66 research outputs found

    Dual-band beam scanning reflectarrays and novel wideband and polarization diversified planar antennas

    Get PDF
    The reflectarray antenna has been considered as a suitable candidate to replace the traditional parabolic reflectors because of its high-gain and low-profile features. Beam scanning capability and multi-band operation are the current trends of the reflectarray design. It is desired to implement these functionalities with simple and effective techniques. Narrow bandwidth is the main issue which restricts the applications of the microstrip antennas. New microstrip slot antennas and polarization diversified planar antennas are introduced as the solutions to the issue of narrow bandwidth in this dissertation. A dual-band beam scanning reflectarray has been developed. It is the first offset-fed reflectarray that has been ever practically developed to emulate a cylindrical/parabolic type of reflector. Unlike other beam scanning reflectarrays which integrate phase tuning devices into the reflectarray elements and control the reflection phase, the beam scanning capability of this reflectarray is provided by its feed array. This method significantly reduces the complexity of the design of the beam scanning reflectarray. A new dual-band reflectarray configuration is also developed to eliminate the possible top layer blocking effects in the dual-layer reflectarray configuration. Perforated patches loaded with slots on the ground plane and rectangular patches loaded with slots on the patches are adopted as the low and high frequency bands, respectively. It is guaranteed that no physical contact between any two elements will occur. The bandwidth of the conventional microstrip antenna is small. A new wideband circularly polarized microstrip slot antenna is introduced in this dissertation. Very wide 3-dB axial ratio bandwidth is observed for the proposed antenna. The antennas are assembled in triangularly arranged array with sequential rotation feed technique. Polarization polarity is an alternative solution to the narrow bandwidth. A reconfigurable circularly polarized microstrip antenna is proposed. The antenna has both right-hand and left-hand circular polarizations which are controlled by two piezoelectric transducers. In addition, a dual-band dual-linearly-polarized planar array is designed based on the concepts of polarization diversity and multi-band operation. The research presented in this dissertation suggests useful techniques for reflectarrays and novel antenna designs. The results should have many applications for the modern wireless communication and radar systems

    Space Solar Power Satellite Systems, Modern Small Satellites, And Space Rectenna

    Get PDF
    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving “daughter” satellite sits inside a larger power transmitting “mother” satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware’s for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first milestone considers thermal analysis for antennas, and the second milestone compares commercial off-the-shelve high frequency substrates for thermal, and outgassing characteristics. Since the design of the rectenna system is centralized around the diode component, a diode analysis was conducted for the third milestone. Next, to efficiently transfer power between the different parts of the rectenna system a coplanar stripline was consider for the fourth milestone. The fifth milestone is a balanced-to-unbalanced transition structure that is needed to properly feed and measure different systems of the rectenna. The last milestone proposes laboratory measurement setups. Each of these milestones is a separate research question that is answered in this dissertation. The results of these rectenna milestones can be integrated into a HPGU

    Advanced Electromagnetic Numerical Modeling Techniques for Various Periodic and Quasi-Periodic Systems

    Get PDF
    This dissertation is mainly concerned with several advanced electromagnetic modeling techniques for practical complex systems, which involve periodic analyses. The focus is to reveal the physics of the electromagnetic wave interaction with the complex structures, and also to arrive at improved computational algorithms. This dissertation consists of three self-contained parts, each discussing one modeling technique. Examples presented in this dissertation include (a) an analysis of conductor surface-roughness effects, (b) a novel model for vertical interconnects (vias) and (c) a leaky-wave study of a Fabry-Perot resonant cavity antenna. The first part investigates conductor surface roughness effects for stripline. An equivalent rough-surface-impedance is extracted using a periodic full-wave analysis and is then used for the modification of the transmission line per-unit-length parameter. The second part proposes a semi-analytical analysis for massively-coupled vias with arbitrarily-shaped antipads, based on the reciprocity theorem. The use of reciprocity yields simple design formulas and is seen to greatly improve the computational efficiency, due to the fast-converging mode-matching calculation. The third part presents a leaky-wave study of a Fabry-Perot cavity antenna made from a patch array. The patch current densities are calculated using the array scanning method. Based on this, a "leaky-wave current" is defined and calculated using residue integration. In addition, the radiation properties of a large finite-size array (truncation effects) are evaluated. All three proposed models are verified by full-wave simulations and/or measurements. Numerical results prove the effectiveness and accuracy of these models.Electrical and Computer Engineering, Department o

