10 research outputs found

    Ramanujan sums analysis of long-period sequences and 1/f noise

    Full text link
    Ramanujan sums are exponential sums with exponent defined over the irreducible fractions. Until now, they have been used to provide converging expansions to some arithmetical functions appearing in the context of number theory. In this paper, we provide an application of Ramanujan sum expansions to periodic, quasiperiodic and complex time series, as a vital alternative to the Fourier transform. The Ramanujan-Fourier spectrum of the Dow Jones index over 13 years and of the coronal index of solar activity over 69 years are taken as illustrative examples. Distinct long periods may be discriminated in place of the 1/f^{\alpha} spectra of the Fourier transform.Comment: 10 page

    Doppler Spectrum Estimation by Ramanujan Fourier Transforms

    Full text link
    The Doppler spectrum estimation of a weather radar signal in a classic way can be made by two methods, temporal one based in the autocorrelation of the successful signals, whereas the other one uses the estimation of the power spectral density PSD by using Fourier transforms. We introduces a new tool of signal processing based on Ramanujan sums cq(n), adapted to the analysis of arithmetical sequences with several resonances p/q. These sums are almost periodic according to time n of resonances and aperiodic according to the order q of resonances. New results will be supplied by the use of Ramanujan Fourier Transform (RFT) for the estimation of the Doppler spectrum for the weather radar signal
    corecore