511,328 research outputs found

    Variations in roughness predictions (flume experiments)

    Get PDF
    Data of flume experiments with bed forms are used to analyze and compare different roughness predictors. In this study, the hydraulic roughness consists of grain roughness and form roughness. We predict the grain roughness by means of the size of the sediment. The form roughness is predicted by three approaches: Van Rijn (1984), Vanoni & Hwang (1967) and Engelund (1966). The total roughness values (friction factors) are compared with the roughness values according to the DarcyWeisbach equation. Results show that the different methods predict different friction factors. In future research uncertainties in the hydraulic roughness will be taken into account to determine their influence on the computed water levels

    Expert opinion: uncertainties in hydraulic roughness

    Get PDF
    Water level predictions in rivers are used for a variety of purposes in water management. For example, designing flood defence measures and evaluating natural rehabilitation in flood plains, cannot be done without water level predictions. However, these water level predictions are uncertain and a major part of this uncertainty is caused by the uncertainty in the roughness coefficient (Van der Klis, 2003; Van Vuren, 2005). Hydraulic roughness in rivers results from (among others): grain roughness, form roughness and vegetation roughness. The roughness coefficient is uncertain because different elements creating the hydraulic roughness are uncertain (e.g. grain size, dune height). To quantify the influence of the uncertain roughness coefficient on water level predictions, we first need a quantification of the uncertainty in the roughness coefficient

    Effect of wall roughness on liquid oscillations damping in rectangular tanks

    Get PDF
    Tests were conducted in two rectangular glass tanks using silicon carbide grit bonded to walls to determine effect of wall roughness for damping liquid oscillations. Tests included effects of roughness height, roughness location, roughness at various values, amplitude decay, Reynolds number, and boundary layer thickness

    Ballistic thermal conductance limited by phonon roughness scattering: A comparison of power-law and Gaussian roughness

    Get PDF
    In this work, we have investigated the influence of power-law roughness on the ballistic thermal conductance KTH for a nanosized beam adiabatically connected between two heat reservoirs. The sideways wall beam roughness is assumed to be power-law type, which is described by the roughness amplitude w, the in-plane roughness correlation length ξ and the roughness exponent 0≤H≤1. Distinct differences occur in between power-law and Gaussian wall roughness. For power-law roughness with low roughness exponents H (<0.5), the influence of phonon scattering can be rather destructive leading to significant deviations from the universal conductance value for flat beam walls. On the other hand for large roughness exponents (H>0.5) the conductance drop is significantly smaller than that of Gaussian roughness assuming similar roughness ratios w/ξ.

    Surface roughness modeling of CBN hard steel turning

    Get PDF
    Study in the paper investigate the influence of the cutting conditions parameters on surface roughness parameters during turning of hard steel with cubic boron nitrite cutting tool insert. For the modeling of surface roughness parameters was used central compositional design of experiment and artificial neural network as well. The values of surface roughness parameters Average mean arithmetic surface roughness (Ra) and Maximal surface roughness (Rmax) were predicted by this two-modeling methodology and determined models were then compared. The results showed that the proposed systems can significantly increase the accuracy of the product profile when compared to the conventional approaches. The results indicate that the design of experiments modeling technique and artificial neural network can be effectively used for the prediction of the surface roughness parameters of hard steel and determined significantly influential cutting conditions parameters

    Tailoring the frictional properties of granular media

    Full text link
    A method of modifying the roughness of soda-lime glass spheres is presented, with the purpose of tuning inter-particle friction. The effect of chemical etching on the surface topography and the bulk frictional properties of grains is systematically investigated. The surface roughness of the grains is measured using white light interferometry and characterised by the lateral and vertical roughness length scales. The underwater angle of repose is measured to characterise the bulk frictional behaviour. We observe that the co-efficient of friction depends on the vertical roughness length scale. We also demonstrate a bulk surface roughness measurement using a carbonated soft drink.Comment: 10 pages, 17 figures, submitted to Phys. Rev.

    Dynamic evolution of interface roughness during friction and wear processes

    Get PDF
    Dynamic evolution of surface roughness and influence of initial roughness (Sa=0.282 to 6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 microns. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts

    Influence of random roughness on cantilever curvature sensitivity

    Get PDF
    In this work we explore the influence of random surface roughness on the cantilever sensitivity to respond to curvature changes induced by changes in surface stress. The roughness is characterized by the out-of-plane roughness amplitude w, the lateral correlation length x, and the roughness or Hurst exponent H (0<H<1). The cantilever sensitivity is found to decrease with increasing roughness (decreasing H and/or increasing ratio w/x) or equivalently increasing local surface slope. Finally, analytic expressions of the cantilever sensitivity as a function of the parameters w, x, and H are derived in order to allow direct implementation in sensing systems.Comment: 10 pages, 3 figure
    corecore