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Forecasting Confined Spatiotemporal Chaos with Genetic Algorithms
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A technique to forecast spatiotemporal time series is presented. It uses a proper orthogonal or
Karhunen-Loève decomposition to encode large spatiotemporal data sets in a few time series, and genetic
algorithms to efficiently extract dynamical rules from the data. The method works very well for confined
systems displaying spatiotemporal chaos, as exemplified here by forecasting the evolution of the one-
dimensional complex Ginzburg-Landau equation in a finite domain.

PACS numbers: 05.45.Tp, 05.45.Jn
Nonlinear time-series analysis provides tools to iden-
tify dynamical systems from measured data [1]. The ap-
proach has been greatly developed in the last few years
and provides, under the assumption of deterministic be-
havior, useful recipes for system control, noise reduction,
and forecasting. Applications of these techniques to situa-
tions of spatiotemporal chaos, however, is still in its begin-
nings [2,3]. There are two main reasons for this: (a) The
large attractor dimensions of spatiotemporally chaotic sys-
tems, increasing with system size, pose serious difficulties
to the standard methods of delay embedding and attrac-
tor reconstruction. (b) The right choice of variables is far
from obvious: whereas the time evolution of an observable
at a particular space point could be enough in some par-
ticular situations, decaying space correlations and propaga-
tion phenomena would turn this to be a poorly performing
choice in most cases.

A very efficient method for time-series prediction using
genetic algorithms (GA) has been recently proposed in [4]
for nonextended systems. Comparatively small data sets
are enough to use this technique, which makes it competi-
tive in facing difficulty (a), i.e., prediction in the presence
of attractors of a large dimension. In this Letter we ex-
tend the GA approach to the forecasting of confined spa-
tiotemporal chaos. By this we mean the situation in which
chaotic dynamics in an extended system is strongly af-
fected by the presence of boundaries. Our interest in this
situation, somehow intermediate between low-dimensional
chaos and homogeneous extensive chaos, arises from its
relevance to real experimental situations [5,6], and from
recent work [7] leading to theoretical understanding: the
boundaries break translational symmetry and the resulting
phase rigidity restricts the shape of the chaotic fluctuations
allowed. This manifests, for example, in the appearance of
nontrivial average patterns [5,7] and in inhomogeneities in
other statistical characteristics [6,8]. Under these circum-
stances the empirical orthogonal functions (EOF’s) [9,10]
obtained from a proper orthogonal decomposition (POD,
also known as Karhunen-Loève decomposition) provide an
excellent basis for describing the system dynamics. They
are different from simple Fourier modes and contain infor-
mation (optimal in a precise sense) on the broken trans-
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lational symmetry. The amplitudes of the most important
EOF’s will be the variables chosen in response to difficulty
(b). By increasing system size, the dynamics would leave
the regime of confined spatiotemporal chaos and at some
point extracting and using information on local structures
as in the methods of [2,3] would become advantageous
over the POD representation. The GA’s, however, could
still be used as predictors for the new representation.

We now describe in more detail our method for spa-
tiotemporal forecasting, in which the POD is used to
encode the large spatiotemporal data set in a few time
series, and the GA approach is used to obtain the corre-
sponding forecasts. Given a time series of spatial patterns
U�x, n�, where n � 1, . . . , N labels the temporal sequence
and x labels the M spatial points in a d-dimensional mesh,
the POD decomposes the fluctuations around the temporal
mean u�x, n� � U�x, n� 2 �U�x, n��n into modes ranked
by their temporal variance. As a result, a set of spatial
EOF’s and associated temporal amplitude functions
are obtained. The EOF’s fi�x� (i � 1, . . . , M) are the
(orthogonal) eigenfunctions of the covariance matrix of
the data C�x, x0� � �u�x, n�u�x0, n��n and are the spatial
structures statistically more representative of the fluctua-
tions in the data set. Temporal amplitude functions ai�n�,
describing the dynamics of the system, are obtained from
the modal decomposition u�x, n� �

PM
i�1 ai�n�fi�x�. If

only K , M of the EOF’s (the ones containing the high-
est temporal variance as measured by the corresponding
eigenvalues) are used in the reconstruction process, the
set of reconstructed patterns

uK �x, n� �
KX

i�1

ai�n�fi�x� (1)

is still the best approximation one can obtain by linearly
combining K arbitrary spatial patterns multiplied by K ar-
bitrary amplitude functions [9]. Even more, it has been
shown for several chaotic and even turbulent confined sys-
tems [9,10] that taking a few dominating modes K ø M
provides a good approximation to the complete data set.

