Response to "Comment on 'Influence of random roughness on cantilever curvature sensitivity' " [Appl. Phys. Lett. 96, 226101 (2010)]

O. Ergincan, G. Palasantzas, ${ }^{\text {a) }}$ and B. J. Kooi
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 26 April 2010; accepted 11 May 2010; published online 1 June 2010)
[doi:10.1063/1.3442494]

In our paper, we state after Eq. (5), page 041912-2 (Ref. 1) that "Fig. 1 shows the cantilever sensitivity T / T_{o} as a function of the local slope $\rho_{\text {rms }}$. In fact, Eq. (5) defines a limiting value of the local slope ρ_{rms} for which $T=0$, yielding $\left.\rho_{\text {rms }}\right|_{\max }=\sqrt{\left(1-v^{L}\right) / v^{L}}$. For Poisson ratios $v^{L}=0.18[\mathrm{Si}(111)]$ (Ref. 30) and $v^{L}=0.28[\operatorname{Si}(100)]$ (Ref. 30) we obtain, respectively, $\rho_{\mathrm{rms} / \max }=2.13$ and $\rho_{\mathrm{rms} / \max }=1.6$. For a metallic overlayer as gold (widely used to coat cantilevers) with v^{L} $=0.44$ (Ref. 30) we obtain $\rho_{\mathrm{rms} / \max }=1.12$. These are relatively significant values for ρ_{rms} and the perturbative expansion of Eq. (5) is valid only for local slopes $\rho_{\text {rms }}<1 \ldots . . "$

Therefore as we explain in our paper the validity of the approximate formula is for roughness parameters that lead to local slopes $\rho_{\mathrm{rms}}<1$. Although in a strict sense we must have $\rho_{\mathrm{rms}} \ll 1$, the expansion in powers of ρ_{rms}^{2} multiplied by $v^{L} /\left(1-v^{L}\right)<1$ limits the contribution of higher order terms $\rho_{\mathrm{rms}}^{2 n}(\mathrm{n}>1)$ significantly. Around the regime $\rho_{\mathrm{rms}} \sim 1$ (or effectively $\theta \sim 45^{\circ}$) one has to consider higher order terms in

[^0]$\left\langle\theta^{2}\right\rangle$ in the expansion of the generic Eq. (1) in the comment [or Eq. (2) in Ref. 1]. In any case as stated in our paper, our calculations were performed for local slopes $0 \leq \rho_{\mathrm{rms}}<1$ corresponding effectively to inclinations $\theta\left(\approx \tan ^{-1} \rho_{\mathrm{rms}}\right)<45^{\circ}$. Moreover, as one can observe from Fig. 1 made from the commenting authors, ${ }^{2}$ for inclinations below $\theta<45^{\circ}$ the agreement between Eq. (5) in Ref. 1 and the full calculation shown by the commenting authors ${ }^{2}$ is reasonably good for both Au and Si . Therefore, for inclinations $\theta<45^{\circ}$ our analytic formula, as it is shown also by the commenting authors, ${ }^{2}$ is having the correct behavior, while any discussion for angles $\theta>45^{\circ}$ is not relevant to our paper since we do not consider this regime. In any case, it came to our attention that due to error in our original publication, ${ }^{1}$ Figs. 2 and 3 are not the correct ones and for this reason we have submitted an erratum.

[^1]
[^0]: ${ }^{\text {a) }}$ Author to whom correspondence should be addressed. Electronic mail: g.palasantzas@rug.nl.

[^1]: ${ }^{1}$ O. Ergincan, G. Palasantzas, and B. J. Kooi, Appl. Phys. Lett. 96, 041912 (2010).
 ${ }^{2}$ Y. Wang, J. Weissmuller, and H. Duan, Appl. Phys. Lett. 96, 226101 (2010).