    NASA Tech Briefs, April 1993

    Get PDF
    Topics include: Optoelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Positioning of a wireless relay node for useful cooperative communication

    Get PDF
    Given the exorbitant amount of data transmitted and the increasing demand for data connectivity in the 21st century, it has become imperative to search for pro-active and sustainable solutions to the effectively alleviate the overwhelming burden imposed on wireless networks. In this study a Decode and Forward cooperative relay channel is analyzed, with the employment of Maximal Ratio Combining at the destination node as the method of offering diversity combining. The system framework used is based on a three-node relay channel with a source node, relay node and a destination node. A model for the wireless communications channel is formulated in order for simulation to be carried out to investigate the impact on performance of relaying on a node placed at the edge of cell. Firstly, an AWGN channel is used before the effect of Rayleigh fading is taken into consideration. Result shows that performance of cooperative relaying performance is always superior or similar to conventional relaying. Additionally, relaying is beneficial when the relay is placed closer to the receiver

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    Laser-induced forward transfer (LIFT) of water soluble polyvinyl alcohol (PVA) polymers for use as support material for 3D-printed structures

    Get PDF
    The additive microfabrication method of laser-induced forward transfer (LIFT) permits the creation of functional microstructures with feature sizes down to below a micrometre [1]. Compared to other additive manufacturing techniques, LIFT can be used to deposit a broad range of materials in a contactless fashion. LIFT features the possibility of building out of plane features, but is currently limited to 2D or 2½D structures [2–4]. That is because printing of 3D structures requires sophisticated printing strategies, such as mechanical support structures and post-processing, as the material to be printed is in the liquid phase. Therefore, we propose the use of water-soluble materials as a support (and sacrificial) material, which can be easily removed after printing, by submerging the printed structure in water, without exposing the sample to more aggressive solvents or sintering treatments. Here, we present studies on LIFT printing of polyvinyl alcohol (PVA) polymer thin films via a picosecond pulsed laser source. Glass carriers are coated with a solution of PVA (donor) and brought into proximity to a receiver substrate (glass, silicon) once dried. Focussing of a laser pulse with a beam radius of 2 µm at the interface of carrier and donor leads to the ejection of a small volume of PVA that is being deposited on a receiver substrate. The effect of laser pulse fluence , donor film thickness and receiver material on the morphology (shape and size) of the deposits are studied. Adhesion of the deposits on the receiver is verified via deposition on various receiver materials and via a tape test. The solubility of PVA after laser irradiation is confirmed via dissolution in de-ionised water. In our study, the feasibility of the concept of printing PVA with the help of LIFT is demonstrated. The transfer process maintains the ability of water solubility of the deposits allowing the use as support material in LIFT printing of complex 3D structures. Future studies will investigate the compatibility (i.e. adhesion) of PVA with relevant donor materials, such as metals and functional polymers. References: [1] A. Piqué and P. Serra (2018) Laser Printing of Functional Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. [2] R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué (2009) Laser decal transfer of freestanding microcantilevers and microbridges, Appl. Phys. A, vol. 97, no. 3, pp. 513–519. [3] C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ‘t Veld, and D. Lohse (2015) Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer, Adv. Mater., vol. 27, no. 27, pp. 4087–4092. [4] J. Luo et al. (2017) Printing Functional 3D Microdevices by Laser-Induced Forward Transfer, Small, vol. 13, no. 9, p. 1602553
    corecore