132,711 research outputs found

    Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of <it>co-incidence </it>for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction.</p> <p>Results</p> <p>The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources.</p> <p>Conclusion</p> <p>Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download.</p

    Improved Algorithms for Alignment between RNA Tertiary Structures

    Get PDF
    RNA is an important molecule which performs a wide range of functions in biological systems. The comparison between RNA secondary and tertiary structures has received much attention recently. It is a well known fact that structural features of RNAs are among the most significant factors in the molecular mechanisms involved in their functions. The presumption is that, to a preserved biological function there corresponds a preserved molecular structure. Therefore, the ability to compare RNA structures is useful. Furthermore, in many problems involving RNAs, it is required to have an alignment between RNA structures in addition to a similarity measure. Computing alignment between RNA tertiary structures is NP-hard and MAX SNP-hard. In this research, we present algorithms for computing the alignment between two RNA tertiary structures. For simple tertiary structures, we can compute the optimal alignment efficiently. For moderate tertiary structures, we adopt the constrained alignment approach. Although the result produced by constrained alignment is not guaranteed to be an optimal solution, in practice it would be reasonable. Experimental tests show that our algorithms can be used to compute alignment between RNA tertiary structures in practical applications

    Counting, generating and sampling tree alignments

    Get PDF
    Pairwise ordered tree alignment are combinatorial objects that appear in RNA secondary structure comparison. However, the usual representation of tree alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce identical sets of matches between identical pairs of trees. This ambiguity is uninformative, and detrimental to any probabilistic analysis.In this work, we consider tree alignments up to equivalence. Our first result is a precise asymptotic enumeration of tree alignments, obtained from a context-free grammar by mean of basic analytic combinatorics. Our second result focuses on alignments between two given ordered trees SS and TT. By refining our grammar to align specific trees, we obtain a decomposition scheme for the space of alignments, and use it to design an efficient dynamic programming algorithm for sampling alignments under the Gibbs-Boltzmann probability distribution. This generalizes existing tree alignment algorithms, and opens the door for a probabilistic analysis of the space of suboptimal RNA secondary structures alignments.Comment: ALCOB - 3rd International Conference on Algorithms for Computational Biology - 2016, Jun 2016, Trujillo, Spain. 201

    Structure-based whole-genome realignment reveals many novel noncoding RNAs

    Get PDF
    Recent genome-wide computational screens that search for conservation of RNA secondary structure in whole-genome alignments (WGAs) have predicted thousands of structural noncoding RNAs (ncRNAs). The sensitivity of such approaches, however, is limited, due to their reliance on sequence-based whole-genome aligners, which regularly misalign structural ncRNAs. This suggests that many more structural ncRNAs may remain undetected. Structure-based alignment, which could increase the sensitivity, has been prohibitive for genome-wide screens due to its extreme computational costs. Breaking this barrier, we present the pipeline REAPR (RE-Alignment for Prediction of structural ncRNA), which efficiently realigns whole genomes based on RNA sequence and structure, thus allowing us to boost the performance of de novo ncRNA predictors, such as RNAz. Key to the pipeline's efficiency is the development of a novel banding technique for multiple RNA alignment. REAPR significantly outperforms the widely used predictors RNAz and EvoFold in genome-wide screens; in direct comparison to the most recent RNAz screen on D. melanogaster, REAPR predicts twice as many high-confidence ncRNA candidates. Moreover, modENCODE RNA-seq experiments confirm a substantial number of its predictions as transcripts. REAPR's advancement of de novo structural characterization of ncRNAs complements the identification of transcripts from rapidly accumulating RNA-seq data.National Institutes of Health (U.S.) (Grant RO1GM081871

