691 research outputs found

    Ramsey numbers of cubes versus cliques

    Get PDF
    The cube graph Q_n is the skeleton of the n-dimensional cube. It is an n-regular graph on 2^n vertices. The Ramsey number r(Q_n, K_s) is the minimum N such that every graph of order N contains the cube graph Q_n or an independent set of order s. Burr and Erdos in 1983 asked whether the simple lower bound r(Q_n, K_s) >= (s-1)(2^n - 1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound.Comment: 26 page

    Bipartite induced density in triangle-free graphs

    Full text link
    We prove that any triangle-free graph on nn vertices with minimum degree at least dd contains a bipartite induced subgraph of minimum degree at least d2/(2n)d^2/(2n). This is sharp up to a logarithmic factor in nn. Relatedly, we show that the fractional chromatic number of any such triangle-free graph is at most the minimum of n/dn/d and (2+o(1))n/logn(2+o(1))\sqrt{n/\log n} as nn\to\infty. This is sharp up to constant factors. Similarly, we show that the list chromatic number of any such triangle-free graph is at most O(min{n,(nlogn)/d})O(\min\{\sqrt{n},(n\log n)/d\}) as nn\to\infty. Relatedly, we also make two conjectures. First, any triangle-free graph on nn vertices has fractional chromatic number at most (2+o(1))n/logn(\sqrt{2}+o(1))\sqrt{n/\log n} as nn\to\infty. Second, any triangle-free graph on nn vertices has list chromatic number at most O(n/logn)O(\sqrt{n/\log n}) as nn\to\infty.Comment: 20 pages; in v2 added note of concurrent work and one reference; in v3 added more notes of ensuing work and a result towards one of the conjectures (for list colouring

    Ramsey numbers and the size of graphs

    Full text link
    For two graph H and G, the Ramsey number r(H, G) is the smallest positive integer n such that every red-blue edge coloring of the complete graph K_n on n vertices contains either a red copy of H or a blue copy of G. Motivated by questions of Erdos and Harary, in this note we study how the Ramsey number r(K_s, G) depends on the size of the graph G. For s \geq 3, we prove that for every G with m edges, r(K_s,G) \geq c (m/\log m)^{\frac{s+1}{s+3}} for some positive constant c depending only on s. This lower bound improves an earlier result of Erdos, Faudree, Rousseau, and Schelp, and is tight up to a polylogarithmic factor when s=3. We also study the maximum value of r(K_s,G) as a function of m
    corecore