34,192 research outputs found

    LAPR: An experimental aircraft pushbroom scanner

    Get PDF
    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery

    Radiometric correction of LANDSAT data

    Get PDF
    The author has identified the following significant results. The six independent sensors of the multispectral band scanner are supposed to be identical; however, in actual practice, they may have different gain settings and offset factors, which result in the effect known as stripping (black lines at regular intervals) of the imagery. A simple two parameter method to correct the gain settings and offset factors of each of the sensors with respect to one sensor, taken as reference, was developed. This method assumes: (1) the response of a detector varies linearly with the radiance of radiation received, and (2) the means, as well as the standard deviations, of a reasonably large number of pixels, in a given wavelength band, are equal for each of the detectors for the radiometrically corrected data

    Radiometric correction procedure study

    Get PDF
    A comparison of MSS radiometric processing techniques identified as a preferred radiometric processing technique a procedure which equalizes the mean and standard deviation of detector-specific histograms of uncalibrated scene data. Evaluation of MSS calibration data demonstrated that the relationship between detector responses is essentially linear over the range of intensities typically observed in MSS data, and that the calibration wedge data possess a high degree of temporal stability. An analysis of the preferred radiometric processing technique showed that it could be incorporated into the MDP-MSS system without a major redesign of the system, and with minimal impact on system throughput

    Tropospheric Phase Calibration in Millimeter Interferometry

    Full text link
    We review millimeter interferometric phase variations caused by variations in the precipitable water vapor content of the troposphere, and we discuss techniques proposed to correct for these variations. We present observations with the Very Large Array at 22 GHz and 43 GHz designed to test these techniques. We find that both the Fast Switching and Paired Array calibration techniques are effective at reducing tropospheric phase noise for radio interferometers. In both cases, the residual rms phase fluctuations after correction are independent of baseline length for b > b_{eff}. These techniques allow for diffraction limited imaging of faint sources on arbitrarily long baselines at mm wavelengths. We consider the technique of tropospheric phase correction using a measurement of the precipitable water vapor content of the troposphere via a radiometric measurement of the brightness temperature of the atmosphere. Required sensitivities range from 20 mK at 90 GHz to 1 K at 185 GHz for the MMA, and 120 mK for the VLA at 22 GHz. The minimum gain stability requirement is 200 at 185 GHz at the MMA assuming that the astronomical receivers are used for radiometry. This increases to 2000 for an uncooled system. The stability requirement is 450 for the cooled system at the VLA at 22 GHz. To perform absolute radiometric phase corrections also requires knowledge of the tropospheric parameters and models to an accuracy of a few percent. It may be possible to perform an `empirically calibrated' radiometric phase correction, in which the relationship between fluctuations in brightness temperature differences with fluctuations in interferometric phases is calibrated by observing a celestial calibrator at regular intervals.Comment: AAS LATEX preprint format. to appear in Radio Science 199

    Comparison of diverse methods for the correction of atmospheric effects on LANDSAT and SKYLAB images

    Get PDF
    Earth's atmosphere reduces a sensors ability in currently discriminating targets. Using radiometric correction to reduce the atmospheric effects may improve considerably the performance of an automatic image interpreter. Several methods for radiometric correction from the open literature are compared leading to the development of an atmospheric correction system

    Analyzing Remote Sensing Data in R: The landsat Package

    Get PDF
    Research and development on atmospheric and topographic correction methods for multispectral satellite data such as Landsat images has far outpaced the availability of those methods in geographic information systems software. As Landsat and other data become more widely available, demand for these improved correction methods will increase. Open source R statistical software can help bridge the gap between research and implementation. Sophisticated spatial data routines are already available, and the ease of program development in R makes it straightforward to implement new correction algorithms and to assess the results. Collecting radiometric, atmospheric, and topographic correction routines into the landsat package will make them readily available for evaluation for particular applications.

    Multispectral data restoration study

    Get PDF
    A digital resampling technique for LANDSAT data is reported that incorporates a deconvolution concept to minimize spatial and radiometric degradation of data during resampling for geometric correction. A quantitative comparison of cubic convolution and digital restoration methods establishes the latter as the superior technique

    An operational solution to acquire multispectral images with standard light cameras : Characterization and acquisition guidelines

    Full text link
    In order to develop a low-cost and easy to implement technical solution to map inside-field spatial variability, and to explore its relationship with crop conditions, several experiments were conducted using ultra-light aircraft and Unmanned Aerial Vehicle (UAV) equipped with visible and infrared cameras. The sensors consisted of a ramp of 3 small format digital cameras (EOS 350D, Canon®): one for the visible part of the spectrum, and two modified cameras in order to acquire red edge and near infrared radiations. The images acquisition on the 3 cameras is simultaneous using external triggers and can be activated through the operator remote control on the ground or programmed to be automatically done using an on-board GPS navigation system. On ultra-light aircraft we also add a microbolometer thermal camera to the system. This paper describes the components of this acquisition system and focuses on the geometric and radiometric processing steps necessary for quantitative use of the data. At an altitude of 500 m this system acquires images with a ground resolution of 8 cm for the visible and near infrared bands and 55 cm for the thermal band. Unmanned Aerial Vehicle common altitude stretches over several tenth of meters up to 500 m and is adapted to the survey of fields of several hectares with very high spatial resolution. Ultra-light aircraft offers a range of altitude up to 1 to 2 km and a larger survey capacity with smaller spatial resolution. The spectral sensitivity of the cameras was measured using monospectral emittance sources. We worked both on the raw multispectral images and on the computed jpeg standard output. This allowed us to select the best band (or band combination) to produce red edge and near infrared images. We also developed an algorithm to compensate some radiometric distortion in the acquired images, particularly on vignetting effect. Classical photogrammetric calibration was used in order to measure lens geometry of each camera and evaluate as precisely as possible the coefficients of the lens polynom needed by commercial photogrammetric software. Several sets of images were acquired over experimental fields in temperate zone (on wheat) and tropical zone (on sugarcane). These images were radiometrically and geometrically corrected used the above elements and are stored as georeferenced stackable images in a Geographic Information System. The next step for a quantitative use of the data is to compensate changes due to atmospheric and illumination conditions in the image time series. (Résumé d'auteur

    Concepts for on-board satellite image registration. Volume 2: IAS prototype performance evaluation standard definition

    Get PDF
    Problems encountered in testing onboard signal processing hardware designed to achieve radiometric and geometric correction of satellite imaging data are considered. These include obtaining representative image and ancillary data for simulation and the transfer and storage of a large quantity of image data at very high speed. The high resolution, high speed preprocessing of LANDSAT-D imagery is considered
    corecore