3 research outputs found

    The development of a full probabilistic risk assessment model for quantifying the life safety risk in buildings in case of fire

    Get PDF
    In het kader van dit onderzoek is een probabilistisch model ontwikkeld dat het brandveiligheidsniveau van een gebouwontwerp kan kwantificeren en dit berekende veiligheidsniveau kan evalueren aan de hand van een vooraf gedefinieerd aanvaardbaar risicocriterium. De ontwikkelde methodiek kan zowel prescriptieve als op prestatie-gebaseerde ontwerpmethoden objectiveren door rekening te houden met de onzekerheid van ontwerpparameters en de betrouwbaarheid van veiligheidssystemen. Het model bestaat uit zowel een deterministisch als een probabilistisch gedeelte. Het deterministische kader is opgebouwd uit verschillende deelmodellen om zowel de verspreiding van brand en rook, als de interactie met evacuerende personen te simuleren. Verschillende deelmodellen zijn ontwikkeld om het effect van geïmplementeerde veiligheidsmaatregelen zoals detectie, sprinklers , rook- en warmteafvoersystemen, enz. mee in rekening te brengen. Het probabilistische kader is opgebouwd uit modellering van responsoppervlakken, steekproeftechnieken en ontwerp van grenstoestanden. De methodiek maakt gebruik van deze technieken om de nodige rekenkracht te beperken. Het uiteindelijke resultaat wordt vertaald naar een kans op sterfte, een individueel risico en een groepsrisico. De grote meerwaarde van de ontwikkelde methodiek is dat het mogelijk wordt om verschillende ontwerpmethodieken objectief met elkaar te vergelijken en het positieve effect van verbeterde veiligheidstechnieken en redundantie mee in rekening te brengen in het eindresultaat

    Bandwidth-aware distributed ad-hoc grids in deployed wireless sensor networks

    Get PDF
    Nowadays, cost effective sensor networks can be deployed as a result of a plethora of recent engineering advances in wireless technology, storage miniaturisation, consolidated microprocessor design, and sensing technologies. Whilst sensor systems are becoming relatively cheap to deploy, two issues arise in their typical realisations: (i) the types of low-cost sensors often employed are capable of limited resolution and tend to produce noisy data; (ii) network bandwidths are relatively low and the energetic costs of using the radio to communicate are relatively high. To reduce the transmission of unnecessary data, there is a strong argument for performing local computation. However, this can require greater computational capacity than is available on a single low-power processor. Traditionally, such a problem has been addressed by using load balancing: fragmenting processes into tasks and distributing them amongst the least loaded nodes. However, the act of distributing tasks, and any subsequent communication between them, imposes a geographically defined load on the network. Because of the shared broadcast nature of the radio channels and MAC layers in common use, any communication within an area will be slowed by additional traffic, delaying the computation and reporting that relied on the availability of the network. In this dissertation, we explore the tradeoff between the distribution of computation, needed to enhance the computational abilities of networks of resource-constrained nodes, and the creation of network traffic that results from that distribution. We devise an application-independent distribution paradigm and a set of load distribution algorithms to allow computationally intensive applications to be collaboratively computed on resource-constrained devices. Then, we empirically investigate the effects of network traffic information on the distribution performance. We thus devise bandwidth-aware task offload mechanisms that, combining both nodes computational capabilities and local network conditions, investigate the impacts of making informed offload decisions on system performance. The highly deployment-specific nature of radio communication means that simulations that are capable of producing validated, high-quality, results are extremely hard to construct. Consequently, to produce meaningful results, our experiments have used empirical analysis based on a network of motes located at UCL, running a variety of I/O-bound, CPU-bound and mixed tasks. Using this setup, we have established that even relatively simple load sharing algorithms can improve performance over a range of different artificially generated scenarios, with more or less timely contextual information. In addition, we have taken a realistic application, based on location estimation, and implemented that across the same network with results that support the conclusions drawn from the artificially generated traffic
    corecore