12,093 research outputs found

    Van der Corput sets in Z^d

    Get PDF
    In this partly expository paper we study van der Corput sets in Zd\Z^d, with a focus on connections with harmonic analysis and recurrence properties of measure preserving dynamical systems. We prove multidimensional versions of some classical results obtained for d=1d=1 in \cite{K-MF} and \cite{R}, establish new characterizations, introduce and discuss some modifications of van der Corput sets which correspond to various notions of recurrence, provide numerous examples and formulate some natural open questions

    The early evolution of the H-free process

    Full text link
    The H-free process, for some fixed graph H, is the random graph process defined by starting with an empty graph on n vertices and then adding edges one at a time, chosen uniformly at random subject to the constraint that no H subgraph is formed. Let G be the random maximal H-free graph obtained at the end of the process. When H is strictly 2-balanced, we show that for some c>0, with high probability as nn \to \infty, the minimum degree in G is at least cn1(vH2)/(eH1)(logn)1/(eH1)cn^{1-(v_H-2)/(e_H-1)}(\log n)^{1/(e_H-1)}. This gives new lower bounds for the Tur\'an numbers of certain bipartite graphs, such as the complete bipartite graphs Kr,rK_{r,r} with r5r \ge 5. When H is a complete graph KsK_s with s5s \ge 5 we show that for some C>0, with high probability the independence number of G is at most Cn2/(s+1)(logn)11/(eH1)Cn^{2/(s+1)}(\log n)^{1-1/(e_H-1)}. This gives new lower bounds for Ramsey numbers R(s,t) for fixed s5s \ge 5 and t large. We also obtain new bounds for the independence number of G for other graphs H, including the case when H is a cycle. Our proofs use the differential equations method for random graph processes to analyse the evolution of the process, and give further information about the structure of the graphs obtained, including asymptotic formulae for a broad class of subgraph extension variables.Comment: 36 page

    An approximate version of Sidorenko's conjecture

    Get PDF
    A beautiful conjecture of Erd\H{o}s-Simonovits and Sidorenko states that if H is a bipartite graph, then the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density. This conjecture also has an equivalent analytic form and has connections to a broad range of topics, such as matrix theory, Markov chains, graph limits, and quasirandomness. Here we prove the conjecture if H has a vertex complete to the other part, and deduce an approximate version of the conjecture for all H. Furthermore, for a large class of bipartite graphs, we prove a stronger stability result which answers a question of Chung, Graham, and Wilson on quasirandomness for these graphs.Comment: 12 page

    On the proof complexity of Paris-harrington and off-diagonal ramsey tautologies

    Get PDF
    We study the proof complexity of Paris-Harrington’s Large Ramsey Theorem for bi-colorings of graphs and of off-diagonal Ramsey’s Theorem. For Paris-Harrington, we prove a non-trivial conditional lower bound in Resolution and a non-trivial upper bound in bounded-depth Frege. The lower bound is conditional on a (very reasonable) hardness assumption for a weak (quasi-polynomial) Pigeonhole principle in RES(2). We show that under such an assumption, there is no refutation of the Paris-Harrington formulas of size quasipolynomial in the number of propositional variables. The proof technique for the lower bound extends the idea of using a combinatorial principle to blow up a counterexample for another combinatorial principle beyond the threshold of inconsistency. A strong link with the proof complexity of an unbalanced off-diagonal Ramsey principle is established. This is obtained by adapting some constructions due to Erdos and Mills. ˝ We prove a non-trivial Resolution lower bound for a family of such off-diagonal Ramsey principles
    corecore