Forecasting of the amplitude functions is performed
with a genetic algorithm. In general, GA’s are computa-
tional methods to solve optimization problems in which the
© 2000 The American Physical Society
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optimal solution is searched iteratively with steps inspired
in the Darwinian processes of natural selection and sur-
vival of the fittest [11]. Here the optimization problem
to be solved is finding the empirical model best describing
the data, that is, finding the optimum function Fi that mini-
mizes the difference E2

i �
PN

n�1�ai�n� 2 eai�n��2 between
the values ai�n� of each time series and the corresponding
estimator given by

eai�n� � Fi�ai�n 2 1�, ai�n 2 2�, . . . , ai�n 2 D�� ,

(2)

with D 1 1 # n # N . Finding Fi , i � 1, . . . , M
amounts in identifying the dynamical system behind the
data set. Once found, Eq. (2) can be used to predict the
future evolution of the system. If D is large enough,
the existence of the exact Fi’s is guaranteed by Takens
theorem and its extensions [1], but a smaller D can give
approximate dynamics Fi with already a reasonably low
error Ei . In addition, we are not looking for all the M
estimators but only for the K associated to the dominant
EOF’s. In our approach, the time series associated to
each EOF are modeled independently. More general
multivariate estimators, with each eai possibly dependent
on different aj’s, may in principle be used, but we restrict
ourselves to the choice (2) for algorithmic simplicity.

The power of the GA resides in that a huge functional
space is explored in order to find an optimal Fi . Each
possible Fi is a formula consisting in a combination of nu-
merical constants, variables, and arithmetic operators. This
combination is stored in the computer as a symbolic string.
The only limitation to the allowed functional forms (be-
sides the limitation to arithmetic operations) is the maxi-
mum allowed length of the symbolic string. The search
procedure begins by randomly generating an initial popu-
lation of potential estimators Fi that will be subjected to
the evolutionary process. The evolution is carried out by
selecting from the initial population the strongest individu-
als, i.e., the functions that best fit the data, giving a smaller
Ei . In practice, only a temporal part of the data set is used
in this step (the training set), whereas the rest of the data
are used later for validating the efficiency of the predic-
tion method (validating set). The strongest strings choose
a mate for reproduction while the weaker strings disap-
pear. “Reproduction” consists in interchanging parts of
the symbolic strings (the “genetic material”) between the
two mating individuals. As a result, a new generation of
individuals (which includes the original “parent” string) is
generated. The new population is then subjected to mu-
tation processes that change, with low probability, small
parts of the symbolic strings. The evolutionary steps are
repeated with the new generation, and the process is itera-
ted until an optimum individual is finally found or after a
fixed number of generations. Further details about the im-
plementation of the algorithm can be consulted in [12].

The formulas Fi are optimized only for predicting the
value of ai�n� in terms of the D amplitudes immediately
before in time. We call this “one-step-ahead forecast.”
One can in principle iterate the formulas to obtain suc-
cessively predictions for ai�n 1 1�, ai�n 1 2�, etc. But
this will normally lead to results rapidly diverging with re-
spect to the correct values because of error accumulation
and amplification [4].

However, GA’s can be designed specifically to forecast
values of the time series not necessarily in the immediate
future. For example, finding the function FT

i minimizing
the error between the actual series and the estimator

eai
T �n� � FT

i �ai�n 2 T �, ai�n 2 T 2 1�, . . . , ai�n 2 D�� ,

(3)

with D 1 1 # n # N , allows direct prediction of ai�N 1

T �, that is, prediction of T steps ahead, without iteration.
Numerical results.—To illustrate the forecasting

method we generate a data set from the numerical
simulation of a well-studied model equation displaying
spatiotemporal chaos, the one-dimensional complex
Ginzburg-Landau equation (CGLE), supplemented with
Dirichlet boundary conditions at the ends of a finite
interval [10]. We write it as

≠tA�x, t� � q2�1 1 a�≠2
xA 1 A 2 �1 1 ib�AjAj2,

(4)

where q, a, and b are real and positive and A�x, t� is a
complex-valued field. We solve it in the interval �0, p� so
that the boundary conditions read A�0� � A�p� � 0. By
simple scaling of the spatial coordinate one sees that this is
equivalent to rewriting the equation with q � 1, but solv-
ing it in a domain of size L � p�q. Thus the parameter
q is equivalent to an inverse system size, and decreasing
it is equivalent to increasing system size. Following [10]
we fix a � 4 and b � 24 [13]. For q , 0.2 the system
displays spatiotemporal chaos for most of the initial condi-
tions. Decreasing q one encounters the regime of confined
spatiotemporal chaos that we are interested in before ap-
proaching homogeneous extensive chaos at large system
sizes (q ! 0) [14]. According to [10], the correlation di-
mension of the dynamical attractor for q � 0.14 is 9.08.
We sample our simulation every t � 0.1 time units and
at spatial locations separated D � p�100 space units, and
we follow it for 80 time units (800 samples) after discard-
ing the initial transient starting from random initial con-
ditions (this sampling leads to N � 800 and M � 100).
This will be our “training set” to be fed into the GA. The
simulation is then continued for a few more time units to
provide the “validation set” which is hidden to the GA. It
is used later to check the accuracy of the predictions.

