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Abstract

To approximate sets a number of theories have appeared for the last
decades. Starting up from some general theoretical pre-conditions the au-
thors give a set of minimum requirements for the lower and upper approxi-
mations and define general partial approximation spaces. Then, these spaces
are applied in logical investigations. The main question is what happens in
the semantics of the first-order logic when the approximations of sets as se-
mantic values of predicate parameters are used instead of sets as their total
interpretations. On the basis of defined partial interpretations, logical laws
relying on the defined general set-theoretical framework of set approximation
are investigated.
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1. Introduction

Classical set-theoretic approximation space was invented by Zdzisław Pawlak in
the early 1980’s. It is known as rough set theory [9, 10]. From the beginning, its
many generalizations have been developed [1, 12, 18]. In this paper, first, minimum
requirements for set approximations relying on general theoretical pre-conditions
are given and a general approximation framework is defined. This scheme is allowed
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to treat uniformly the common features of classical rough set theory and its different
generalizations. Next, these results are applied in logical investigations.

2. General approximation spaces

The starting point of rough set theory is a nonempty finite set U and an equiva-
lence relation ε on U . The equivalence classes are called ε-elementary sets. Any
unions of ε-elementary sets are called definable. A subset S ∈ 2U can be naturally
approximated by the lower and upper ε-approximations of S which are denoted by
ε(S) and ε(S), respectively. The former is the union of all ε-elementary sets which
are the subsets of S, whereas the latter is the union of all ε-elementary sets which
have a nonempty intersection with S.

In rough set theory, the equivalence classes form a partition of U , i.e., they
are pairwise disjoint and cover the universe. Therefore, the Pawlakian theory of
set approximations can be generalized by giving up the pairwise disjoint property
and/or the covering of the universe.

Giving up the disjoint property but retaining the covering, a natural general-
ization of rough set theory is obtained which is called the covering–based rough set
theory [1, 18]. The partial nature of real–life problems, however, requires working
out partial approximation schemes. Thus, not only the pairwise disjoint property
but also the covering of the universe are given up. This basically new approach is
referred to as general (partial) approximation of sets [5, 6, 4].

Let U be a finite nonempty set. The set–theoretical framework of the general
approximation of sets has the following components:

• domain, not necessarily a finite set derived from U whose members are ap-
proximated;

• base sets, some beforehand detached sets in the domain forming a base system;

• definable sets deriving from base sets as possible approximations of sets in
the domain (base sets are always definable);

• approximation pair determining lower and upper approximations of sets.

There are many approximation space types mainly depending on how deriving
the domain from ground set and definable sets from base sets, in addition how
approximation pair determining the lower and upper approximations.

At the beginning of the investigations, we stipulate the following two funda-
mental pre–conditions:

• lower and upper approximations of any set must be definable;

• lower approximation of any set must be included in its upper approximations.

The intuitive meaning behind this scheme is the following. The background
knowledge about objects of interest is represented by the base system. Base sets
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and definable sets can be considered as primary and derived tools in the approxi-
mation process, respectively. Derived tools or simply tools constitute all available
knowledge about the objects. They are used to describe approximately any sets
belonging to the domain. After all, lower and upper approximations must be de-
finable sets so that we are able to make any decision relying on tools.

Definition 2.1. The 5-tuple GAS(U) = 〈U,B,DB, l, u〉 is a general approximation
space with the domain 2U if

1. B(6= ∅) ⊆ 2U and if B ∈ B, B 6= ∅ (base system);

2. B ⊆ DB ⊆ 2U and ∅ ∈ DB (definable sets);

3. lower and upper approximation mappings l, u : 2U → 2U form an ordered
pair 〈l, u〉, called a weak approximation pair, with the following minimum
requirements:

• l(2U ), u(2U ) ⊆ DB (l, u are definable);

• if S1 ⊆ S2 (S1, S2 ∈ 2U ), l(S1) ⊆ l(S2), u(S1) ⊆ u(S2) (monotonicity);
• u(∅) = ∅ (normality of u);

• l(S) ⊆ u(S) (S ∈ 2U ) (weak approximation property).

Definition 2.2. GAS(U) is total, if the base system B covers the universe, i.e.,⋃
B = U and partial otherwise.

If B ∈ B is a union of a family of sets B′ ⊆ B \ {B}, B is called reducible in
B, otherwise B is irreducible in B. A base system B is single-layered if every base
set is irreducible, and one-layered if the base sets are pairwise disjoint.

Definition 2.3. GAS(U) relies on Pawlakian base if B is a partition of U .

Corollary 2.4. GAS(U) relies on Pawlakian base if and only if its base system is
total and one–layered.

The weak approximation property immediately implies the following statement.

Corollary 2.5. In the general approximation space GAS(U), l(∅) = ∅ also holds
(normality of l).

It is reasonable that base sets as primary tools are exactly approximated from
“lower side”. In certain cases, it also holds for definable sets.

Definition 2.6. A weak approximation pair 〈l, u〉 is

1. granular if l(B) = B (B ∈ B);

2. standard if l(D) = D (D ∈ DB).

It is an important question how lower and upper approximations relate to the
approximated set itself.
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Definition 2.7. A weak approximation pair 〈l, u〉 is
1. lower semi–strong if l(S) ⊆ S (S ∈ 2U ), i.e., l is contractive;

2. upper semi–strong if S ⊆ u(S) (S ∈ 2U ), i.e., u is extensive;

3. strong if it is lower and upper semi–strong, i.e., each subset S ∈ 2U is bounded
by l(S) and u(S): l(S) ⊆ S ⊆ u(S).

Corollary 2.8. In the general approximation space GAS(U),

1. if 〈l, u〉 is an upper semi–strong approximation pair then u(U) = U (co–
normality of u);

2. if 〈l, u〉 is an upper semi–strong approximation pair and l is standard, then
l(U) = U (co–normality of l).

