825 research outputs found

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Cycles are strongly Ramsey-unsaturated

    Full text link
    We call a graph H Ramsey-unsaturated if there is an edge in the complement of H such that the Ramsey number r(H) of H does not change upon adding it to H. This notion was introduced by Balister, Lehel and Schelp who also proved that cycles (except for C4C_4) are Ramsey-unsaturated, and conjectured that, moreover, one may add any chord without changing the Ramsey number of the cycle CnC_n, unless n is even and adding the chord creates an odd cycle. We prove this conjecture for large cycles by showing a stronger statement: If a graph H is obtained by adding a linear number of chords to a cycle CnC_n, then r(H)=r(Cn)r(H)=r(C_n), as long as the maximum degree of H is bounded, H is either bipartite (for even n) or almost bipartite (for odd n), and n is large. This motivates us to call cycles strongly Ramsey-unsaturated. Our proof uses the regularity method

    Large monochromatic components in edge colored graphs with a minimum degree condition

    Get PDF
    It is well-known that in every k-coloring of the edges of the complete graph Kn there is a monochromatic connected component of order at least (formula presented)k-1. In this paper we study an extension of this problem by replacing complete graphs by graphs of large minimum degree. For k = 2 the authors proved that δ(G) ≥(formula presented) ensures a monochromatic connected component with at least δ(G) + 1 vertices in every 2-coloring of the edges of a graph G with n vertices. This result is sharp, thus for k = 2 we really need a complete graph to guarantee that one of the colors has a monochromatic connected spanning subgraph. Our main result here is that for larger values of k the situation is different, graphs of minimum degree (1 − ϵk)n can replace complete graphs and still there is a monochromatic connected component of order at least (formula presented), in fact (formula presented) suffices. Our second result is an improvement of this bound for k = 3. If the edges of G with δ(G) ≥ (formula presented) are 3-colored, then there is a monochromatic component of order at least n/2. We conjecture that this can be improved to 9 and for general k we (onjectu) the following: if k ≥ 3 and G is a graph of order n such that δ(G) ≥ (formula presented) n, then in any k-coloring of the edges of G there is a monochromatic connected component of order at least (formula presented). © 2017, Australian National University. All rights reserved

    The externally definable Ramsey property and fixed points on type spaces

    Full text link
    We discuss the externally definable Ramsey property, a weakening of the Ramsey property for ultrahomogeneous structures, where the only colourings considered are those that are externally definable: that is, definable with parameters in an elementary extension. We show a number of basic results analogous to the classical Ramsey theory, and show that, for an ultrahomogeneous structure M, the externally definable Ramsey property is equivalent to the dynamical statement that, for each natural number n, every subflow of the space of n-types with parameters in M has a fixed point. We discuss a range of examples, including results regarding the lexicographic product of structures.Comment: 42 pages, 1 figur
    corecore