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Abstract

RNA is an important molecule which performs a wide range of functions in bio­

logical systems. The comparison between RNA secondary and tertiary structures has 

received much attention recently. It is a well known fact that structural features of 

RNAs are among the most significant factors in the molecular mechanisms involved 

in their functions. The presumption is that, to a preserved biological function there 

corresponds a preserved molecular structure. Therefore, the ability to compare RNA 

structures is useful. Furthermore, in many problems involving RNAs, it is required 

to have an alignment between RNA structures in addition to a similarity measure.

Computing alignment between RNA tertiary structures is NP-hard and MAX 

SNP-hard. In this research, we present algorithms for computing the alignment be­

tween two RNA tertiary structures. For simple tertiary structures, we can compute 

the optimal alignment efficiently. For moderate tertiary structures, we adopt the con­

strained alignment approach. Although the result produced by constrained alignment 

is not guaranteed to be an optimal solution, in practice it would be reasonable. Ex­

perimental tests show that our algorithms can be used to compute alignment between 

RNA tertiary structures in practical applications.

Key words: dynamic programming, sequence alignment, RNA, RNA secondary 

structure, RNA tertiary structure, RNA structural alignment.
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Chapter 1

Introduction

1.1 Objective and Motivation

In this research, the problem of interest is structural alignment between two RNA 

molecules. More specifically, we focus on alignment between two RNA tertiary struc­

tures.

The comparison and alignment between RNA secondary and tertiary structures 

has received much attention recently. The motivation for this kind of work is mainly 

due to the importance of RNA molecule. RNA is an important molecule which 

performs a wide range of functions in biological systems. At the ribosomal level, 

messenger RNA (mRNA) is used to read the genetic code and transfer RNA (tRNA) is 

utilized to make the protein sequence. In the case of certain viruses, such as HIV, it is 

RNA (not DNA) that carries genetic information and regulates the functions of these 

viruses. RNA has recently become the center of much attention due to its catalytic 

properties, leading to an increasing interest in obtaining structural information.

It is a well known fact that structural features of RNAs are among the most signif­

icant factors in the molecular mechanisms involved in their functions. The presump­

tion is that, to a preserved biological function there corresponds a preserved molecular 

structure. Hence the ability to compare RNA structures is useful [1, 5, 6, 8, 11, 21]. 
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Furthermore, in many problems involving RNAs [3, 16], it is required to have an 

alignment between RNA structures in addition to a similarity measure [17 .

The primary structure of RNA is a sequence of nucleotides (bases). The primary 

structure, also called RNA sequence, is denoted by a sequence over the four-letter 

alphabet Σ = {A,C,G,U}. The secondary or tertiary structure of RNA is a set of 

base-pairs. For RNA secondary structures, these base-pairs have traditionally been 

assumed to be nested, i.e. one-to-one and non-crossing. For tertiary structure, there 

is no restriction of non-crossing.

Arc-annotated sequences [6, 8, 9, 13] are useful in representing the structural 

information of RNA sequences. In general, RNA secondary and tertiary structures 

can be represented as a set of nested arcs and a set of crossing arcs, respectively.

Computing alignment between RNA tertiary structures is NP-hard and MAX 

SNP-hard [21,12, 19, 9]. This means that this problem has no solutions in polynomial 

time, and there is no polynomial time approximation scheme (PTAS) for it unless P 

- NP.

Wang and Zhang presented an algorithm to compute the alignment between RNA 

structures for the case where aligned base pairs are non-crossing [19]. They treated 

a base pair as a unit and do not allow it to match to two unpaired bases. Un­

der this restricted assumption, when at least one of the RNA structures involved 

is a secondary structure, their algorithm can compute the optimal alignment in 

O(stem(R1) × stem(R2) × Ri × |R2) time. One more step, can be added to the 

algorithm to align tertiary base pairs. This step can be considered as a constrained 

alignment.

An improved edit distance model was proposed by Jiang et al. in [9] to measure 

the similarity between RNA structures. In addition to base insertion, base deletion, 

base substitution, base-pair insertion, base-pair deletion, base-pair substitution, the 

authors introduced two new edit operations, base-pair bond breaking and base-pair 

altering. Under this model, even computing edit distance between a tertiary struc­

ture and a primary structure is MAX SNP-hard. Jiang et al. present a dynamic 
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programming algorithm for computing edit distance between a secondary structure 

and a primary structure, and a dynamic programming algorithm for a solvable case 

of edit distance between a tertiary structure and a secondary structure under a class 

of restricted scoring schemes [9].

Another line of works related to similarity comparison between RNA secondary 

and tertiary structures is focused on primary structure [1, 5] where the comparison 

is basically done on the primary structure while trying to incorporate the secondary 

and tertiary structural information. The weakness of this approach is that it does 

not treat a base-pair as a whole entity.

Recently, a fixed parameter tractable algorithm was proposed in [13]. This algo­

rithm is a generalization of the algorithm in [9] to tertiary structures. It computes 

the optimal alignment between two RNA tertiary structures. The parameter, which 

determines the exponential runtime, depends on how complex the crossing stems are 

arranged. Unfortunately, this algorithm only works if the fixed parameter k is very 

small, for example k = 1. When the parameter is large, it is not affordable due to 

too high usage of space and time.

In this thesis, we present algorithms for computing the alignment between two 

RNA tertiary structures. We follow the work of Mohl et al. [13], and have made 

several optimizations to accelerate their algorithm. For simple tertiary structures, 

we can compute the optimal alignment efficiently. For moderate tertiary structures, 

we adopt the constrained alignment approach. Although the result produced by 

constrained alignment is not guaranteed to be an optimal solution, in practice it 

would be reasonable. Experimental tests show that our algorithm can be used to 

compute alignment between RNA tertiary structures in practical applications.

The rest of the thesis is organized as follows.

In the remaining part of this chapter, we provide a brief introduction to the RNA 

structure.

Chapter 2 gives an overview of sequence alignment. It serves as a useful back­

ground for RNA structural alignment problem which is discussed in Chapter 3.
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Chapter 3 gives a review of RNA structural alignment. It serves as a useful 

background for our algorithms.

In Chapter 4, we present algorithms for alignment between two RNA tertiary 

structures. This work is based on [13] by Mbhl et al..

Chapter 5 presents the detail of implementation and a discussion of experimental 

results.

In Chapter 6, several conclusions are drawn and suggestions for future work are 

given.

1.2 RNA Structures

An RNA (Ribonucleic Acid) is a polymer consisting of ribonucleotides linked together 

in a chain. Each ribonucleotide contains one of four possible bases, which are adenine 

(A), cytosine (C), guanine (G) and uracil (U).

An RNA molecule has two sets of structural information. First, the primary 

structure of an RNA molecule is a single strand made of the ribonucleotides A, C, 

G and U. Second, the ribonucleotide sequence folds over onto itself principally by 

means of hydrogen bonds to form double-stranded regions of base pairings, yielding 

higher order secondary structure or tertiary structure.

Because an RNA sequence is composed of four possible bases, we can use a four- 

letter alphabet Σ = {A, C, G, U} to represent an RNA sequence. This base sequence 

is usually referred to as primary structure. Formally, the character sequence R = 

riT2: Th where ri €2(1 <i<n) is called RNA primary structure. Conventionally, 

we will refer to the left end of the sequence as the 5' end of the RNA and the right 

end of the sequence as the 3' end of the RNA.

RNA secondary and tertiary structures are represented as a set of bonded pairs 

of bases. Various base pairings have been detected, but three kinds occur more 

frequently than any others. These three base pairings are A-U (U — A), C-G 

(G -C) and G-U (U-G). Base pairs A-U (U-A) and C-G(G-C) are called 



Watson-Crick base pairs. The base pair G-U (U - G) is referred to as Wobble base 

pair. These three types of pairings are referred to as canonical base pairs. Others are 

called non-canonical base pairs.

A bonded pair of bases (base-pair) is usually represented as an arc between the 

two complementary bases involved in the bond. It is assumed that any base partic­

ipates in at most one such pair (i.e., one-to-one). If there is no crossing in the set 

of arcs representing a structure, the structure is considered as secondary structure. 

