1,995 research outputs found

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    A deep learning approach towards railway safety risk assessment

    Get PDF
    Railway stations are essential aspects of railway systems, and they play a vital role in public daily life. Various types of AI technology have been utilised in many fields to ensure the safety of people and their assets. In this paper, we propose a novel framework that uses computer vision and pattern recognition to perform risk management in railway systems in which a convolutional neural network (CNN) is applied as a supervised machine learning model to identify risks. However, risk management in railway stations is challenging because stations feature dynamic and complex conditions. Despite extensive efforts by industry associations and researchers to reduce the number of accidents and injuries in this field, such incidents still occur. The proposed model offers a beneficial method for obtaining more accurate motion data, and it detects adverse conditions as soon as possible by capturing fall, slip and trip (FST) events in the stations that represent high-risk outcomes. The framework of the presented method is generalisable to a wide range of locations and to additional types of risks

    A train dispatching model based on fuzzy passenger demand forecasting during holidays

    Get PDF
    Purpose: The train dispatching is a crucial issue in the train operation adjustment when passenger flow outbursts. During holidays, the train dispatching is to meet passenger demand to the greatest extent, and ensure safety, speediness and punctuality of the train operation. In this paper, a fuzzy passenger demand forecasting model is put up, then a train dispatching optimization model is established based on passenger demand so as to evacuate stranded passengers effectively during holidays. Design/methodology/approach: First, the complex features and regularity of passenger flow during holidays are analyzed, and then a fuzzy passenger demand forecasting model is put forward based on the fuzzy set theory and time series theory. Next, the bi-objective of the train dispatching optimization model is to minimize the total operation cost of the train dispatching and unserved passenger volume during holidays. Finally, the validity of this model is illustrated with a case concerned with the Beijing-Shanghai high-speed railway in China. Findings: The case study shows that the fuzzy passenger demand forecasting model can predict outcomes more precisely than ARIMA model. Thus train dispatching optimization plan proves that a small number of trains are able to serve unserved passengers reasonably and effectively. Originality/value: On the basis of the passenger demand predictive values, the train dispatching optimization model is established, which enables train dispatching to meet passenger demand in condition that passenger flow outbursts, so as to maximize passenger demand by offering the optimal operation plan.Peer Reviewe

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency

    Utilizing an Adaptive Neuro-Fuzzy Inference System (ANFIS) for overcrowding level risk assessment in railway stations

    Get PDF
    The railway network plays a significant role (both economically and socially) in assisting the reduction of urban traffic congestion. It also accelerates the decarbonization in cities, societies and built environments. To ensure the safe and secure operation of stations and capture the real-time risk status, it is imperative to consider a dynamic and smart method for managing risk factors in stations. In this research, a framework to develop an intelligent system for managing risk is suggested. The adaptive neuro-fuzzy inference system (ANFIS) is proposed as a powerful, intelligently selected model to improve risk management and manage uncertainties in risk variables. The objective of this study is twofold. First, we review current methods applied to predict the risk level in the flow. Second, we develop smart risk assessment and management measures (or indicators) to improve our understanding of the safety of railway stations in real-time. Two parameters are selected as input for the risk level relating to overcrowding: the transfer efficiency and retention rate of the platform. This study is the world’s first to establish the hybrid artificial intelligence (AI) model, which has the potency to manage risk uncertainties and learns through artificial neural networks (ANNs) by integrated training processes. The prediction result shows very high accuracy in predicting the risk level performance, and proves the AI model capabilities to learn, to make predictions, and to capture risk level values in real time. Such risk information is extremely critical for decision making processes in managing safety and risks, especially when uncertain disruptions incur (e.g., COVID-19, disasters, etc.). The novel insights stemmed from this study will lead to more effective and efficient risk management for single and clustered railway station facilities towards safer, smarter, and more resilient transportation systems

    Are road transportation investments in line with demand projections? A gravity-based analysis for Turkey

    Get PDF
    This is the post-print version of the article which has been published and is available at the link below.In this research, an integrated gravity-based model was built, and a scenario analysis was conducted to project the demand levels for routes related to the highway projects suggested in TINA-Turkey. The gravity-based model was used to perform a disaggregated analysis to estimate the demand levels that will occur on the routes which are planned to be improved in specific regions of Turkey from now until 2020. During the scenario development phase for these gravity-based models, the growth rate of Turkey's GDP, as estimated by the World Bank from now until 2017, was used as the baseline scenario. Besides, it is assumed that the gross value added (GVA) of the origin and destination regions of the selected routes will show a pattern similar to GDP growth rates. Based on the estimated GDP values, and the projected GVA growth rates, the demand for each selected route was projected and found that the demand level for some of these road projects is expected to be very low, and hence additional measures would be needed to make these investments worthwhile
    corecore