3,639 research outputs found

    Reflexive obstacle avoidance for kinematically-redundant manipulators

    Get PDF
    Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration

    Space Robotics Part 2: Space-based Manipulators

    Full text link
    In this second of three short papers, I introduce some of the basic concepts of space robotics with an emphasis on some specific challenging areas of research that are peculiar to the application of robotics to space infrastructure development. The style of these short papers is pedagogical and the concepts in this paper are developed from fundamental manipulator robotics. This second paper considers the application of space manipulators to on-orbit servicing (OOS), an application which has considerable commercial application. I provide some background to the notion of robotic on-orbit servicing and explore how manipulator control algorithms may be modified to accommodate space manipulators which operate in the micro-gravity of space

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Design concept for the Flight Telerobotic Servicer (FITS)

    Get PDF
    NASA has just completed an in-house Phase B Study (one of three studies) for the preliminary definition of a teleoperated robotic device that will be used on the National Space Transportation System (NSTS) and the Space Station to assist the astronauts in the performance of assembly, maintenance, servicing, and inspection tasks. This device, the Flight Telerobotic Servicer (FTS), will become a permanent element on the Space Station. Although it is primarily a teleoperated device, the FTS is being designed to grow and evolve to higher states of autonomy. Eventually, it will be capable of working from the Orbital Maneuvering Vehicle (OMV) to service free-flying spacecraft at great distances from the Space Station. A version of the FTS could also be resident on the large space platforms that are part of the Space Station Program

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    SHARC: Space Habitat, Assembly and Repair Center

    Get PDF
    Integrated Space Systems (ISS) has taken on the task of designing a Space Habitat, Assembly and Repair Center (SHARC) in Low Earth Orbit to meet the future needs of the space program. Our goal is to meet the general requirements given by the 1991/1992 AIAA/LORAL Team Space Design competition with an emphasis on minimizing the costs of such a design. A baseline structural configuration along with preliminary designs of the major subsystems was created. Our initial mission requirements, which were set by AIAA, were that the facility be able to: support simultaneous assembly of three major vehicles; conduct assembly operations and minimal extra vehicular activity (EVA); maintain orbit indefinitely; and assemble components 30 feet long with a 10 foot diameter in a shirtsleeve environment
    corecore