Definition 2.9. The general approximation space GAS(U) is a weak/standard/
lower semi–strong/upper semi–strong/strong approximation space, if the approxi-
mation pair 〈l, u〉 is weak/ standard/lower semi–strong/upper semi–strong/strong,
respectively.

Definition 2.10. In the general approximation space GAS(U), let us define DB

with the following inductive definition:

• ∅ ∈ DB, B ⊆ DB;

• if D1, D2 ∈ DB, then D1 ∪D2 ∈ DB.

The approximation space of this type is called strictly union type.

Definition 2.11. Let GAS(U) be a strictly union type approximation space, and
let us define the lower and upper approximations as follows:

1. l(S) =
⋃

L(S), where L(S) = {B ∈ B | B ⊆ S} (S ∈ 2U );

2. u(S) =
⋃
U(S), where U(S) = {B ∈ B | B ∩ S 6= ∅} (S ∈ 2U ).

Then, 〈l, u〉 is called the Pawlakian approximation pair.
A strictly set–union type approximation space with a Pawlakian approximation

pair is called a Pawlakian approximation space.

Corollary 2.12. If GAS(U) is a Pawlakian approximation space, it is lower semi–
strong and granular.

3. Logical system based on set approximation

Rough set theory can be considered as the foundation of various kinds of deductive
reasoning. In particular, various kinds of logics based on the rough set approach
have been investigated, rough set methodology contributed essentially to modal
logics, many valued logic, intuitionistic logic (see in [11]). There are many papers
about the logical features of different systems of rough sets (or, in general, set
approximation). A summary of this research can be found in [14].
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In the last years we presented some papers dealing with the possibilities of
using different systems of set approximation in logical semantics. At RST2011 a
very general framework of set approximation was presented and we showed that the
semantics of a partial first–order logic could rely on general partial approximation
spaces.1 The common set theoretical framework proved a useful tool to compare
the results and consequences of different approximations from the logical point of
view.

The theoretical results appear on the meta level of our logical system. Our
starting point is a given language of first–order logic and a finite distinguished sub-
set of its predicate parameters. Its members express available concepts/properties
and relations which are called tools.

According to a usual interpretation of the given first–order language, the in-
terpretation of all predicate parameters is obtained. Then, the following question
appears. What does it have to be changed if we use the approximations of sets gen-
erated by the semantic value of our tools as semantic values of predicate parameters
instead of the sets given by their total interpretation?

Our solution regarding this question is that we may introduce three different
partial interpretations of the given first–order language with the help of its total
interpretation. As a result, the “real world” that appears in the total interpreta-
tion and its approximations that appear in generated partial interpretations can
be compared. If we take into consideration all interpretations that fulfill some re-
quirements, we have the logical possibility to investigate what happens to logical
laws when the approximations of sets instead of the sets themselves are used. The
common set theoretical framework proves to be a useful tool to compare the results
and consequences of different approximations from the logical point of view.

Having given the language of a logical system, a general partial approximation
space is generated by the help of an interpretation of the language in order to give
semantic rules. Finally central semantic notions are defined in order to give some
fundamental laws.

Later we showed that

1. there is a logically exact way to define approximative functors on object
level in order to determine what kind of approximation has to be taken into
consideration in the evaluating process of a formula;

2. the representations of concepts (properties) of our available knowledge can
be used to approximate not only any concept (property) but any relation.

In order to represent approximative functors in object language a specific first–
order language is required. Its main reason is that in standard first–order language
there is no predicate functors, i.e., functors whose inputs and outputs are pred-
icates. There are two different types of approximative functors: the first ones
produce predicates from predicates, and the second ones produce formulae from

1http://rst.disco.unimib.it/RoughSetTheory/Slides2011_files/8-Csajbok-Mihalydeak.
pdf
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formulae. The first ones can be treated as primitives, the second ones can be in-
troduced by contextual definitions. Informally these functors tell us what kind of
approximations (lower or upper) has to be used in order to determinate the truth
value of a given formula.

Having a tool–based interpretation of a language of tool-based partial first-order
logic (TbPFoL), the semantic values of tools (the members of set T ) determine a
general partial approximation space with respect to the given interpretation. The
generated approximation space is logically relevant in the sense, that it gives the
lower and upper approximations of any predicate P to be taken into consideration
in the definition of semantic rules.

For example if P is a one–argument predicate parameter which is not a tool
and u ∈ U , then

1. PO is true/false at u if our tools evaluate P as certainly true/false at u;

2. PO is undefined at u if our tools are not enough to decide whether P is
certainly true or certainly false at u;

3. PM is true/false at u if our tools evaluate P as maybe true/certainly false at
u;

4. PM is undefined at u if our tools are not enough to decide whether P is maybe
true or certainly false at u.

From the logical point of view, the main advantage of our logical framework is
the flexibility. It can be recognized on different levels:

1. The generated partial interpretations rely on two theoretical points:

(a) The set of semantic values of tools is given by the total interpreta-
tion 〈U, %〉. These semantic values represent available knowledge, i.e.,
the total interpretation gives us the representations of available con-
cepts/properties and relations by which we approximate any concept/
property or relation (with respect to the given interpretation).

(b) The general approximation space is generated by tools with respect to
the given interpretation. By specifying an approximation pair 〈l, u〉,
different theoretical systems of approximation can be gained: Pawlak-
type, generalized Pawlak-types, approximations which are used in dif-
ferent systems of granular computing or in very general versions of the
approximation of sets.

2. In the definition of one consequence relation, the different notions of models
can be used. For instance, we can require that all lower models of the set of
premises should be a lower/upper/mixed model of the conclusion: it makes
possible to investigate different approximations comparably.
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