6 research outputs found

    Formal Introduction to Fuzzy Implications

    Get PDF
    SummaryIn the article we present in the Mizar system the catalogue of nine basic fuzzy implications, used especially in the theory of fuzzy sets. This work is a continuation of the development of fuzzy sets in Mizar; it could be used to give a variety of more general operations, and also it could be a good starting point towards the formalization of fuzzy logic (together with t-norms and t-conorms, formalized previously).Institute of Informatics, University of Białystok, PolandMichał Baczyński and Balasubramaniam Jayaram. Fuzzy Implications. Springer Publishing Company, Incorporated, 2008. doi:10.1007/978-3-540-69082-5.Adam Grabowski. Basic formal properties of triangular norms and conorms. Formalized Mathematics, 25(2):93–100, 2017. doi:10.1515/forma-2017-0009.Adam Grabowski. The formal construction of fuzzy numbers. Formalized Mathematics, 22(4):321–327, 2014. doi:10.2478/forma-2014-0032.Adam Grabowski. On the computer certification of fuzzy numbers. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), Federated Conference on Computer Science and Information Systems, pages 51–54, 2013.Adam Grabowski. Lattice theory for rough sets – a case study with Mizar. Fundamenta Informaticae, 147(2–3):223–240, 2016. doi:10.3233/FI-2016-1406.Adam Grabowski and Magdalena Jastrzębska. Rough set theory from a math-assistant perspective. In Rough Sets and Intelligent Systems Paradigms, International Conference, RSEISP 2007, Warsaw, Poland, June 28–30, 2007, Proceedings, pages 152–161, 2007. doi:10.1007/978-3-540-73451-2_17.Adam Grabowski and Takashi Mitsuishi. Extending Formal Fuzzy Sets with Triangular Norms and Conorms, volume 642: Advances in Intelligent Systems and Computing, pages 176–187. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-66824-6_16.Adam Grabowski and Takashi Mitsuishi. Initial comparison of formal approaches to fuzzy and rough sets. In Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing - 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Proceedings, Part I, volume 9119 of Lecture Notes in Computer Science, pages 160–171. Springer, 2015. doi:10.1007/978-3-319-19324-3_15.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351–356, 2001.Zdzisław Pawlak. Rough sets. International Journal of Parallel Programming, 11:341–356, 1982. doi:10.1007/BF01001956.Lotfi Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.25324124

    General set approximation and its logical applications *

    Get PDF
    Abstract To approximate sets a number of theories have appeared for the last decades. Starting up from some general theoretical pre-conditions the authors give a set of minimum requirements for the lower and upper approximations and define general partial approximation spaces. Then, these spaces are applied in logical investigations. The main question is what happens in the semantics of the first-order logic when the approximations of sets as semantic values of predicate parameters are used instead of sets as their total interpretations. On the basis of defined partial interpretations, logical laws relying on the defined general set-theoretical framework of set approximation are investigated

    Stone Lattices

    Get PDF
    The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the paper, the notion of a pseudocomplement in a lattice is formally introduced in Mizar, and based on this we define the notion of the skeleton and the set of dense elements in a pseudocomplemented lattice, giving the meet-decomposition of arbitrary element of a lattice as the infimum of two elements: one belonging to the skeleton, and the other which is dense.The core of the paper is of course the idea of Stone identity a*⊔a**=T, which is fundamental for us: Stone lattices are those lattices L, which are distributive, bounded, and satisfy Stone identity for all elements a ∈ L. Stone algebras were introduced by Grätzer and Schmidt in [18]. Of course, the pseudocomplement is unique (if exists), so in a pseudcomplemented lattice we defined a * as the Mizar functor (unary operation mapping every element to its pseudocomplement). In Section 2 we prove formally a collection of ordinary properties of pseudocomplemented lattices.All Boolean lattices are Stone, and a natural example of the lattice which is Stone, but not Boolean, is the lattice of all natural divisors of p 2 for arbitrary prime number p (Section 6). At the end we formalize the notion of the Stone lattice B [2] (of pairs of elements a, b of B such that a ⩽ b) constructed as a sublattice of B 2, where B is arbitrary Boolean algebra (and we describe skeleton and the set of dense elements in such lattices). In a natural way, we deal with Cartesian product of pseudocomplemented lattices.Our formalization was inspired by [17], and is an important step in formalizing Jouni Järvinen Lattice theory for rough sets [19], so it follows rather the latter paper. We deal essentially with Section 4.3, pages 423–426. The description of handling complemented structures in Mizar [6] can be found in [12]. The current article together with [15] establishes the formal background for algebraic structures which are important for [10], [16] by means of mechanisms of merging theories as described in [11].Institute of Informatics, University of Białystok, Ciołkowskiego 1M, 15-245 Białystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.Grzegorz Bancerek. Filters – part II. Quotient lattices modulo filters and direct product of two lattices. Formalized Mathematics, 2(3):433–438, 1991.Grzegorz Bancerek. Ideals. Formalized Mathematics, 5(2):149–156, 1996.Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17. [Crossref]Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime numbers. Formalized Mathematics, 2(4):453–459, 1991.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.Adam Grabowski. On the computer-assisted reasoning about rough sets. In B. Dunin-Kęplicz, A. Jankowski, A. Skowron, and M. Szczuka, editors, International Workshop on Monitoring, Security, and Rescue Techniques in Multiagent Systems Location, volume 28 of Advances in Soft Computing, pages 215–226, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/3-540-32370-8 15. [Crossref]Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371–385, 2014. doi:10.3233/FI-2014-1129. [Crossref] [Web of Science]Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5. [Crossref]Adam Grabowski. Prime filters and ideals in distributive lattices. Formalized Mathematics, 21(3):213–221, 2013. doi:10.2478/forma-2013-0023. [Crossref]Adam Grabowski. On square-free numbers. Formalized Mathematics, 21(2):153–162, 2013. doi:10.2478/forma-2013-0017. [Crossref]Adam Grabowski. Two axiomatizations of Nelson algebras. Formalized Mathematics, 23 (2):115–125, 2015. doi:10.1515/forma-2015-0012. [Crossref]Adam Grabowski and Magdalena Jastrzębska. Rough set theory from a math-assistant perspective. In Rough Sets and Intelligent Systems Paradigms, International Conference, RSEISP 2007, Warsaw, Poland, June 28–30, 2007, Proceedings, pages 152–161, 2007. doi:10.1007/978-3-540-73451-2 17. [Crossref]George Grätzer. Lattice Theory: Foundation. Birkhäuser, 2011.George Grätzer and E.T. Schmidt. On a problem of M.H. Stone. Acta Mathematica Academiae Scientarum Hungaricae, (8):455–460, 1957.Jouni Järvinen. Lattice theory for rough sets. Transactions of Rough Sets, VI, Lecture Notes in Computer Science, 4374:400–498, 2007.Magdalena Jastrzębska and Adam Grabowski. On the properties of the Möbius function. Formalized Mathematics, 14(1):29–36, 2006. doi:10.2478/v10037-006-0005-0. [Crossref]Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35–40, 1993.Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.Robert Milewski. More on the lattice of many sorted equivalence relations. Formalized Mathematics, 5(4):565–569, 1996.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990

