1,211 research outputs found

    Techniques for Wireless Channel Modeling in Harsh Environments

    Get PDF
    With the rapid growth in the networked environments for different industrial, scientific and defense applications, there is a vital need to assure the user or application a certain level of Quality of Service (QoS). Environments like the industrial environment are particularly harsh with interference from metal structures (as found in the manufacturing sector), interference generated during wireless propagation, and multipath fading of the radio frequency (RF) signal all invite novel mitigation techniques. The challenge of achieving the benefits like improved energy efficiency using wireless is closely coupled with maintaining network QoS requirements. Assessment and management of QoS needs to occur, allowing the network to adapt to changes in the RF, information, and operational environments. The capacity to adapt is paramount to maintaining the required operational performance (throughput, latency, reliability and security). This thesis address the need for accurate radio channel modeling techniques to improve the performance of the wireless communication systems. Multiple different channel modeling techniques are considered including statistical models, ray tracing techniques, finite time-difference technique, transmission line matrix method (TLM), and stochastic differential equation-based (SDE) dynamic channel models. Measurement of ambient RF is performed at several harsh industrial environments to demonstrate the existence of uncertainty in channel behavior. Comparison of various techniques is performed with metrics including accuracy, applicability, and computational efficiency. SDE- and TLM-based methods are validated using indoor and outdoor measurements. Fast, accurate techniques for modeling multipath fading in harsh environments is explored. Application of dynamic channel models is explored for improving QoS of wireless communication system. The TLM-based models provide accurate site-specific path loss calculations taking into consideration materials and propagation characteristics of propagating environment. The validation studies confirm the technique is comparable with existing channel models. The TLM-based channel models is extended to compute the site-specific multipath characteristics of the radio channel eliminating the need for experimental measurement. The TLM-based simulator is also integrated with packet-level network simulator to perform end to end-to-end site specific calculation of wireless network performance. The SDE-channel models provide accurate online estimations of the channel performance along with accurate one-step prediction of the signal strength. The validation studies confirm the accuracy of the technique. Application of the SDE-based models for adaptive antenna control is formulated using online recursive estimation

    Determination of scattering center of multipath signals using geometric optics and Fresnel zone concepts

    Get PDF
    AbstractIn this study, a method for determining scattering center (or center of scattering points) of a multipath is proposed, provided that the direction of arrival of the multipath is known by the receiver. The method is based on classical electromagnetic wave principles in order to determine scattering center over irregular terrain. Geometrical optics (GO) along with Fresnel zone concept is employed, as the receiver, the transmitter positions and irregular terrain data are assumed to be provided. The proposed method could be used at UHF bands, especially, operations of radars and electronic warfare applications

    The solar wind structures associated with cosmic ray decreases and particle acceleration in 1978-1982

    Get PDF
    The time histories of particles in the energy range 1 MeV to 1 GeV at times of all greater than 3 percent cosmic ray decreases in the years 1978 to 1982 are studied. Essentially all 59 of the decreases commenced at or before the passages of interplanetary shocks, the majority of which accelerated energetic particles. We use the intensity-time profiles of the energetic particles to separate the cosmic ray decreases into four classes which we subsequently associate with four types of solar wind structures. Decreases in class 1 (15 events) and class 2 (26 events) can be associated with shocks which are driven by energetic coronal mass ejections. For class 1 events the ejecta is detected at 1 AU whereas this is not the case for class 2 events. The shock must therefore play a dominant role in producing the depression of cosmic rays in class 2 events. In all class 1 and 2 events (which comprise 69 percent of the total) the departure time of the ejection from the sun (and hence the location) can be determined from the rapid onset of energetic particles several days before the shock passage at Earth. The class 1 events originate from within 50 deg of central meridian. Class 3 events (10 decreases) can be attributed to less energetic ejections which are directed towards the Earth. In these events the ejecta is more important than the shock in causing a depression in the cosmic ray intensity. The remaining events (14 percent of the total) can be attributed to corotating streams which have ejecta material embedded in them

    Solar astronomy

    Get PDF
    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research

    The 1991/92 graduate student researchers program, including the underrepresented minority focus component

    Get PDF
    The Graduate Student Research Program (GSRP) was expanded in 1987 to include the Underrepresented Minority Focus Component (UMFC). This program was designed to increase minority participation in graduate study and research, and ultimately, in space science and aerospace technology careers. This booklet presents the areas of research activities at NASA facilities for the GSRP and summarizes and presents the objectives of the UMFC

    Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    Get PDF
    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory

    The 1993/1994 NASA Graduate Student Researchers Program

    Get PDF
    The NASA Graduate Student Researchers Program (GSRP) attempts to reach a culturally diverse group of promising U.S. graduate students whose research interests are compatible with NASA's programs in space science and aerospace technology. Each year we select approximately 100 new awardees based on competitive evaluation of their academic qualifications, their proposed research plan and/or plan of study, and their planned utilization of NASA research facilities. Fellowships of up to $22,000 are awarded for one year and are renewable, based on satisfactory progress, for a total of three years. Approximately 300 graduate students are, thus, supported by this program at any one time. Students may apply any time during their graduate career or prior to receiving their baccalaureate degree. An applicant must be sponsored by his/her graduate department chair or faculty advisor; this book discusses the GSRP in great detail
    corecore