We choose as the basic field to be forecasted the modu-
lus of the complex field U�x, n� � jA�x, t � nt�j. The al-
gorithm seems to perform slightly better in forecasting the
real or the imaginary parts of A, but we use U to show
that the algorithm works well with nonlinear combina-
tions of the basic dynamical quantities. In Fig. 1 we show
parts of typical spatiotemporal evolutions for q � 0.12
and q � 0.16. Clearly, reducing q decreases the spatial
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FIG. 1. Spatiotemporal evolutions of U�x, n�, as given by the
CGLE for q � 0.12 (left) and q � 0.16 (right). Black corre-
sponds to U � 0, and lighter gray to high values of U.

scales, as corresponding to an effectively larger system
size, but also the complexity of the evolution is increased.
In both cases it is clear that the motion of the dynamical
structures is constrained by the presence of the walls, as
corresponding to confined spatiotemporal chaos.

We solve Eq. (4) for q � 0.18, 0.16, 0.14, 0.12 and per-
form the POD on the fluctuations u�x, n� of the modu-
lus around its temporal mean value in the resulting data
sets. The number of relevant EOF’s (which we define to
be those accounting for at least 99% of the data variance
[10]) are, respectively, 9, 11, 13, and 15. We note that this
confirms the expected approximate linear scaling of the
number of EOF’s with increasing system size L (~ q21)
[15]. It is somehow surprising that this extensive scaling
appears even when chaos is not homogeneous, but is still
influenced by the boundaries. This fact has been observed
in other systems before [6,8]. For illustrative purposes,
we show in Fig. 2 the two most relevant EOF’s from our
training set at q � 0.16, and the corresponding temporal
amplitude functions. The chaotic character of these series
is evident.

We next apply the GA to each of the amplitude functions
of the relevant EOF’s. We use the following parameters for
all the values of q: number of generations in the evolution-
ary process, 2000; number of individuals in each genera-
tion, 120; maximum number of symbols allowed for each
symbolic string, 20; maximum delay in (2) or (3), D � 18
[16]. Tuning of these parameters for each particular value
of q would improve forecasting, but it would make com-
parisons more difficult. Predictions for the field u�x, t�
are then built up by reconstruction according to (1) with
K the number of relevant EOF’s defined above. In Fig. 3
2302
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FIG. 2. The first two EOF’s (a),(b) and the corresponding time
amplitude functions (c),(d) from the training set at q � 0.16.

we show the one-step-ahead forecasted fields, more con-
cretely the prediction for the first step beyond the training
set, n � 801. It is compared with the actual numerical pat-
tern in the validation set, for q � 0.12, 0.14 and q � 0.16,
displaying an excellent performance.

We quantify the quality of the prediction in terms of the
mean square error eq�n�:

e2
q�n� �

1
M

MX
j�1

�euK �x � jD, n� 2 u�x � jD, n��2, (5)

where euK �x, n� is the predicted pattern reconstructed from
Eq. (1) and u�x, n� is the actual pattern from the valida-
tion set. As stated before, GA’s can be used to predict
future values some time steps ahead, without the need
of iterating the one-step-ahead predictor (which early be-
comes useless because of the expected exponential growth
of errors). Figure 4 shows eq�n� as a function of n for
q � 0.16 calculated from (a) the one-step-ahead predic-
tion formulas obtained from the training set, but applied
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FIG. 3. The forecasted moduli fields (dashed line) as compared
to the real ones (solid line) for the one-step-ahead prediction for
several values of q.
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FIG. 4. Errors as a function of n in the validation set, for q �
0.16. Circles: One-step-ahead prediction. Diamonds: Iteration
of the one-step-ahead formulas starting from the training set
(n # 800). Squares: Five-step-ahead prediction.

to obtain the pattern at step n from the previous D values
in the validation set; (b) iteration of the one-step-ahead
formulas starting from the last D data in the training set;
(c) five-step-ahead prediction from a formula of type (3)
with T � 5, obtained by the GA in the training set, and
used into the validation set. We see that the improvement
in accuracy is notorious when iteration is avoided. We note
that the errors in methods (a) and (c) remain bounded even
when n is far from the values from which the prediction
formulas were estimated (i.e., the training set n , 800).
This confirms that the method is not simply fitting data,
but rather it has really found approximate dynamical rules
within the deterministic spatiotemporal series.

Figure 5 displays the average error �eq�, which is the
temporal average of eq�n� with n in the validation range
displayed in Fig. 4, as a function of q (for the one-step-
ahead prediction). Despite including more EOF’s in the
reconstruction for decreasing q, the prediction error shows
a tendency to increase. This is a consequence of the in-
crease in complexity (and in attractor dimension) of the
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FIG. 5. Mean error for the one-step-ahead prediction in the
validation set as a function of q.
dynamics by the effective increase in system size (	q21).
Since we keep the maximum delay D fixed, the embed-
ding of the data set becomes more incomplete at smaller
q and the prediction deteriorates. In addition, for smaller
q the confined or boundary influenced character of the
spatiotemporal chaos in the system is lost and a descrip-
tion in terms of local structures will be certainly more
efficient [2].

In summary, we have presented a method to forecast the
evolution of spatially extended systems based in the com-
bination of POD and GA’s. The method performs very
well in situations of confined spatiotemporal chaos as ex-
emplified by the CGLE in a finite interval. We are testing
the method for prediction from noisy natural data sets. Re-
sults obtained in forecasting sea surface temperature pat-
terns [17] are encouraging.
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