1,134 research outputs found

    Fast computation: a steady-state simulation of railways ballasted track settlement

    Get PDF
    Geometryofballastedrailwaystrackisamajorconcerninrailroadssafetyand efficiency. Settlement of railways ballast has been studied to help railway infrastructure managers to keep infrastructures in shape and to prevent accidents. In this paper, we present an innovative numerical approach to study railways ballast settlement. Commonly used models representing a moving load need huge computation time. On the other hand, assuming static cyclic loading representation leads to discrepancies. Indeed, it does not conceder particularities of moving load. With this new model we want to avoid the drawbacks of previously developed methods. We developed a steady state algorithm to compute plastic strain in geomaterials and to study behaviour of ballasted railways track with an Eulerian approach. This way we improved model efficiency by drastically reducing computation time while considering mobile load specificities

    Genetic Algorithms Implement in Railway Management Information System

    Get PDF

    Optimisation of Rail-road Level Crossing Closing Time in a Heterogenous Railway Traffic: Towards Safety Improvement - South African Case Study

    Get PDF
    The gravitation towards mobility-as-a service in railway transportation system can be achieved at low cost and effort using shared railway network. However, the problem with shared networks is the presence of the level crossings where railway and road traffic intersects. Thus, long waiting time is expected at the level crossings due to the increase in traffic volume and heterogeneity. Furthermore, safety and capacity can be severely compromised by long level crossing closing time. The emphasis of this study is to optimise the rail-road level crossing closing time in order to achieve improved safety and capacity in a heterogeneous railway network. It is imperative to note that rail-road level crossing system assumes the socio-technical and safety critical duality which often impedes improvement efforts. Therefore, thorough understanding of the factors with highest influence on the level crossing closing time is required. Henceforth, data analysis has been conducted on eight active rail-road level crossings found on the southern corridor of the Western Cape metro rail. The spatial, temporal and behavioural analysis was conducted to extract features with influence on the level crossing closing time. Convex optimisation with the objective to minimise the level crossing closing time is formulated taking into account identified features. Moreover, the objective function is constrained by the train's traction characteristics along the constituent segments of the rail-road level crossing, speed restriction and headway time. The results show that developed solution guarantees at most 53.2% and 62.46% reduction in the level crossing closing time for the zero and nonzero dwell time, respectively. Moreover, the correctness of the presented solution has been validated based on the time lost at the level crossing and railway traffic capacity consumption. Thus, presented solution has been proven to achieve at most 50% recovery of the time lost per train trip and at least 15% improvement in capacity under normal conditions. Additionally, 27% capacity improvement is achievable at peak times and can increase depending on the severity of the headway constraints. However, convex optimisation of the level crossing closing time still fall short in level crossing with nonzero dwell time due to the approximation of dwell time based on the anticipated rather than actual value

    Data-driven train set crash dynamics simulation

    Get PDF
    © 2016 Informa UK Limited, trading as Taylor & Francis GroupTraditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force–displacement curves and predicts a force–displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency

    Utilizing an Adaptive Neuro-Fuzzy Inference System (ANFIS) for overcrowding level risk assessment in railway stations

    Get PDF
    The railway network plays a significant role (both economically and socially) in assisting the reduction of urban traffic congestion. It also accelerates the decarbonization in cities, societies and built environments. To ensure the safe and secure operation of stations and capture the real-time risk status, it is imperative to consider a dynamic and smart method for managing risk factors in stations. In this research, a framework to develop an intelligent system for managing risk is suggested. The adaptive neuro-fuzzy inference system (ANFIS) is proposed as a powerful, intelligently selected model to improve risk management and manage uncertainties in risk variables. The objective of this study is twofold. First, we review current methods applied to predict the risk level in the flow. Second, we develop smart risk assessment and management measures (or indicators) to improve our understanding of the safety of railway stations in real-time. Two parameters are selected as input for the risk level relating to overcrowding: the transfer efficiency and retention rate of the platform. This study is the world’s first to establish the hybrid artificial intelligence (AI) model, which has the potency to manage risk uncertainties and learns through artificial neural networks (ANNs) by integrated training processes. The prediction result shows very high accuracy in predicting the risk level performance, and proves the AI model capabilities to learn, to make predictions, and to capture risk level values in real time. Such risk information is extremely critical for decision making processes in managing safety and risks, especially when uncertain disruptions incur (e.g., COVID-19, disasters, etc.). The novel insights stemmed from this study will lead to more effective and efficient risk management for single and clustered railway station facilities towards safer, smarter, and more resilient transportation systems

    Crosswind stability of vehicles under nonstationary wind excitation

    Get PDF
    This work has studied the crosswind stability of vehicles under nonstationary wind excitation in various scenarios. Railway vehicles running on curved and straight track with varying vehicle speed are studied. Road vehicles are classified into different categories. For each vehicle class, a corresponding worst-case vehicle model has been built. As the wind excitation on the vehicle is a stochastic process, a risk analysis has to be carried out and failure probabilities are computed and analyzed

    OPTIMIZATION OF STATION LOCATIONS AND TRACK ALIGNMENTS FOR RAIL TRANSIT LINES

    Get PDF
    Designing urban rail transit systems is a complex problem, which involves the determination of station locations, track geometry, right-of-way type, and various other system characteristics. The existing studies overlook the complex interactions between railway alignments and station locations in a practical design process. This study proposes a comprehensive methodology that helps transit planners to concurrently optimize station locations and track alignments for an urban rail transit line. The modeling framework resolves the essential trade-off between an economically efficient system with low initial and operation cost and an effective system that provides convenient service for the public. The proposed method accounts for various geometric requirements and real-world design constraints for track alignment and stations plans. This method integrates a genetic algorithm (GA) for optimization with comprehensive evaluation of various important measures of effectiveness based on processing Geographical Information System (GIS) data. The base model designs the track alignment through a sequence of preset stations. Detailed assumptions and formulations are presented for geometric requirements, design constraints, and evaluation criteria. Three extensions of the base model are proposed. The first extension explicitly incorporates vehicle dynamics in the design of track alignments, with the objective of better balancing the initial construction cost with the operation and user costs recurring throughout the system's life cycle. In the second extension, an integrated optimization model of rail transit station locations and track alignment is formulated for situations in which the locations of major stations are not preset. The concurrent optimization model searches through additional decision variables for station locations and station types, estimate rail transit demand, and incorporates demand and station cost in the evaluation framework. The third extension considers the existing road network when selecting sections of the alignment. Special algorithms are developed to allow the optimized alignment to take advantage of links in an existing network for construction cost reduction, and to account for disturbances of roadway traffic at highway/rail crossings. Numerical results show that these extensions have significantly enhanced the applicability of the proposed optimization methodology in concurrently selecting rail transit station locations and generating track alignment
    corecore