Otherwise, the structure is considered as tertiary structure. The crossing pairs form 

pseudoknots. An example of secondary structure is given in Figure 1.1. Tertiary 

structure and pseudoknots are illustrated in Figure 1.2.

Figure 1.1: An example of RNA secondary structure

pseudoknots 
A ACEAA U U (680lAl AAA

Figure 1.2: An example of RNA tertiary structure and pseudoknots

In an RNA structure, it occurs frequently that base pairs are stacked up one next 

to another. These stacked base pairs together form a stem, as shown in Figure 1.3. 

In the traditional definition, the stem is stacked pairs of maximal length. We will 

introduce a different definition in Chapter 3.

GAUGAAGCGGCCCGCUGAG

Figure 1.3: An example of stem
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Chapter 2

A Review of Sequence Alignment

In this chapter, we give an overview of the most foundation problem of biological 

sequence analysis — sequence alignment. Most algorithms discussed in this chapter 

are extended from Zhang’s course notes [20].

A sequence can be viewed as a primary structure without base pairs. Thus the 

structural alignment problem which we will discuss in Chapter 3 is actually an ex­

tension to the sequence alignment problem.

2.1 Alignment

In this thesis, we will not touch local alignment or fitting one sequence into another. 

We only discuss global alignment which serves as a basis for the structural alignment 

problem in Chapter 3. When there is no confusion, global alignment will be referred 

to as just “alignment”.

A sequence alignment is a possible way in which characters of one sequence may 

be matched with characters of another sequence. It shows one way, out of many, to 

edit one sequence into the other. It can show how similar two sequences are.

Now we give a formal definition of alignment.

If S is a sequence, then S denotes the length of S and S[i] denotes the i-th 
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character of S. We use S[i,j] to represent the subsequence of S from S[i] to S[j]. We 

use symbol '—z to denote space.

Given two sequences Si and S2 which are over some alphabet Σ, the alignment of 

S1 and S2 is represented by (S1, S2) satisfying the following conditions:

• S1 is S1 with some new symbol — which is not in Σ inserted and S2 is S2 with 

some new symbol —‘ inserted such that Sil = S% .

• Vi€ {1,...,S11}, at least one of Si[i] and SZ[i] cannot be ‘—‘.

In the case of RNA sequence alignment, Σ = {A, C, G, U}.

2.1.1 Edit Operations

The most popular measurements that are used to compare the similarity of two se­

quences are distance and similarity. In this research, we adopt the distance measure.

There are three basic edit operations, insertion, deletion and substitution in se­

quence alignment. They are defined as follows.

• Insertion: insert a character into a sequence.

• Deletion: delete a character from a sequence.

• Substitution: replace a character in a sequence with another character. There 

are two types of substitution. One is match (a character is replaced by an 

identical character), and the other is mismatch (a character is replaced by a 

different character).

Now we give a formal presentation. We represent an edit operation as a—> b, 

where a and b are either λ, the null label, or labels from the alphabet Σ.

We call a—b a substitute operation if a = A and b 7 λ (if a = b, it is a match 

operation; else it is a mismatch operation); a delete operation if 6 = Λ; and an insert 

operation if a = X. (Figure 2.1 gives a simple illustration of sequence alignment 
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with edit operations.) Let Γ be a cost function which assigns to each edit operation 

a—b a nonnegative real number Γ(α —> b). We constrain Γ to be a distance metric. 

That is, (1) Γ(α - b) 2 0, Γ(a — a) = 0, (2) Γ(a - b) = Γ(⅛ - a), and (3) 

Γ(a -c) < Γ(a — 6)+ T(b - c).

base deletion base mismatch

AAUAAG - U

A-UAACAU

base match base insertion

Figure 2.1: Sequence alignment with edit operations

Given an alignment (SI,S2), we define substitution M, deletion D, insertion I, as 

follows.

M = { i ∣ S([i] and S'2[i] are characters from Σ}.

D = { i ∣ Si [i] is a character from Σ and S[i] =‘-‘}.

I ={ i ∣ S2[i] is a character from Σ and Si[i] =‘-‘}.

The cost of an alignment (S{,S2) is defined as follows.

cost((Si, S2)) = 2T(Sili - S2lil) 
i½M

+ 2r(S{l4 → à)
iζD ■

+ Er0- S2li) (2.1)

Given two sequences S1 and S2, the edit alignment between them is defined as

Align(S1, S2) = min {cost((S{, S2))}. (2.2)



A similarity (maximization) version can also be considered, where the goal is to 

find the maximum-scoring edit alignment. It is similar to the distance alignment 

problem. We still define three edit operations: insertion, deletion and substitution, 

which are the same as the ones in the distance version. The major difference is the 

scoring method. In the similarity alignment problem, a mismatch is assigned a real 

score, a match is assigned a positive score, and each deletion/insertion is assigned 

a non-positive score. The similarity alignment problem was proposed and solved by 

Needleman and Wunsch in [14]. We will explain a variation of their algorithm under 

the distance measure later.

Finding distance and similarity alignments are dual problems. That is, when 

aligning two sequences by distance, there is a similarity algorithm that gives the 

same optimal alignment and vice versa. A score from distance alignment or similarity 

alignment can indicate the homology between sequences. Smaller distance score or 

higher similarity score reflects the higher degree of homology.

2.1.2 Number of Alignments

A naive way to find the optimal alignment between two sequences is to try all possible 

combinations of edit operations and pick the best one. However, the number of all 

possible alignments is exponential with respect to the sequence length. Consider 

two sequences S = S1S2... Sn and T = tit2...m. An alignment between these two 

sequences can end in only three ways:

Define f(n, m) to the number of possible alignments between sequence S with 

length n and T with length m. Therefore we have the recursion

f(n, m) = f(n - 1,m — 1) + f(n — 1,m) + f(n, m - 1) (2.3)
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If sn is aligned to tm, there are f(n — l,m — 1) ways of aligning S182... Sh-1 to 

tit2...tm-1 If sn is aligned to’—’, there are f(n-1,m) ways of aligning S1S2 ... S7-1 

to ti2...tm- If tm is aligned to’—’, there are f(n,m — 1) ways of aligning S182... Sn 

to tit2...m-1.. When m =n, f(n,n) can be solved as

f(n,n) ~ (1+V2)2n+Vn (2.4)

This approximation is obtained by H. T. Laquer [10].

For example, given two sequences each of length 500, there are

f(500, 500) ≈ (1 + V2)1001 V500 ≈ 3.22 × 10384 possible alignments.

This example shows that it is just not feasible to enumerate all possible alignments 

to get the optimal one. Therefore, a better algorithm is needed to compute optimal 

alignment between two sequences.

2.1.3 Dynamic Programming Solution

2.1.3.1 Dynamic Programming

Dynamic programming is an efficient programming technique for solving a broad range 

of search and optimization problems which exhibit the characteristics of optimal sub­

structure and overlapping subproblems [4]. A problem exhibits optimal substructure 

if an optimal solution to the problem can be constructed from optimal solutions to 

its subproblems [4]. A problem has overlapping subproblems if it can be broken down 

into subproblems which are reused multiple times [4]. Dynamic programming has 

long been a major technique in the sequence alignment problem [14, 18].

The idea of dynamic programming is to solve a problem by first solving its sub­

problems. The smallest subproblems are explicitly solved first, and the results of these 

are used to construct solutions to progressively larger subproblems. This constitutes 

a bottom-up approach.
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2.1.3.2 Property of Optimal Alignments

Consider two sequences Si and S2. We can observe that a prefix of the optimal 

alignment between S1 and S2 which contains exactly first i characters of S1 and first 

j characters of S2 (this prefix may also contain spaces ‘—‘s) is an optimal alignment 

between a prefix Si[l,i] of Si and a prefix S2[1,j] of S2. So an optimal alignment 

score can be computed by scanning S1 and S2 from left to right, recording only the 

optimal alignment scores between prefixes of S1 and S2.

We use Γ( ) to define y(i,j) for 0<i< Si and 0<j< S2 .

