APPLIED PHYSICS LETTERS 96, 226102 (2010)

Response to "Comment on 'Influence of random roughness on cantilever curvature sensitivity' " [Appl. Phys. Lett. 96, 226101 (2010)]

O. Ergincan, G. Palasantzas,^{a)} and B. J. Kooi

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 26 April 2010; accepted 11 May 2010; published online 1 June 2010)

[doi:10.1063/1.3442494]

In our paper, we state after Eq. (5), page 041912-2 (Ref. 1) that "Fig. 1 shows the cantilever sensitivity T/T_o as a function of the local slope $\rho_{\rm rms}$. In fact, Eq. (5) defines a limiting value of the local slope $\rho_{\rm rms}$ for which T=0, yielding $\rho_{\rm rms}|_{\rm max} = \sqrt{(1-v^L)/v^L}$. For Poisson ratios $v^L=0.18$ [Si(111)] (Ref. 30) and $v^L=0.28$ [Si(100)] (Ref. 30) we obtain, respectively, $\rho_{\rm rms/max}=2.13$ and $\rho_{\rm rms/max}=1.6$. For a metallic overlayer as gold (widely used to coat cantilevers) with $v^L=0.44$ (Ref. 30) we obtain $\rho_{\rm rms/max}=1.12$. These are relatively significant values for $\rho_{\rm rms}$ and the perturbative expansion of Eq. (5) is valid only for local slopes $\rho_{\rm rms} < 1....$ "

Therefore as we explain in our paper the validity of the approximate formula is for roughness parameters that lead to local slopes $\rho_{\rm rms} < 1$. Although in a strict sense we must have $\rho_{\rm rms} \ll 1$, the expansion in powers of $\rho_{\rm rms}^2$ multiplied by $v^L/(1-v^L) < 1$ limits the contribution of higher order terms $\rho_{\rm rms}^{2n}(n>1)$ significantly. Around the regime $\rho_{\rm rms} \sim 1$ (or effectively $\theta \sim 45^{\circ}$) one has to consider higher order terms in

 $\langle \theta^2 \rangle$ in the expansion of the generic Eq. (1) in the comment [or Eq. (2) in Ref. 1]. In any case as stated in our paper, our calculations were performed for local slopes $0 \le \rho_{\rm rms} < 1$ corresponding effectively to inclinations $\theta(\approx \tan^{-1} \rho_{\rm rms}) < 45^{\circ}$. Moreover, as one can observe from Fig. 1 made from the commenting authors,² for inclinations below $\theta < 45^{\circ}$ the agreement between Eq. (5) in Ref. 1 and the full calculation shown by the commenting authors² is reasonably good for both Au and Si. Therefore, for inclinations $\theta < 45^{\circ}$ our analytic formula, as it is shown also by the commenting authors,² is having the correct behavior, while any discussion for angles $\theta > 45^{\circ}$ is not relevant to our paper since we do not consider this regime. In any case, it came to our attention that due to error in our original publication,¹ Figs. 2 and 3 are not the correct ones and for this reason we have submitted an erratum.

96, 226102-1

^{a)}Author to whom correspondence should be addressed. Electronic mail: g.palasantzas@rug.nl.

¹O. Ergincan, G. Palasantzas, and B. J. Kooi, Appl. Phys. Lett. **96**, 041912 (2010).

²Y. Wang, J. Weissmuller, and H. Duan, Appl. Phys. Lett. **96**, 226101 (2010).