732 research outputs found

    Distributed and adaptive location identification system for mobile devices

    Full text link
    Indoor location identification and navigation need to be as simple, seamless, and ubiquitous as its outdoor GPS-based counterpart is. It would be of great convenience to the mobile user to be able to continue navigating seamlessly as he or she moves from a GPS-clear outdoor environment into an indoor environment or a GPS-obstructed outdoor environment such as a tunnel or forest. Existing infrastructure-based indoor localization systems lack such capability, on top of potentially facing several critical technical challenges such as increased cost of installation, centralization, lack of reliability, poor localization accuracy, poor adaptation to the dynamics of the surrounding environment, latency, system-level and computational complexities, repetitive labor-intensive parameter tuning, and user privacy. To this end, this paper presents a novel mechanism with the potential to overcome most (if not all) of the abovementioned challenges. The proposed mechanism is simple, distributed, adaptive, collaborative, and cost-effective. Based on the proposed algorithm, a mobile blind device can potentially utilize, as GPS-like reference nodes, either in-range location-aware compatible mobile devices or preinstalled low-cost infrastructure-less location-aware beacon nodes. The proposed approach is model-based and calibration-free that uses the received signal strength to periodically and collaboratively measure and update the radio frequency characteristics of the operating environment to estimate the distances to the reference nodes. Trilateration is then used by the blind device to identify its own location, similar to that used in the GPS-based system. Simulation and empirical testing ascertained that the proposed approach can potentially be the core of future indoor and GPS-obstructed environments

    Analysis of Dual-Band Direction of Arrival Estimation in Multipath Scenarios

    Get PDF
    The present paper analyzes the performance of localization systems, based on dual-band Direction of Arrival (DoA) approach, in multi-path affected scenarios. The implemented DoA estimation, which belongs to the so-called Space and Frequency Division Multiple Access (SFDMA) technique, takes advantage of the use of two uncorrelated communication carrier frequencies, as already demonstrated by the authors. Starting from these results, this paper provides, first, the methodology followed to describe the localization system in the proposed simulation environment, and, as a second step, describes how multi-path effects may be taken into account through a set of full-wave simulations. The latter follows an approach based on the two-ray model. The validation of the proposed approach is demonstrated by simulations over a wide range of virtual scenarios. The analysis of the results highlights the ability of the proposed approach to describe multi-path effects and confirms enhancements in DoA estimation as experimentally evaluated by the same authors. To further assess the performance of the aforementioned simulation environment, a comparison between simulated and measured results was carried out, confirming the capability to predict DoA performance

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    Position Locationing for Millimeter Wave Systems

    Full text link
    The vast amount of spectrum available for millimeter wave (mmWave) wireless communication systems will support accurate real-time positioning concurrent with communication signaling. This paper demonstrates that accurate estimates of the position of an unknown node can be determined using estimates of time of arrival (ToA), angle of arrival (AoA), as well as data fusion or machine learning. Real-world data at 28 GHz and 73 GHz is used to show that AoA-based localization techniques will need to be augmented with other positioning techniques. The fusion of AoA-based positioning with received power measurements for RXs in an office which has dimensions of 35 m by 65.5 m is shown to provide location accuracies ranging from 16 cm to 3.25 m, indicating promise for accurate positioning capabilities in future networks. Received signal strength intensity (RSSI) based positioning techniques that exploit the ordering of the received power can be used to determine rough estimates of user position. Prediction of received signal characteristics is done using 2-D ray tracing.Comment: GLOBECOM 2018 - 2018 IEEE Global Communications Conference, 6 page

    A new methods of mobile object measurement by using radio frequency identification

    Get PDF
    In this study, the mobile robot conducts tag of RFID and the antennas’ reader was scattered at the indoor-outdoor environment, which represents the novelty of the study, as this has not been done in the previous studies. This protects the mobile robot from weight increase reduces the consumption of the battery. Moreover, mobile object increase demands an increase in cheap passive Radio Frequency Identification tags in the system of navigation. Techniques of Signal processing utilize both accompanied by the theories of electromagnetics in locating the robot’s position. Numerous antennas usage provides a breadth of comparisons. In this work, have been provide a new RFID tracking approach that can also be used for interior positioning. This technique employs RSS to gather the signal intensity of reference tags before they are used. The next step is to send a signal. Setting up Power Level ranges via reference tags uses strength as a setting parameter. Then, based on the intensity of the signal, you can determine how far away you are. Reference tags are used to match the signal intensity of track tags. Finally, when track tags are installed in indoor locations, they can be used to monitor the movement of people. It will use the arithmetic mean of the positions of surrounding reference tags to determine the location. Values. According to preliminary results from an experiment, our approach is more precise than the antenna system. Approximately 10 to 20 lines

    UWB-assisted real-time localization in wireless sensor networks

    Get PDF
    A safety monitoring and accident warning system for underground construction site has been designed in our previous work based on wireless sensor networks (WSNs). Real-time localization of mobile targets is crucial for tracking the related incidents. However, the current RSSI-based localization approach struggles to achieve the required performance. This is due to the limited ranging accuracy of RSSI devices. In this paper, we investigate various ways of improving the localization accuracy and propose our solution of a hybrid UWB-assisted approach. We argue that a hybrid UWB-assisted RSSI ranging has the best overall performance for our application. We show with both mathematical analysis and demonstration system that, instead of implementing a full UWB network, our approach can improve the accuracy to our desired level with only a small number of additional UWB anchor nodes. © 2013 IEEE

    Infrastructure Wi-Fi for connected autonomous vehicle positioning : a review of the state-of-the-art

    Get PDF
    In order to realize intelligent vehicular transport networks and self driving cars, connected autonomous vehicles (CAVs) are required to be able to estimate their position to the nearest centimeter. Traditional positioning in CAVs is realized by using a global navigation satellite system (GNSS) such as global positioning system (GPS) or by fusing weighted location parameters from a GNSS with an inertial navigation systems (INSs). In urban environments where Wi-Fi coverage is ubiquitous and GNSS signals experience signal blockage, multipath or non line-of-sight (NLOS) propagation, enterprise or carrier-grade Wi-Fi networks can be opportunistically used for localization or “fused” with GNSS to improve the localization accuracy and precision. While GNSS-free localization systems are in the literature, a survey of vehicle localization from the perspective of a Wi-Fi anchor/infrastructure is limited. Consequently, this review seeks to investigate recent technological advances relating to positioning techniques between an ego vehicle and a vehicular network infrastructure. Also discussed in this paper is an analysis of the location accuracy, complexity and applicability of surveyed literature with respect to intelligent transportation system requirements for CAVs. It is envisaged that hybrid vehicular localization systems will enable pervasive localization services for CAVs as they travel through urban canyons, dense foliage or multi-story car parks
    • …
    corecore