    Web-Beagle: a web server for the alignment of RNA secondary structures

    Get PDF
    Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods

    An enhanced RNA alignment benchmark for sequence alignment programs

    Get PDF
    BACKGROUND: The performance of alignment programs is traditionally tested on sets of protein sequences, of which a reference alignment is known. Conclusions drawn from such protein benchmarks do not necessarily hold for the RNA alignment problem, as was demonstrated in the first RNA alignment benchmark published so far. For example, the twilight zone – the similarity range where alignment quality drops drastically – starts at 60 % for RNAs in comparison to 20 % for proteins. In this study we enhance the previous benchmark. RESULTS: The RNA sequence sets in the benchmark database are taken from an increased number of RNA families to avoid unintended impact by using only a few families. The size of sets varies from 2 to 15 sequences to assess the influence of the number of sequences on program performance. Alignment quality is scored by two measures: one takes into account only nucleotide matches, the other measures structural conservation. The performance order of parameters – like nucleotide substitution matrices and gap-costs – as well as of programs is rated by rank tests. CONCLUSION: Most sequence alignment programs perform equally well on RNA sequence sets with high sequence identity, that is with an average pairwise sequence identity (APSI) above 75 %. Parameters for gap-open and gap-extension have a large influence on alignment quality lower than APSI ≤ 75 %; optimal parameter combinations are shown for several programs. The use of different 4 × 4 substitution matrices improved program performance only in some cases. The performance of iterative programs drastically increases with increasing sequence numbers and/or decreasing sequence identity, which makes them clearly superior to programs using a purely non-iterative, progressive approach. The best sequence alignment programs produce alignments of high quality down to APSI > 55 %; at lower APSI the use of sequence+structure alignment programs is recommended

    A new approach to feature extraction for RNA structure comparision

    Get PDF
    In recent years, RNA structural comparison becomes a crucial problem in bioinformatics research. Generally, it is a popular approach for representing the RNA secondary structures with arc-annotation sets. Several methods can be used to compare two RNA structures, such as tree edit distance, longest arc-preserving common subsequence (LAPCS) and stem based alignment. However, these methods may be helpful only for small RNA structures because of their high time complexity. In this thesis, we propose a simplified method to compare two RNA structures in O(mn) time, where m and n are the lengths of the two RNA sequences, respectively. The method transforms the RNA structures into specific sequences called object sequences, then compare these object sequences to find their common substructures. The comparison method is tested with 118 RNA structures obtained from RNase P Database. For any two structures, it is important to identify whether they are in the same family by both structure comparison and sequence comparison. In the experiment, it is found that the method for comparing RNA structures can yield better hit rates and is faster than the traditional method to compare the RNA sequences. Therefore, the approach to extract and compare the RNA secondary structures is more sensitive in biology and more efficient in time complexity

    RNA structure alignment by a unit-vector approach

    Get PDF
    none2siMotivation: The recent discovery of tiny RNA molecules such as μRNAs and small interfering RNA are transforming the view of RNA as a simple information transfer molecule. Similar to proteins, the native three-dimensional structure of RNA determines its biological activity. Therefore, classifying the current structural space is paramount for functionally annotating RNA molecules. The increasing numbers of RNA structures deposited in the PDB requires more accurate, automatic and benchmarked methods for RNA structure comparison. In this article, we introduce a new algorithm for RNA structure alignment based on a unit-vector approach. The algorithm has been implemented in the SARA program, which results in RNA structure pairwise alignments and their statistical significance. Results: The SARA program has been implemented to be of general applicability even when no secondary structure can be calculated from the RNA structures. A benchmark against the ARTS program using a set of 1275 non-redundant pairwise structure alignments results in ∼6% extra alignments with at least 50% structurally superposed nucleotides and base pairs. A first attempt to perform RNA automatic functional annotation based on structure alignments indicates that SARA can correctly assign the deepest SCOR classification to > 60% of the query structures. © The Author 2008. Published by Oxford University Press. All rights reserved.openCapriotti, Emidio; Marti-Renom, Marc ACapriotti, Emidio; Marti-Renom, Marc

    Noncoding RNA gene detection using comparative sequence analysis

    Get PDF
    BACKGROUND: Noncoding RNA genes produce transcripts that exert their function without ever producing proteins. Noncoding RNA gene sequences do not have strong statistical signals, unlike protein coding genes. A reliable general purpose computational genefinder for noncoding RNA genes has been elusive. RESULTS: We describe a comparative sequence analysis algorithm for detecting novel structural RNA genes. The key idea is to test the pattern of substitutions observed in a pairwise alignment of two homologous sequences. A conserved coding region tends to show a pattern of synonymous substitutions, whereas a conserved structural RNA tends to show a pattern of compensatory mutations consistent with some base-paired secondary structure. We formalize this intuition using three probabilistic "pair-grammars": a pair stochastic context free grammar modeling alignments constrained by structural RNA evolution, a pair hidden Markov model modeling alignments constrained by coding sequence evolution, and a pair hidden Markov model modeling a null hypothesis of position-independent evolution. Given an input pairwise sequence alignment (e.g. from a BLASTN comparison of two related genomes) we classify the alignment into the coding, RNA, or null class according to the posterior probability of each class. CONCLUSIONS: We have implemented this approach as a program, QRNA, which we consider to be a prototype structural noncoding RNA genefinder. Tests suggest that this approach detects noncoding RNA genes with a fair degree of reliability
    • …
    corecore