7(j,0) = F(Si[6 → à)

1(0,5) = Γ(λ → Sail)

v(i,j) = F(S,[4 → S2[jl)

(2∙5)

(2.6)

(2.7)

From this definition, we know that Y(i, 0) is the cost of deleting character S1[i], (0,j) 

is the cost of inserting character S2[j], and Y(i,j) is the cost of aligning Si[i] to S2[i].

We now consider the optimal alignment between Si[1,i] and S2[1, j]. We use 

A(i,j) to represent the optimal alignment cost between Si[1,i] and S2[1,j]. The 

following lemmas will show how to compute A(i,j).

Lemma 2.1.1

A(0, 0) = 0 (2.8)

Proof: Consider A(1,1). If the optimal alignment results from aligning Si[1] to S2[1], 

then we only need to account for the cost for aligning S1[1] to S2[1]. Hence we may 

set A(0,0) = 0.

Lemma 2.1.2 Fori > 0,

A(,0) = A(i -1,0) + Y(1,0) (2.9)
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Proof: It is obvious that each element in Si[1,i] is aligned to '—'. That is, Si[i] 

is aligned to ‘—‘, and each element in Si[1,i — 1] is aligned to '—'. Hence we have

A(i, 0) = A(i - 1,0) + Y(i, 0).

Lemma 2.1.3 Forj > 0,

A(0,j) = A(0,j - 1) + Y(0, j)

Proof: Similar to Lemma 2.1.2.

Lemma 2.1.4 Fori > 0 and j > 0,

A(6 - 1,j) + 7(6,0)

A(i,j) = minA(i,j — 1) + Y(0,j)

(2.10)

(2.11)

A(i - 1, j - 1) + Y(i,j)

Proof: Consider Sι[i] and S2[j]. There are exactly the following cases.

(1) Si[i] is aligned to —. Thus Si[l,i — 1] is aligned to S2[1, j]. Hence the 

A(i — 1,j) + Y(i, 0) item.

(2) S2[j] is aligned to ‘—‘. Thus 5ι[l,i] is aligned to S2[1,j — 1). Hence the 

A(i,j - 1)+Y(0,j) item.

(3) Si[i] is aligned to S2[j]. Thus Si[1,i - 1] is aligned to S2[1,j — 1]. Hence the 

A(i - 1,j - 1) + Y(i,j) item.

Therefore we take the minimum of the three cases and get the above recursion. □

2.1.3.3 Algorithm

From Lemmas 2.1.1 to 2.1.4, we can compute Align(S1,S2) = A(|S1|, S2) using a 

bottom-up approach. Algorithm 2.1 shows how to compute optimal alignment score.

The implementation involves filling a matrix M(O..S1; 0..S2|) of size (S1 +

1)(S2 + 1). We use Eq. 2.8 to 2.11 to fill the matrix, starting at the upper-left
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Algorithm 2.1 Sequence-Distance^S\, S2)
Input: Two sequences Si and S2 with n = Si and m = S2.
Output: Alignment score matrix M(O..S1; 0..S2).

1: compute A(0,0) as in Lemmas 2.1.1
2: for i ÷- 1 to n do
3: compute A(i,0) as in Lemmas 2.1.2
4: end for
5: for j — 1 to m do
6: compute A(0,j) as in Lemmas 2.1.3
7: end for
8: for i — 1 to n do
9: for j — 1 to m do

10: compute A(i,j) as in Lemmas 2.1.4
11: end for
12: end for 

cell and scan the matrix from left to right, row by row as we are filling it. A matrix 

entry is assigned a value based on its adjacent (top, left and top-left) entries of which 

the values have been computed.

The time complexity of Algorithm 2.1 is O(S1|S2|), and the space complexity is 

o(Si|S2]).

To produce an optimal alignment, we trace back the matrix containing alignment 

scores. We start at the matrix cell holding the optimal score (that is the lower-right 

cell), repeating the récurrence formulae to decide in which direction to move next. As 

the recurrence returns, the alignment is output. We provide a stack based method 

for traceback in Algorithm 2.2 and Algorithm 2.3.

The time complexity of the traceback part (Algorithm 2.2 and Algorithm 2.3) is 

O(S1 + S2l), and the space complexity is O(S1|S2|).

Therefore, the time complexity of the whole dynamic programming solution is 

O(S1||S2|), and the space complexity is O(S1||S2|).



14

Algorithm 2.2 Sequence-Traceback(S1, S2, M(0..S1; 0.S2))
Input: Two sequences S1 and S2 with n = S1 and m = S2, and alignment score 

matrix M(O..|S1|; 0..S2|) as computed by Algorithm 2.1.
Output: A stack stack containing ordered pairs of sequence indices in an alignment 

(S1,S2) with the minimum score as computed by Algorithm 2.1.

2: j—m
3: while i> 0 and j> 0 do
4: if A(i,j) = A(i - 1,j) +Y(i,0) then
5: push-stack (i,—1)
6: i — i — 1
7: else if A(i,j) = A(i,j-1) + Y(0,j) then
8: push_stack(—1,j)
9: j+j-1

10: else // A(i,j) = A(i -1,j - 1) +Y(i,j)
11: push-stack(i,j)
12: i«—i — 1
13: j+j-1
14: end if
15; end while
16: while i > 0 do
17: push_stack(i,—1)
18: ivi-1
19: end while
20; while j > 0 do
21: push_stack(-1,j)
22: j+j-1
23: end while
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Algorithm 2.3 Sequence-Align(S1, S2, M(0..S1; 0..S2[))
Input: Two sequences S1 and S2 with n = Si and m = , and alignment score

matrix M(O..S1; 0..S2) as computed by Algorithm 2.1.
Output: An optimal alignment Align between S1 and S2.

1: Sequence-Traceback (Sι, S2, M(0..S1; 0..S2))) // Algorithm 2.2
2: while stack is not empty do

6:
7:

9:
10:

(i,j) — pop-stack
if i> 0 and j = —1 then

append (Si[i],’—’) to the alignment
else if i = — 1 and j>0 then

append ('-', S2[j]) to the alignment
else //> 0 and j > 0

append (Si[i], S2[j]) to the alignment

11: end while

2.1.3.4 An Example

We now consider a simple example. We want to compute the alignment between two 

sequences S1 = AA UAAGU and S2 = A UAACA U. The score scheme used is shown 

in Table 2.1. The value of entry (a,b) of the table (a,b ∈ {A,C,G,U,-}) is the cost 

of substituting a with b if a + ‘—‘ and b 7 '—', or the cost of deleting a if a 7 '-' 

and b = '—', or the cost of inserting b if a = '—' and b 7 '—'. (Notice that the entry 

(‘—‘,—‘) does not exist since we cannot align '—' to —‘.)

Table 2.1: A simple score scheme

A G G U —

A 0 1 1 1 1
C 1 0 1 1 1
G 1 1 0 1
U 1 1 1 0 1
— 1 1 1 1

Applying Algorithm 2.1 to the example, we obtain the alignment score matrix 

which is shown in Table 2.2. The optimal alignment score is 3 as the lower-right cell 

shows.

Applying Algorithm 2.3 to Table 2.2, we obtain an optimal alignment between



Table 2.2: Computation matrix of alignment between two sequences AA UAAGU and 
AUAACAU

- A U A A C A U
— 0 1 2 3 4 5 6 7
A 1 0 1 2 3 4 5 6
A 2 1 1 1 2 3 4 5
U 3 2 1 2 2 3 4 4
A 4 3 2 1 2 3 3 4
A 5 4 3 2 1 2 3 4
G 6 5 4 3 2 2 3 4
U 7 6 5 4 3 3 3 3

S1 and S2. In Table 2.3, the path marked by the asterisk signs corresponds to the 

optimal alignment. The alignment is shown as follows.

