17 research outputs found

    Rainbow Connection Number and Radius

    Full text link
    The rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of its vertices is connected by at least one path in which no two edges are coloured the same. In this note we show that for every bridgeless graph G with radius r, rc(G) <= r(r + 2). We demonstrate that this bound is the best possible for rc(G) as a function of r, not just for bridgeless graphs, but also for graphs of any stronger connectivity. It may be noted that for a general 1-connected graph G, rc(G) can be arbitrarily larger than its radius (Star graph for instance). We further show that for every bridgeless graph G with radius r and chordality (size of a largest induced cycle) k, rc(G) <= rk. It is known that computing rc(G) is NP-Hard [Chakraborty et al., 2009]. Here, we present a (r+3)-factor approximation algorithm which runs in O(nm) time and a (d+3)-factor approximation algorithm which runs in O(dm) time to rainbow colour any connected graph G on n vertices, with m edges, diameter d and radius r.Comment: Revised preprint with an extra section on an approximation algorithm. arXiv admin note: text overlap with arXiv:1101.574

    Note on minimally kk-rainbow connected graphs

    Full text link
    An edge-colored graph GG, where adjacent edges may have the same color, is {\it rainbow connected} if every two vertices of GG are connected by a path whose edge has distinct colors. A graph GG is {\it kk-rainbow connected} if one can use kk colors to make GG rainbow connected. For integers nn and dd let t(n,d)t(n,d) denote the minimum size (number of edges) in kk-rainbow connected graphs of order nn. Schiermeyer got some exact values and upper bounds for t(n,d)t(n,d). However, he did not get a lower bound of t(n,d)t(n,d) for 3≤d<⌈n2⌉3\leq d<\lceil\frac{n}{2}\rceil . In this paper, we improve his lower bound of t(n,2)t(n,2), and get a lower bound of t(n,d)t(n,d) for 3≤d<⌈n2⌉3\leq d<\lceil\frac{n}{2}\rceil.Comment: 8 page

    On Rainbow Connection Number and Connectivity

    Full text link
    Rainbow connection number, rc(G)rc(G), of a connected graph GG is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we investigate the relationship of rainbow connection number with vertex and edge connectivity. It is already known that for a connected graph with minimum degree δ\delta, the rainbow connection number is upper bounded by 3n/(δ+1)+33n/(\delta + 1) + 3 [Chandran et al., 2010]. This directly gives an upper bound of 3n/(λ+1)+33n/(\lambda + 1) + 3 and 3n/(κ+1)+33n/(\kappa + 1) + 3 for rainbow connection number where λ\lambda and κ\kappa, respectively, denote the edge and vertex connectivity of the graph. We show that the above bound in terms of edge connectivity is tight up-to additive constants and show that the bound in terms of vertex connectivity can be improved to (2+ϵ)n/κ+23/ϵ2(2 + \epsilon)n/\kappa + 23/ \epsilon^2, for any ϵ>0\epsilon > 0. We conjecture that rainbow connection number is upper bounded by n/κ+O(1)n/\kappa + O(1) and show that it is true for κ=2\kappa = 2. We also show that the conjecture is true for chordal graphs and graphs of girth at least 7.Comment: 10 page

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k≥3k \geq 3, deciding whether src(G)≤k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2−ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    Algorithms and Bounds for Very Strong Rainbow Coloring

    Full text link
    A well-studied coloring problem is to assign colors to the edges of a graph GG so that, for every pair of vertices, all edges of at least one shortest path between them receive different colors. The minimum number of colors necessary in such a coloring is the strong rainbow connection number (\src(G)) of the graph. When proving upper bounds on \src(G), it is natural to prove that a coloring exists where, for \emph{every} shortest path between every pair of vertices in the graph, all edges of the path receive different colors. Therefore, we introduce and formally define this more restricted edge coloring number, which we call \emph{very strong rainbow connection number} (\vsrc(G)). In this paper, we give upper bounds on \vsrc(G) for several graph classes, some of which are tight. These immediately imply new upper bounds on \src(G) for these classes, showing that the study of \vsrc(G) enables meaningful progress on bounding \src(G). Then we study the complexity of the problem to compute \vsrc(G), particularly for graphs of bounded treewidth, and show this is an interesting problem in its own right. We prove that \vsrc(G) can be computed in polynomial time on cactus graphs; in contrast, this question is still open for \src(G). We also observe that deciding whether \vsrc(G) = k is fixed-parameter tractable in kk and the treewidth of GG. Finally, on general graphs, we prove that there is no polynomial-time algorithm to decide whether \vsrc(G) \leq 3 nor to approximate \vsrc(G) within a factor n1−εn^{1-\varepsilon}, unless P==NP
    corecore