by Barvinok and Fomin (Advances in Applied Mathematics, 18(3):271--285). In fact, our interpolation algorithm is general enough to accommodate any linear basis satisfying certain natural properties. Applications of the above results include a new algorithm that computes the generalized Littlewood-Richardson coefficients.Comment: 20 pages; some typos correcte

    Fast computation of the matrix exponential for a Toeplitz matrix

    Full text link
    The computation of the matrix exponential is a ubiquitous operation in numerical mathematics, and for a general, unstructured n×nn\times n matrix it can be computed in O(n3)\mathcal{O}(n^3) operations. An interesting problem arises if the input matrix is a Toeplitz matrix, for example as the result of discretizing integral equations with a time invariant kernel. In this case it is not obvious how to take advantage of the Toeplitz structure, as the exponential of a Toeplitz matrix is, in general, not a Toeplitz matrix itself. The main contribution of this work are fast algorithms for the computation of the Toeplitz matrix exponential. The algorithms have provable quadratic complexity if the spectrum is real, or sectorial, or more generally, if the imaginary parts of the rightmost eigenvalues do not vary too much. They may be efficient even outside these spectral constraints. They are based on the scaling and squaring framework, and their analysis connects classical results from rational approximation theory to matrices of low displacement rank. As an example, the developed methods are applied to Merton's jump-diffusion model for option pricing

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Forecasting confined spatiotemporal chaos with genetic algorithms

    Get PDF
    A technique to forecast spatiotemporal time series is presented. it uses a Proper Ortogonal or Karhunen-Lo\`{e}ve Decomposition to encode large spatiotemporal data sets in a few time-series, and Genetic Algorithms to efficiently extract dynamical rules from the data. The method works very well for confined systems displaying spatiotemporal chaos, as exemplified here by forecasting the evolution of the onedimensional complex Ginzburg-Landau equation in a finite domain.Comment: 4 pages, 5 figure
    corecore