AAUAAG-U

AUAACAU

Table 2.3: Trace back to produce an optimal alignment between two sequences 
AAUAAGU and AUAACAU

— A U A A G A U
— 0 1 2 3 4 5 6 7
A 1 0* 1 2 3 4 5 6
A 2 1* 1 1 2 3 4 5
U 3 2 1* 2 2 3 4 4
A 4 3 2 1* 2 3 3 4
A 5 4 3 2 1* 2 3 4
G 6 5 4 3 2 2* 3* 4
U 7 6 5 4 3 3 3 3*

2.2 Gap

A gap in an alignment (S1,S2) is a consecutive subsequence of '-ns in either S1 or S2 

with maximal length. More formally, [i-.j] is a gap in (SI,S2) if either Si[k] =‘- 

for i < k < j, S'l[i — 1] ≠ ‘, S{lj + 1] ≠ or Sg[kI] = '~' for i< k < j, 

SSi - 1] ≠ _, S50j + 1] ≠ /.
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2.2.1 Gap Penalty Models

When mutations take place in nature, it is widely believed that the occurrence of 

a gap with k consecutive spaces is more probable than k separated spaces. This is 

because a gap may be due to a mutation which deletes several consecutive bases in one 

single event whereas separated spaces are more likely due to several different events. 

A single event is more common to happen than several different events. Therefore, 

it is sometimes required to weight the cost of deletion (or insertion) of a number of 

consecutive bases differently from summing the costs of single deletions (or insertions).

Now we introduce a general gap penalty model. Let gi(in,i) be the cost for 

deletion of characters from Si[ii] to Si[i] of S1, and 92(j1,j) be the cost for insertion 

of characters from S2[ji] to S2[j] of S2. It is reasonable that gi(il,i) ≤ 2k= gi(k,k) 

and g2(j1,j) ≤ 27, g2(l,l).

We now consider how to compute the optimal alignment cost A(i,j) between 

Si[l,i] and S2[1,j] under this model. Similar to Lemmas 2.1.1 to 2.1.4, we can get 

following lemmas.

Lemma 2.2.1

A(0,0) = 0 (2.12)

Proof: Similar to Lemma 2.1.1. □ 

Lemma 2.2.2 Fori > 0,

A(,0) = g1(1,0) (2.13) 

Proof: It is obvious that each element in Si[1,i] is aligned to ‘—‘. Thus subsequence 

S1[1,i] is deleted. Hence we have A(i,0) = gi(l,i).E

Lemma 2.2.3 Forj > 0,
A(0,j)= 92(1,j) (2.14)

Proof: Similar to Lemma 2.2.2. □
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Lemma 2.2.4 For i > 0 and j > 0,

mini<k<i{A(i - k,j) + g1(i -k + 1,i)}

A(i,j) = min < minjg<j{A(i, j - l) + g2(j - 1 + 1,j)} (2.15)

A(i — 1,j — 1)+Y(i,j)

Proof: There are exactly the following cases.

(1) Each element in Si[i-k+1,i] (1<kSi) is aligned to '—'. Thus subsequence 

Sii-k+1,i] is deleted, and Si[l,i-k] is aligned to S2[1, j]. Hence the A(i — k,j) + 

gi(i-k+1,i) item. We need to iterate over all possible instances of k. Thus we have 

the mini<k<i{A(i - k,j) + g1(i -k + 1,i)} item.

(2) Each element in S2[j- 1+1,j] (1 <l<j) is aligned to '—'. Thus subsequence 

S2[j — l+1,j] is inserted, and S1[1,i] is aligned to S2[1,j — l]. Hence the A(i,j-Γ) + 

g2(j-l+1,j) item. We need to iterate over all possible instances of I. Thus we have 

the minigI<j{A(i, j - 0 + 92(j - 1 + 1,j)} item.

(3) Si[i] is aligned to S2[i]. Thus S1[1,i — 1] is aligned to S2[1,j — 1]. Hence the 

A(i - 1,j - 1) + Y(i,j)1 item.

Therefore we take the minimum of the three cases and get the above recursion. □

From Lemmas 2.2.1 to 2.2.4, we can compute Align(S1, S2) = A(|S1,|S2|) using 

a bottom-up approach. It is not hard to see that the computation time is 1 + S1 + 

Sa + 25 z0+j+ 1) = O(∣s1∏¾∣ + I⅞f∣s1∣).

It is possible to reduce the running time for some specific gap penalty functions. 

When g1(i1,i) and 92(j1,j) are linear (affine), the running time is O(S1||S2|). The 

linear gap penalty model has already been used in Section 2.1. Now we introduce the 

affine gap penalty model.

The affine gap penalty model has long been used in sequence alignment [7]. 

For each gap in an alignment, in addition to the insertion/deletion costs, we will 

assign a constant, gap-cost, as the gap initiation cost. This means that longer

Recall that Y(i,j) is the cost of aligning S1[i] to S2[j].
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gaps are preferred since for a longer gap the additional cost distributed to each 

base is relatively small. The corresponding gap penalty functions are g1(i,i) = 

gap-cost + 2k=4, g1(k, k) and 92(j1,j) = gap-cost + 27=5, 92(l,I).

Under the affine gap penalty model, the cost of an alignment (S{,S2) is defined 

as follows, where #gap is the number of gaps in (S, S2).

cost((S1, S2)) = gap-cost x #gap

+ 2 T(SG4 → SZli])
ieM

+ > T(S{[4 → A)
ieD

(2.16)
iel

2.2.2 Computing Optimal Alignment with Affine Gap 

Penalty

In this section, we will discuss how to compute the optimal alignment between two 

sequences S1 and S2 under the affine gap penalty model.

2.2.2.1 Property of Optimal Alignments

We now consider the optimal alignment between Si[1,i] and S2[1, j]. We use A(i,j) 

to represent the optimal alignment cost between S1[1,i] and S2[1, j]. We use D(i,j) 

to represent the optimal alignment cost such that Si[i] is aligned to '—'. We use I(i,j) 

to represent the optimal alignment cost such that S2[j] is aligned to —. Y(i,0) is 

the cost of deleting character Si[i], Y(0, j) is the cost of inserting character S2[j], and 

Y(i,j) is the cost of aligning Si[i] to S2[j]. The following lemmas will show how to 

compute A(i,j).
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Lemma 2.2.5

A(0,0) =0

D(0,0) = gap-cost

1(0,0) = gap-cost

(2-17)

(2.18)

(2-19)

Proof: For A(0, 0), consider A(1,1). If the optimal alignment results from aligning 

S1[1] to S2[1], then we only need to account for the cost for aligning S1[1] to S2[1]. 

Hence we may set A(0, 0) = 0.

For D(0,0), consider D(1,0) by which Si[1] is aligned to ‘—. Aligning S1[1] to 

—‘ opens a gap, so we need to charge gap opening penalty for it. Hence we may set 

D(0,0) = gap-cost.

Similarly, we can set 1(0,0) = gap-cost. . □

Lemma 2.2.6 Fori > 0,

D(,0) = D(i - 1,0) + 7(i,0) (2.20)

#,0) = D(i,0) (2.21)

1(i,0) = D(,0) + gap-cost (2.22)

Forj > 0,

I(0,5) = I(0,j -1)+7(OJ) (2.23)

A(0,j) = T(0,5) (2.24)

D(0,j) = T(0,j) + gap-cost (2.25)

Proof: For D(i,0), by definition Si[i] is aligned to —‘, hence we have the (i,0) 

term, and Si[1,i — 1] is aligned to 0. That is, each element in Si[l,i — 1] is aligned 

to '—', by which we know that Si[i — 1] is aligned to '—'. Hence we have D(i,0) = 

D(i -1,0) + Y(i, 0).
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For A(i, 0), this is the optimal alignment between Si[1, i] and 0. Thus each element 

in Sι[l,i] is aligned to ‘—‘, by which we know that S1[i] is aligned to ‘—‘. Hence we 

have A(i,0) = D(i,0).

For I(i, 0), consider I(i, 1), the optimal alignment between Si[1, i] and S2[1, 1] that 

ends with S2[1] aligned to '—'. Thus Si[1,i] is aligned to 0. That is, each element in 

Si[1,i] is aligned to —, by which we know that S1[i] is aligned to '—'. Aligning S2[1] 

to —‘ opens a gap, so we need to charge gap opening penalty for it. Hence we have 

I(i,0) = D(i, 0) + gap-cost.

