3,076 research outputs found

    Experiments for Ka-band mobile applications: The ACTS mobile terminal

    Get PDF
    To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed

    Summary of the First ACTS Propagation Workshop

    Get PDF
    The first Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop (APSW I), organized by NASA/Jet Propulsion Laboratory (JPL) to plan propagation experiments and studies with NASA's ACTS, convened in Santa Monica, California, during November 28 and 29, 1989. The objectives of APSW I were to identify general and ACTS-related propagation needs, and to prepare recommendations for a study plan incorporating scientific and systems requirements related to deployment of 8 to 10 propagation terminals in the USA in support of ACTS experimental activities. A summary of workshop activities is given

    Advanced Communications Technology Satellite (ACTS). Phase 1: Industrial/academic experimenters

    Get PDF
    This report presents the work done at Arizona State University under the ACTS Experimenters Program. The main thrust of the Program was to develop experiments to test, evaluate, and prove the commercial worthiness of the ACTS satellite which is scheduled for launch in 1993. To accomplish this goal, meetings were held with various governmental, industrial, and academic units to discuss the ACTS satellite and its technology and possible experiments that would generate industrial interest and support for ASU's efforts. Several local industries generated several experiments of their own. The investigators submitted several experiments of educational, medical, commercial, and technical value and interest. The disposition of these experimental proposals is discussed in this report

    Channel and terminal description of the ACTS mobile terminal

    Get PDF
    The Advanced Communications Technology Satellite (ACTS) Mobile Terminal (AMT) is a proof-of-concept K/Ka-band mobile satellite communications terminal under development by NASA at JPL. Currently the AMT is undergoing system integration and test in preparation for a July 1993 ACTS launch and the subsequent commencement of mobile experiments in the fall of 1993. The AMT objectives are presented followed by a discussion of the AMT communications channel and mobile terminal design and performance

    Propagation-related AMT design aspects and supporting experiments

    Get PDF
    The ACTS Mobile Terminal (AMT) is presently being developed with the goal of significantly extending commercial satellite applications and their user base. A thorough knowledge of the Ka-band channel characteristics is essential to the proper design of a commercially viable system that efficiently utilizes the valuable resources. To date, only limited tests have been performed to characterize the Ka-band channel, and they have focused on the needs of fixed terminals. As part of the value of the AMT as a Ka-band test bed is its function as a vehicle through which tests specifically applicable to the mobile satellite communications can be performed. The exact propagation environment with the proper set of elevation angles, vehicle antenna gains and patterns, roadside shadowing, rain, and Doppler is encountered. The ability to measure all of the above, as well as correlate their effects with observed communication system performance, creates an invaluable opportunity to understand in depth Ka-band's potential in supporting mobile and personal communications. This paper discusses the propagation information required for system design, the setup with ACTS that will enable obtaining this information, and finally the types of experiments to be performed and data to be gathered by the AMT to meet this objective

    Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    Get PDF
    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments

    Application of adaptive antenna techniques to future commercial satellite communication

    Get PDF
    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems

    Proceedings of the Fourteenth NASA Propagation Experimenters Meeting (NAPEX 14) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Get PDF
    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX XIV was held on May 11, 1990, at the Balcones Research Centers, University of Texas, Austin, Texas. The meeting was organized into two technical sessions: Satellite (ACTS) and the Olympus Spacecraft, while the second focused on the fixed and mobile satellite propagation studies and experiments. Following NAPEX XIV, the ACTS Miniworkshop was held at the Hotel Driskill, Austin, Texas, on May 12, 1990, to review ACTS propagation activities since the First ACTS Propagation Studies Workshop was held in Santa Monica, California, on November 28 and 29, 1989

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified
    corecore