    Formalizing Two Generalized Approximation Operators

    Get PDF
    Rough sets, developed by Pawlak [15], are important tool to describe situation of incomplete or partially unknown information. In this article we give the formal characterization of two closely related rough approximations, along the lines proposed in a paper by Gomolińska [2]. We continue the formalization of rough sets in Mizar [1] started in [6].Adam Grabowski - Institute of Informatics, University of Białystok, PolandMichał Sielwiesiuk - Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Anna Gomolińska. A comparative study of some generalized rough approximations. Fundamenta Informaticae, 51:103–119, 2002.Adam Grabowski. Automated discovery of properties of rough sets. Fundamenta Informaticae, 128:65–79, 2013. doi:10.3233/FI-2013-933.Adam Grabowski. Lattice theory for rough sets – a case study with Mizar. Fundamenta Informaticae, 147(2–3):223–240, 2016. doi:10.3233/FI-2016-1406.Adam Grabowski. Formalization of generalized almost distributive lattices. Formalized Mathematics, 22(3):257–267, 2014. doi:10.2478/forma-2014-0026.Adam Grabowski. Basic properties of rough sets and rough membership function. Formalized Mathematics, 12(1):21–28, 2004.Adam Grabowski. Relational formal characterization of rough sets. Formalized Mathematics, 21(1):55–64, 2013. doi:10.2478/forma-2013-0006.Adam Grabowski. Binary relations-based rough sets – an automated approach. Formalized Mathematics, 24(2):143–155, 2016. doi:10.1515/forma-2016-0011.Adam Grabowski and Magdalena Jastrzębska. A note on a formal approach to rough operators. In Marcin S. Szczuka and Marzena Kryszkiewicz et al., editors, Rough Sets and Current Trends in Computing – 7th International Conference, RSCTC 2010, Warsaw, Poland, June 28-30, 2010. Proceedings, volume 6086 of Lecture Notes in Computer Science, pages 307–316. Springer, 2010. doi:10.1007/978-3-642-13529-3_33.Adam Grabowski and Magdalena Jastrzębska. Rough set theory from a math-assistant perspective. In Rough Sets and Intelligent Systems Paradigms, International Conference, RSEISP 2007, Warsaw, Poland, June 28–30, 2007, Proceedings, pages 152–161, 2007. doi:10.1007/978-3-540-73451-2_17.Adam Grabowski and Christoph Schwarzweller. On duplication in mathematical repositories. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5–10, 2010. Proceedings, volume 6167 of Lecture Notes in Computer Science, pages 300–314. Springer, 2010. doi:10.1007/978-3-642-14128-7_26.Adam Grabowski and Christoph Schwarzweller. Rough Concept Analysis - theory development in the Mizar system. In Asperti, Andrea and Bancerek, Grzegorz and Trybulec, Andrzej, editor, Mathematical Knowledge Management, Third International Conference, MKM 2004, Bialowieza, Poland, September 19–21, 2004, Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 130–144, 2004. doi:10.1007/978-3-540-27818-4_10. 3rd International Conference on Mathematical Knowledge Management, Bialowieza, Poland, Sep. 19-21, 2004.Jouni Järvinen. Lattice theory for rough sets. Transactions of Rough Sets, VI, Lecture Notes in Computer Science, 4374:400–498, 2007.Eliza Niewiadomska and Adam Grabowski. Introduction to formal preference spaces. Formalized Mathematics, 21(3):223–233, 2013. doi:10.2478/forma-2013-0024.Zdzisław Pawlak. Rough sets. International Journal of Parallel Programming, 11:341–356, 1982. doi:10.1007/BF01001956.Y.Y. Yao. Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning, 15(4):291–317, 1996. doi:10.1016/S0888-613X(96)00071-0.William Zhu. Generalized rough sets based on relations. Information Sciences, 177: 4997–5011, 2007.26218319
    corecore