Similarly, we can obtain other three formulas. •

Lemma 2.2.7 Fori > 0 and j > 0,

D(i,j) = min 5
(D(i - 1, j) +7(i,0)

(2.26)
A(i - 1,j) + Y(i, 0) + gap-cost

Proof: We use M(i,j) to represent the optimal alignment cost such that Si[i] is 

aligned to S2[j]. Then

D(i,j)

A(i,j) = ≡in < I(i,j)
1/

M(i,j)

According to the definition of D(i,j), Si[i] is aligned to —, hence Y(i,0). We 

consider Si[i — 1] and S2[i], there are exactly the following cases.

(1) Si[i — 1] is aligned to '—'. D(i,j) is from D(i — 1,j), then aligning Si[i] to '—' 

does not open a gap. Therefore there is no gap opening penalty.

(2) S2[j] is aligned to '-'. D(i,j) is from I(i — 1,j), then aligning S1[i] to '—' 

opens a gap. Therefore there is a gap opening penalty.

(3) Si[i — 1] is aligned to S2[j]. D(i,j) is from M(i - l,j), then aligning Si[i] to 

'-' opens a gap. Therefore there is a gap opening penalty.
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So we have the following recursion.

D(i - 1,j)+ Y(,0)

D(,j) - min 6 1(i - 1,j) +Y(i,0) + gap-cost

M(i — 1,j) + Y(i, 0) + gap-cost

D(i — 1,j) + Y(,0)

= min 4
D(i - 1,j) + Y(i, 0) + gap-cost

I(i — 1,j) + Y(i, 0) + gap-cost

M(i — 1,j) + Y(i, 0) + gap-cost

D(i - 1,j)+ Y(i,0) 
= mm <

I A(i - 1,j)+ Y(i, 0) + gap-cost

□

Lemma 2.2.8 Fori > 0 and j > 0,

. . T(i,j - 1) +Y(0,3)
I(,3) = mm

I A(i,j - 1) + Y(0,j) + gap-cost

Proof: Similar to Lemma 2.2.7.

Lemma 2.2.9 Fori > 0 and j > 0,

A(i,j) = minI(i,j)

(2.27)

(2.28)

A(i - 1, J - 1) + Y(i,j)

Proof: Consider Si[i] and S2[j]. There are exactly the following cases.

(1) Sι[i] is aligned to '—'. Hence the D(i,j) item.
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(2) S2[j] is aligned to z-'. Hence the I(i,j) item.

(3) S1[i] is aligned to S2[j]. Thus S1[1,i — 1] is aligned to S2[1,j — 1]. Hence the

A(i - 1,j - 1) +Y(i,j) item.

Therefore we take the minimum of the three cases and get the above recursion. •

2. 2.2.2 Algorithm

From Lemmas 2.2.5 to 2.2.9, we can compute Align(S1, S2) = A(|S1|, S2) using a 

bottom-up approach. Algorithm 2.4 shows how to compute optimal alignment score 

with affine gap penalty.

Algorithm 2.4 Sequence-Distance-Gap(S1, S2) 
Input: Two sequences S1 and S2 with n = S1 and m = S2. 
Output: Alignment score matrices MA,D,I(0..S1; 0..S2|).

1:
2:
3:
4:
5:
6:
7:
8:

compute A(0, 0), D(0, 0) and I(0, 0) as in Lemmas 2.2.5 
for i — 1 to n do

compute D(i, 0), A(i, 0) and I(i, 0) as in Lemmas 2.2.6 
end for
for j — 1 to m do

I(0,j), A(0,j) and D(0,j) as in Lemmas 2.2.6 
end for
for i — 1 to n do

9: for j — 1 to m do
10: compute D(i,j), I(i,j) and A(i,j) as in Lemmas 2.2.7, Lemmas 2.2.8 and 

Lemmas 2.2.9, respectively
11: end for
12: end for

In the implementation, we need three matrices instead of one in Section 2.1.3.3. 

These matrices are MA(0..)S1;0..S2|), Mp(0..S1; 0..S2l), and Mr(0..S1; 0..S2]), 

each with size (S1 + 1)(S2 + 1). We use MA,D,I(0..S1;0..S2|) to represent these 

three matrices in the text to save space.

The time complexity of Algorithm 2.4 is O(|S1|S2|), and the space complexity is 

O(Si]S2).

To produce an optimal alignment, we trace back among the three matrices. We 

provide a stack based method for traceback in Algorithm 2.5 to 2.7. The variable t 



used in algorithm Sequence- Traceback-Gap (see Algorithm 2.5 and 2.6) is matrix type 

where t E {A, D,I}.

The time complexity of the traceback part (Algorithm 2.5 to 2.7) is O(S1+S2[), 

and the space complexity is O(S1||S2|).

Therefore, the time complexity of the whole algorithm for computing opti­

mal alignment with affine gap penalty is O(S1|S2|), and the space complexity is 

O(S,l]S2l).
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Algorithm 2.5 Sequence-Traceback-GapiSi, S2, MA,D,I(0..S1;0..S2|)) Part 1
Input: Two sequences S1 and S2 with n = S1 and m = S2, and alignment score 

matrices MA,D,I(O..S1; 0..S2l) as computed by Algorithm 2.4.
Output: A stack stack containing ordered pairs of sequence indices in an alignment 

(S1, S2) with the minimum score as computed by Algorithm 2.4.
1: t — A
2: i—n
3: j—m
4: while i> 0 and j > 0 do
5: if t = A then
6: if A(i,j) = D(i,j) then
7: t<D
8: else if A(i,j) = I(i,j) then
9: t+ I

10: else ∕∕ A(i,j) = A(i - 1,j - 1) +Y(i,j)
11: pushstack(i,j')
12: ii-1
13: j<j-1
14: end if
15: else if t = D then
16: if D(i,j) = D{i — 1,j) +Y(6,0) then
17: push-stack(i,—1)
18: ii-1
19: else ∕∕ D(i,j) = A(i - 1,j) + Y(i, 0) + gap-cost
20: t—A
21: push_stack(i,-1)
22: ii-1
23: end if
24: else //t= I
25: if I(i,j) = I(i,j - 1)+Y(0,j) then
26: push_stack(-1,j)
27: j+j-1
28: else ∕∕ I(i,j) = A(i,j - 1) + Y(0,j) + gap-cost
29: t—A
30: push-stack (-I,j)
31: j+j-1
32: end if
33: end if
34: end while
35: ∕∕ This algorithm is too long to fit on one page, we need to break here! To be 

continued in Algorithm 2.6 on next page.
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Algorithm 2.6 Sequence-Traceback-Gap(S1, S2, MA,D,I(0..S1;0..S2)) Part 2
36: // Continued from Algorithm 2.5 on last page.
37: while i> 0 do
38: push_stack(i,-1)
39: ivi-1
40: end while
41: while j > 0 do
42: push_stack(—1,j)
43: j<j-1
44: end while

Algorithm 2.7 Sequence-Align-Gap(S1, S2, MA,D,I(O..S1; 0..S2[))
Input: Two sequences Si and S2 with n = S1 and m = S2, and alignment score 

matrices MA,D,I(0..S1;0..S2|) as computed by Algorithm 2.4.
Output: An optimal alignment Align between S1 and S2.

1: Sequence-Traceback-Gap(S1, S2, MA,D,T(0..S1|; 0..S21)) // Algorithm 2.5 and 2.6
2: while stack is not empty do
3: (i,j) — pop-stack
4: if i > 0 and j=-1 then
5: append (Si[i],’—’) to the alignment
6: else if i = -1 and j > 0 then
7: append (‘—‘,S2[j]) to the alignment
8: else // i > 0 and j> 0
9: append (Si[i], S2[j]) to the alignment

10: end if
11: end while
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Chapter 3

A Review of RNA Structural
Alignment

We have discussed alignment at sequence level in Chapter 2. The main theme in this 

thesis concerns alignment at the structural level in which we also need to align the 

base pairs. In this chapter, we consider the problem of structural alignment between 

two RNA structures. More specifically, we focus on alignment between two RNA 

tertiary structures.

The problem of aligning structures is similar to the problem of aligning sequences 

but much more complicated due to the presence of the base pairs. The presence of 

base pairs also makes the computation more resources (time and space) consuming.

