83 research outputs found

    Characterization of Hybrid Electronic Materials Using Atomic Force Microscopy

    Get PDF
    Miniaturization in the electronics industry has been driven by advancements in material science. Recently, Hybrid Electronic Materials (HEMs) have been postulated to have unique material properties that can be used within the semiconductor industry. As such, the main focus of this research is to characterize the relevant properties of HEMs using atomic force microscopy (AFM), conductive probe atomic force microscopy (CP-AFM), and Raman spectroscopy techniques. Emphasis is placed on characterizing [R6G][TPB] GUMBOS which are a Group of Uniform Materials Based on Organic Salts. GUMBOS exhibit properties such as fluorescence and magnetic susceptibility, both of which may be important with respect to their applications within the electronics industry. Next, the functionalization of substrates as HEM templates for na-noscale device technologies is an area of both scientific interest and techno-logical necessity. Historically, Aminopropyltriethoxy Silane (APTES) has been used as an effective silane (SiH4) coupling agent to enhance adhesion. In this work, a study of the morphology of APTES on silicon substrates, using both AFM and Raman spectroscopy has been undertaken. Finally, a great deal of research has focused on characterizing the me-chanical and chemical properties of biocompatible and biodegradable mate-rials. Therefore, the last part of this work focuses on characterizing the mor-phology of zein fibers. Zein is a class of biopolymer which falls into the cate-gory of prolamine proteins of corn (maize). Although not specifically identified as an electronic material by itself, zein has proven to be a valuable component of composite (hybrid) materials exhibiting characteristics of high tensile strength, selective permeability, and resistance to microbial attack, to name a few. If amenable to integration with sensor or biomedical electronics, investi-gating the processing mechanics of zein may be invaluable to potential device applications. Thus, this research takes a step in the direction of understanding the deposition mechanics and morphology of zein on substrates, using the tech-nique of electrospraying, in conjunction with AFM, scanning electron micros-copy (SEM), and Raman spectroscopy

    47th Rocky Mountain Conference on Analytical Chemistry

    Get PDF
    Final program, abstracts, and information about the 47th annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-endorsed by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Denver, Colorado, July 31 - August 4, 2005

    Dielectrophoretic discrimination of pluripotent myoblast with Raman spectroscopic analysis of the cell plasma membrane for application in Huntington's disease

    Get PDF
    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre -clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. This thesis demonstrates that the biomarker -free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast pluripotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co- cultured with GFP- expressing fibroblasts of comparable size distributions (mean diameter -10 gm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.These high levels of discrimination raised more questions about the cell plasma membrane characteristics that may be responsible for the dielectrophoretic response. This prompted to extend the work to a specific neurodegenerative disease, Huntington's disease. Several studies have been revealing the association between plasma membrane dysregulation and Huntington's disease. In particular the feasibility to use peripheral fibroblasts cells from donors affected by the disease, as a forecasting model marker for Huntington. Although there are substantial evidences about the indirect effect of the disease on the plasma membrane, a non -invasive technique that can discriminate and characterise a cell sample is not available. Raman spectroscopy with associated statistical multivariate analysis was used to characterise sub -cellular differences in extracted plasma membranes from peripheral fibroblastic cells in order to elucidate the differences between cells affect and non - affected by the disease. The results clearly showed that indeed the plasma membrane carries differences that can be attributed to the presence of the disease making the plasma membrane an amenable and novel biomarker for Huntington's diseas

    Label-free polarisation-resolved optical imaging of biological samples

    Get PDF
    Myelin is a biological structure present in all the gnathostomata. It is a highly- ordered structure, in which many lipid-enriched and densely compacted phospho- lipid bilayers are rolled up in a cylindrical symmetry around a subgroup of axons. The myelin sheath increases the electrical transverse resistance and reduces the ca- pacitance making the saltatory conduction of action potentials possible and therefore leading to a critically improved performance in terms of nervous impulse conduc- tion speeds and travel lengths. Myelin pathologies are a large group of neurological diseases that often result in death or disability. In order to investigate the main causes of myelin damage and its temporal progression many microscopy techniques are currently employed, such as electron microscopy and histochemistry or fluorescence imaging. However, electron microscopy and histochemistry imaging require complex sample prepara- tion and are therefore unsuitable for live imaging. Fluorescence imaging, as well as its derivatives, confocal and two-photon imaging, relies on the use of fluorescent probes to generate the image contrast but fluorophores and the associated sample processing, when applicable to living specimens, might nonetheless modify the bi- ological properties of the target molecule and perturb the whole biological process under investigation; moreover, fluorescent immunostaining still requires the fixation of the cells. Coherent anti-Stokes Raman Scattering (CARS) microscopy, on the other hand, is a powerful and innovative imaging modality that permits the study of liv- ing specimens with excellent chemical contrast and spatial resolution and without the confounding and often tedious use of chemical or biological probes. This is par- ticularly important in clinical settings, where the patient biopsy must be explanted in order to stain the tissue. In these cases it may be useful to resort to a set of label-free microscopy techniques. Among these, CARS microscopy is an ideal tool to investigate myelin morphology and structure, thanks to its abundance of CH2 bonds. The chemical selectivity of CARS microscopy is based on the properties of the contrast-generating CARS process. This is a nonlinear process in which the energy difference of a pair of incoming photons (\u201cpump\u201d and \u201cStokes\u201d) matches the energy of one of the vibrational modes of a molecular bond of interest. This vibrational excited state is coherently probed by a third photon (\u201cprobe\u201d) and anti-Stokes radi- ation is emitted. In this thesis I shall discuss the development of a multimodal nonlinear opti- cal setup implementing CARS microscopy together with general Four-Wave Mix- ing, Second Harmonic Generation and Sum Frequency Generation microscopies. Moreover, I shall present a novel polarisation-resolved imaging scheme based on the CARS process, which I named Rotating-Polarisation (RP) CARS microscopy and implemented in the same setup. This technique, using a freely-rotating pump-and- probe-beam-polarisation plane, exploits the CARS polarisation-dependent rules in order to probe the degree of anisotropy of the chemical-bond spatial orientations inside the excitation point-spread function and their average orientation, allowing at the same time the acquisition of large-field-of-view images with minimal polarisa- tion distortions. I shall show that RP-CARS is an ideal tool to investigate the highly- ordered structure of myelinated nervous fibres thanks to the strong anisotropy and symmetry properties of the myelin molecular architecture. I shall also demonstrate that this technique allows the fully label-free assessment of the myelin health status both in a chemical model of myelin damage (lysophos- phatidylcholine-exposed mouse nerve) and in a genetic model (twitcher mouse) of a human leukodystrophy (Krabbe disease) while giving useful insights into the pathogenic mechanisms underlying the demyelination process. I shall also discuss the promises of this technique for applications in optical tractography of the nerve fibres in the central nervous system and for the investigation of the effects of ageing on the peripheral nervous system. Moreover, I shall demonstrate by means of numer- ical simulations that RP-CARS microscopy is extremely robust against the presence of scatterers (such as lipid vesicles, commonly found in the peripheral nervous sys- tem). Finally, I shall discuss the results of the exploitation of my multimodal setup in a different area at the boundary of biophysics and nanomedicine: the observation of the internalization of different kinds of nanoparticles (boron-nitride nanotubes, barium-titanate nanoparticles and barium-titanate-core/gold-shell nanoparticles) by cultured cells and the demonstration of the nanopatterned nature of a structure built with two-photon lithography
    • …
    corecore