In this chapter, we first introduce the RNA alignment model and the hardness 

results of the RNA structural alignment problem. Then we discuss Wang and Zhang’s 

RNA alignment algorithm and Mdhl et al.,s RNA alignment algorithm which serve 

as bases of our algorithm in detail.
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3.1 RNA Alignment Models

An RNA structure is represented by R(P), where R is a sequence of nucleotides with 

β[i] representing the i-th nucleotide, and P C {1,2, • • • , R|}2 is a set of arcs of which 

each element (i,j), i < j, represents the bond between the two bases of a base pair 

(β[i], R[j]) in R. We use R[i,j] to represent the subsequence of R from R[i] to β[j], 

and R to represent the length of R. We assume that base pairs in R(P) do not share 

participating bases. Formally for any (in,j1) and (i2,j2) in P, jι 7 i2, in 7 j2, and 

11 = 12 if and only if jι = j2. The left end I and right end r of an arc p = (L,r) € P 

are denoted by pl and pR, respectively.

Let p and p' be two arcs in R(P). Their corresponding base pairs are bp = 

(R[p-], R[p*]) and bpl = (R[p'], R[p']), respectively. We define the relation between 

p and p' (bp and bpl) as follows. We say that p (bp) is before p' (bp') if pR < p'L; 

alternatively, we say that p' (bp') is after p (bp) (see Figure 3.1). We say that p (bp) 

is inside p, (bp') if p'L < pl < pR < p'R; alternatively, we say that p' (bp') is outside p 

(bp) (see Figure 3.2). We say that p (bp) is crossed by p' (bp') if pL < p'h < pR < p’R 

or p’h < pl < p'R < pR; in the first case, p (bp) is right crossed by p' (bp,), in the 

second case p (bp) is left crossed by p' (bp') (see Figure 3.3).

Figure 3.1: p is before p'; p' is after p

P p'

Figure 3.2: p is inside p’; p’ is outside p



Figure 3.3: p is right crossed by p'; p' is left crossed by p

An arc p (a base pair bp) is called crossing if it is crossed by an arc p, (a base 

pair bp'). If p (bp) is right crossed by p' (bp'), we say that p (bp) is right crossings if 

p (bp) is left crossed by p' (bp'), we say that p (bp') is left crossing. An arc p (a base 

pair bp) is called non-crossing if it is not crossed by any arc p' (base pair bpl). An 

RNA structure R(P) containing crossing arcs (base pairs) is called crossing, otherwise 

non-crossing.

A set of tertiary arcs of an RNA structure R(P) is a subset of crossing arcs 

Pter Q P which satisfies the condition that for any two arcs p,pl ∈ P- Pter, p and p' 

do not cross. We call Psec = P- Pter a set of secondary arcs. The corresponding base 

pairs of secondary arcs and tertiary arcs are called secondary base pairs and tertiary 

base pairs, respectively.

For an RNA structure R(P), we define pr( ) as follows.

∖j if Bj : (i, j) € P or (j,i) € P 
Pr(%) =

li otherwise
(3.1)

By this definition, pr(i) 7 i if and only if R[i] is a base in a base pair of R(P), and 

pr(i) = i if and only if R[i] is an unpaired base of R(P). If pr(i) 7 i, then pr(i) is the 

base paired with base i. When there is no confusion, we use R, instead of R(P), to 

represent an RNA structure assuming that there is an associated function pr( ).

Given two RNA structure Ri and R2 which are over the four-letter alphabet 

Σ = {A, C, G, U}, the alignment of Ri and R2 is represented by (R1, R2) satisfying 

the following conditions:
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• Ri is Ri with some new symbol '—' inserted and R2 is R2 with some new symbol 

inserted such that Ri = R2 .

• Vi ∈ {1,...,|R11}, at least one of Ri[i] and Ro[i] cannot be

For an alignment (R1, R2), we use (R1, R2)[1,12; jι, i2] to represent the subalign­

ment which consists of subsequence of Rli from the iι-th non-space character to the 

i2-th non-space character and subsequence of R2 from the ji-th non-space character 

to the j2-th non-space character.

An arc pair is a pair of arcs a = (p1,P2) EPx P2. We call a = (p1,P2) 

realized by (R1, R2) if and only if pi and p2 are matched by (R1, R2). The set 

OA((R1, R2)[1,12;j1,12]) of open arc pairs of a subalignment (R1, RQ)[1,12; j1,12] 

in (R1, R2) is the set of arc pairs (p1,P2) that are realized by (R1, R2) and where 

pl < is pRS i2 and P5 < jι <PR< j2 or 61 < pt Si2 < pf and ji <p2< j2 < P2- 

(That means, one ends of the arcs p1 and p2 are matched inside the subalignment 

(R1, R2)[i1,12; ji,12], and the other ends of p1 and p2 are matched outside of the sub­

alignment (R1, R2)[1,12; j1,12].) In the example shown in Figure 3.4, arc pairs (1,1), 

(2, II), (3, III) and (4, IV) are realized by the alignment. The region enclosed by the 

rectangle is one subalignment. According to the previous definition, the set of open 

arc pairs of this subalignment is {(1,1), (3, III), (4, IV)}.

Figure 3.4: An example of arc pairs

We define the left and right end point of an arc pair (p1, p2) as R (p1,P2) = (pl.p5)
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and X (P1,P2) = (pf, p2), respectively. On those points we consider the partial order 

- defined as (x1,Y1) - (x2,Y2) if 1 < X2 and Y1 < Y2. Two arc pairs a and a' cross, 

iff K a X sa'- ya X ∖a'or∖α'√ Ka- y a’- y a. In 

the example shown in Figure 3.5, arc pairs (1,1) and (2, II) cross; (1, II) and (2, III) 

cross; (2, I) and (3, II) cross; (2, II) and (3, III) cross.

1 2 3

I II III

Figure 3.5: An example of crossing arc pairs

Following the tradition in sequence comparison [14, 18], we define three edit oper­

ations, substitute, delete, and insert, on RNA structures. For a given RNA structure 

R, each operation can be applied to either a base pair or an impaired base. To sub­

stitute a base pair is to replace one base pair with another. This means that at the 

sequence level, two bases may be changed at the same time. To delete a base pair is 

to remove the base pair. At the sequence level, this means to delete two bases at the 

same time. To insert a base pair is to insert a new base pair. At the sequence level, 

this means to insert two bases at the same time.

In addition to the edit operations of insertion, deletion, and substitution, we now 

consider two more operation: base-pair bond breaking and base-pair altering. Base­

pair bond breaking operation can be applied to a base pair, causing the bond between 

the two bases of the pair to break and the base pair to become two unpaired bases. 

Base-pair altering operation can be applied to a base pair, causing the bond between 

the two bases of the pair to break and one base of the base pair to be deleted, leaving 

the other base unpaired. Base-pair bond breaking and base-pair altering can also be 

called arc breaking and arc altering, respectively.

Now we give a formal presentation. Let Σ = {A,C,G,U}, 21=2x2,22 =



base-pair deletion

base match base deletion base insertion

Figure 3.6: RNA structure alignment with edit operations
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∣
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We call a—b a base substitute operation if a,b ∈ Σ (if a = b, it is a base match 

operation; else it is a base mismatch operation); a base delete operation if α ∈ Σ and 

b =X; and a base insert operation if b € Σ and a = X.

We say a = (a1,a2) is a base pair if a € 21, a1 and a2 are bases in the same base 

pair. We call a—b a base-pair substitute operation if both a and b are base pairs (if 

a = b, it is a base-pair match operation; else it is a base-pair mismatch operation); a 

base-pair delete operation if a is a base pair, and b = A; a base-pair insert operation 

if b is a base pair, and a = X; a base-pair bond breaking operation if a,b € 21, and 

one of a and b is a base pair and the other one is not a base pair; a base-pair altering 

operation if a is a base pair and b ∈ 2.2, or a is a base pair and b ∈ 23, or a € 22 and 

b is a base pair, or a € 23 and b is a base pair.

Figure 3.6 gives an illustration of RNA structure alignment with edit operations.

base-pair insertion 
base-pair bond breaking

base-pair mismatch 

base mismatch

2
!

5%

7

1



b) + T(b -> c). An item Γ(α —> b) where a,b € 21, a is a base pair and b is not a base 

pair represents the base-pair bond breaking cost of a. b does not affect this cost. To 

distinguish this item from Γ(α — b) where both a and b are base pairs which represent 

the base-pair substitution cost, we use Is(a) to replace this item. Analogously, we 

use Tb(b) to denote the base-pair bond breaking cost of the base pair b, replacing 

Γ(α — b) where a,b € 21, a is not a base pair and b is a base pair.

Given an alignment (R1, R2), we define single base substitution SM, single base 

deletion SD, single base insertion SI, base pair substitution PM, base pair deletion 

PD, base pair insertion PI, case 1 of base pair bond breaking PBi, case 2 of base 

pair bond breaking PB2, case 1 of base pair altering PAL, case 2 of base pair altering 

PA2, case 3 of base pair altering PA3, and case 4 of base pair altering PA4 as follows.

SM ={i Ri[i] and R2[i] are unpaired bases or bases in the base pairs that have 

undergone base-pair bond breakings or base-pair alterings in R1 and R2}.

SD ={i Ri[i] is an unpaired bases in Ri and Ro[i] ='-'}.

SI = { i R2[i] is an unpaired bases in Ra and Ri[i] =‘-}.

PM = { (i,j) ∣ (Ri[i], RI[]) and (R2[i], R2[j]) are base pairs in Ri and R2}.

PD = { (i,j) ∣ (RI[i], RI[j]) is a base pair in Rι, and R\[i] = R2[i] = ‘-‘}.

PI = { (i,j) ∣ (R2[i], R[j]) is a base pair in R2, and Ri[i] = Ri[i] = ‘-‘}.

PB1 = { (i,j) ∣ (Ri[i], RI[]) is a base pair in Ri, and Ro[i], Ro[j] are two (unpaired 

or paired) bases which do not form a base pair in R2}.

PB2 = { (i,j) ∣ (R2[i], R2[]) is a base pair in R2, and Ri[i], Ri[j] are two (unpaired 

or paired) bases which do not form a base pair in R1}.

PAi = { (i,j) ∣ (Ri[i], Ri[]) is a base pair in R1, Ro[i] is a (unpaired or paired) base 

in R2, and R2[j] = '}.

PA2 = { (i,j) ∣ (R'[i], RI[j]) is a base pair in R1, R[j] is a (unpaired or paired) base 

in R2, and Ro[i] = ‘—‘}.
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PA3 = { (i,j) ∣ (R2[i], R2[i]) is a base pair in R2, Ri[i] is a (unpaired or paired) base 

in R1, and R([il = ‘}.

PA4 = { (i,j) ∣ (R2[i], R2[j]) is a base pair in R2, R1[i] is a (unpaired or paired) base 

in R1, and Ri[i] = ‘-}.

Under the linear gap penalty model, the cost of an alignment (S, S2) is defined 

as follows. •

costinear ((SJ,S2)) = 2 T(Rili] → RLli)
IESM

+ 2T(R([ 4 à)
IESD

+ ∑r(λ→¾[i])
ieSI .

+ 2 T((R[[4], R[D]) — (R9], RAUD)
(i,j)EPM

+ 2 T((R,[i], R(DD)-A)
(i,5)EPD

+ 2 F(-(R2,R4UD))
(1,5)EPI

+ 2 T((R,W, R[L]))
(i,j)EPB1

+ 2 F((R24), R2[]))
(i,j)EPB2

+ 2 T((R4l), R(DD) - (R56,A))
(i,j)€PA1

+ 2 T((R(E, R(DD) — (1, RUD))
(i,j)€PA2

+ 2 T((R4[],A) → (R9[4,R9U1)
(i,j)EPA3

+ 2 Γ((λ, «,H → (Ratal, R2L1) (3.2) 
(i,j)EPA4

Under the affine gap penalty model, we use gap-cost to represent the gap opening 

cost, and #gap to represent the number of gaps in (R1, R2). The cost of an alignment 
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(R1, R2) is defined as follows.

costaf fine((S1, S2)) = gap_cost x #gap

+ COStlinear ((S{,S2)) (3.3)

The cost of an alignment (R1, R2) can be determined in two steps. In the first 

step, we determine the operations performed on base pairs. In the second step, we 

determine the operations performed on unpaired bases and bases in the base pairs 

that have undergone base-pair bond breakings or base-pair alterings. For example, 

suppose that in the alignment, there exist (1,j1) € P and (i2,j2) ∈ P2, Ri[ii] 

and R2[i2] are each aligned with a space —, and Ri[ji] is aligned with R2[j2] but 

Ri[ji] 7 R2[j2]. Then there are two base-pair altering operations and a base mismatch 

operation associated with them.

Given two RNA structure R1 and .¾, our goal is to find the alignment with 

minimum cost:

Align(R1, R2) = min {cost((R1, R2))}. (M)

3.2 Hardness Results

In this section, we consider the problem of alignment between RNA structures where 

both structures are tertiary structures. In general, this problem is MAX SNP-hard.

When the edit operations base-pair bond breaking and base-pair altering are not 

allowed, there are several results from [21, 12, 19]. When all edit operations discussed 

in previous section are allowed, there is a result from [9].

When base-pair bond breaking and base-pair altering are not allowed, and the 

gap opening cost is zero, there is a result from [21].

Theorem 3.2.1 The problem of computing the edit distance between two RNA ter­

tiary structures is NP-hard.
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This means that this problem has no solutions in polynomial time unless P = NP. 

And there are two results from [12 .

Theorem 3.2.2 The problem of computing the edit distance between two RNA ter­

tiary structures is MAX SNP-hard.

This means that there is no polynomial time approximation scheme (PTAS) for 

this problem unless P = NP [15 .

A maximization (similarity) version can also be considered, where the goal is to 

find a maximal-scoring edit sequence that can change one structure to the other. 

For the maximization version, the result is stronger than that for the minimization 

version.

Theorem 3.2.3 For any δ < 1, the maximization version of the problem of com­

puting the edit distance between two RNA tertiary structures cannot be approximated 

within ratio 2log°n in polynomial time unless NP ∈ DTIME[2polylogn].

When base-pair bond breaking and base-pair altering are not allowed, and the 

gap opening cost is greater than zero, there is a result from [19].

Theorem 3.2.4 The problem of alignment between RNA structures with affine gap 

penalty where both structures are tertiary structures is MAX SNP-hard.

When base-pair bond breaking and base-pair altering are allowed, and the gap 

opening cost is zero, there is a result from [9 .

Theorem 3.2.5 The problem of computing the edit distance between a RNA tertiary 

structure and a RNA primary structure is MAX SNP-hard.

This result also implies that under this model, the problem of computing the edit 

distance between a RNA tertiary structure and a RNA secondary structure, and the 

problem of computing the edit distance between two RNA tertiary structures are 

MAX SNP-hard. These results can be extended to the model with affine gap penalty.
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3.3 Wang and Zhang’s Algorithm

In this section, we review Wang and Zhang’s RNA alignment algorithm which serves 

as a basis of our algorithm.

Wang and Zhang presented an algorithm to compute the alignment between RNA 

structures for the case where aligned base pairs are non-crossing [19]. They treated 

a base pair as a unit and do not allow it to match to two unpaired bases. That 

is, base-pair bond breaking and base-pair altering operations are not allowed. Un­

der this restricted assumption, when at least one of the RNA structures involved 

is a secondary structure, their algorithm can compute the optimal alignment in 

O(stem(Rι) × stem(R2) × R1 × R2) time. One more step, can be added to the 

algorithm to align tertiary base pairs. This step can be considered as a constrained 

alignment. Now we discuss their algorithm in detail.

Because base-pair bond breaking and base-pair altering are not allowed, we need 

to add two more conditions in defining the structural alignment:

• If Ri[i] is an unpaired base in R1, then either R2[i] is an unpaired base in R2 or 

R2[i] = '~'∙ If R2[i] is an unpaired base in R2, then either Ri[i] is an unpaired 

base in RI or Ri[i] = ‘—.

• If (RI[i], RI[j]) is a base pair in R1, then either (R2[i], RQ[j]) is a base pair in 

R2 or R2(i] = R2[j] = ‘—. If (R2[i], R2[j]) is a base pair in R2, then either 

(R([4], R([]) is a base pair in R or R([4 = Rill = .

Since aligning crossing base pairs is difficult (recall the hardness results in Sec­

tion 3.2), we add one more condition in defining the structural alignment.

• If (R1[i], RI[]) and (Ri[k], Ri[l]) are base pairs in R'1 and (R2[i], R[j]) and 

(R2[k], R2[]) are base pairs in R2, then (Ri[i], RI[i]) and (RI[k], Ri[l]) are non­

crossing in Rl1 and (R[i], R2[j]) and (R2[k], R2[l]) are non-crossing in R2.

Therefore, even though the input RNA structures may have crossing base pairs, 

the aligned base pairs are non-crossing.
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We use a bottom up dynamic programming algorithm to find the optimal align­

ment between R1 and R2. We consider the smaller substructures first and eventually 

consider the whole structures Ri and R2.

3.3.1 Property of Optimal Alignments

Consider two RNA structures R1 and R2, we use Γ( ) to define Y(i,j) for 0 ≤ i ≤ R1 

and 0<j< R2 .

If i = Pri(i) and j = Pra(j),

Y(i,0) = T(Ri[4 → A) (3.5)

7(0,5) = Γ(λ → Ra[jl) (3.6)

= F(Ri0 → R2[jl) (3.7)

If i = Pri(i) < i and j' = Pra(j) < j,

1(7,0) = T((R,/], Ri[e) → λ)∕2 (3.8)

Y(i,0) = T((Ri[4], Ri[i]) → λ)∕2 (3.9)

7(0√) = Γ(λ → (Rai1, Rab1)/2 (3.10)

N(0,3) = Γ(λ → (Ral/1, Rab1)/2 (3.11)

1(i,j) = T(R,//1, Ri[6) → (Wb W)) (3.12)

From this definition, if Ri[i] is a single base, then Y(i,0) is the cost of deleting this 

base and if Ri[i] is a base of a base pair, then Y(i, 0) is half of the cost of deleting this 

base pair. Therefore we distribute evenly the deletion cost of a base pair to its two 

bases. The meaning of Y(0,j) is similar. When i> 0 and j > 0, (i,j) is the cost of 

aligning base pairs (Ri[i'], Ri[i]) and (R2[j'], R2[j]).

We now consider the optimal alignment between R11,12] and R2[j1,32]. We use 

A(i1,12; jι ,j2) to represent the optimal alignment cost between R1 [i1,i2] and R2[j1,32 - 

Là
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We use D(1,125 j1,j2) to represent the optimal alignment cost such that Ri[i2] is 

aligned to '—'. We use I(i1,12; j1,j2) to represent the optimal alignment cost such 

that R2[j2] is aligned to

In computing A(41,12; j1,j2), D(i1,i2;31,02) and I(41,42;01,52), for any diSis i2, 

if Pri(i) < 11 or 12 < pri(i), then Ri[i] will be forced to be aligned to —‘; for any 

ji SiS j2, if Pr2(j) < ,7ι or j2 < Pr2(j), then R2[j] will be forced to be aligned to 

'—'■ This is used to deal with two situations: aligning one base pair among crossing 

base pairs and deleting a base pair.

We can now consider how to compute the optimal alignment between Riil,i2 

and R2[51,j2).

Lemma 3.3.1

A(0;0) =0 (3.13)

D(0;0) = gap-cost (3.14)

T(0;0) = gap-cost (3.15)

Proof: For A(0; 0), consider A(1,01;j1, j1). If the optimal alignment results from 

aligning Ri[ii] to R2[ji], then we only need to account for the cost for aligning Ri[ii 

to ⅞bι]∙ Hence we may set A(0; 0) = 0.

For D(O; 0), consider D(1,41;0) by which Ri[ii] is aligned to ‘—‘. Aligning Ri[ii] 

to '—' opens a gap, so we need to charge gap opening penalty for it. Hence we may 

set D(Q; 0) = gap-cost.

Similarly, we can set Z(0;0) = gap-cost. •

Lemma 3.3.2 Fori > 0,

D(i1,1,0) = D(tn,i- 1;0)+7(i,0)

A(h,^0) = D(,4;0)

I(in,i;0) = D(in,i;0) + gap-cost

(3.16)

(3.17)

(3.18)



40

Forj > 0,

1(0j31.5) = 1(0,51,3 - 1)+Y(0,5) (3.19)

A(0;bh,5) = I(0;j.,5) (3.20)

D(0;51,j) = 1(0;j1,3) + gap-cost (3.21)

Proof: For D(il,i; 0), by definition Ri[i] is aligned to '—', hence we have the Y(i,0) 

term, and Ri[il,i - 1] is aligned to 0. That is, each element in Ri[in,i — 1] is aligned 

to —, by which we know that Ri[i — 1] is aligned to '—'. Hence we have D(in,i; 0) = 

D(w,i- 1;0) +1(i,0).

For 4(fi,j;0), this is the optimal alignment between Ri[ii,i] and 0. Thus each 

element in Ri[ii,i] is aligned to —‘, by which we know that Ri[i] is aligned to '—'. 

Hence we have A{ii,i; 0) = D(in,i; 0).

For I(il,i; 0), consider I(i1,i; j1,j1), the optimal alignment between Ri[i,i] and 

R2[j1,ji] that ends with R2[ji] aligned to —‘. Thus Ri[i,i] is aligned to 0. That is, 

each element in Ri[il,i] is aligned to ‘—‘, by which we know that Ri[i] is aligned to 

—. Aligning R2[ji] to — opens a gap, so we need to charge gap opening penalty for 

it. Hence we have I(i1,i; 0) = D(in,i; 0) + gap-cost.

Similarly, we can obtain other three formulas. □

Lemma 3.3.3 For i↑ <i<i2 and ji <j< j2,

D(ti,i - V^j) + Y(1,0)

A(iy,i- 1; ji, j) + Y(i, 0) + gap-cost
(3.22)

Proof: We use M(in,i; j1,j) to represent the optimal alignment cost such that Ri[i]
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is aligned to R2[j]. Then

D(in,i;ji,j)

A(1,6;ji,j) = min I(,i;j1,j)

M(in,i;ji,j)

According to the definition of D(i1,i;ji,j), Rι[i] is aligned to —, hence Y(i,0). 

We consider R^ — 1] and R2[j], there are exactly the following cases.

(1) Ri[i — 1] is aligned to '-'. D(in,i;ji,j) is from D(i,i-1;j1,j), then aligning 

Ri[i] to '-' does not open a gap. Therefore there is no gap opening penalty.

(2) Ra[i] is aligned to'-'. D(in,i;ji,j) is from I(n,i-1;ji,j), then aligning Rii, 

to '—' opens a gap. Therefore there is a gap opening penalty.

(3) Rii-1] is aligned to R2[j]. D(1,i; ji,j) is from M(in,i-1;j1,j), then aligning 

Ri[i] to '—' opens a gap. Therefore there is a gap opening penalty.

So we have the following recursion.

D(il,i — 1;ji,j) + Y(i,0)

D(1,d;j1,j) — min < I(in,i - 1; jι, j) + Y(i, 0) + gap-cost

M(il, i - 1;j1,j) + Y(i, 0) + gap-cost

D(i1,i- 1; j1,j) + Y(i,0)

= min 4
D(ti,i- 1;31,j) + Y(i, 0) + gap-cost

I(ti,i - 1;ji,j) + Y(i, 0) + gap-cost

M(iy,i - 1; ji,j) + Y(i, 0) + gap-cost

D(i,i- 1;j1,j) + Y(i,0)

A(in,i- 1;ji,j) + Y(i,0) + gap-cost
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Lemma 3.3.4 For iι <i <i% and jl < j < j2,

I(i1,i;j1,j) = min <
I(i1,i531,3 - 1)+Y(0,j)

(3.23)
A(il,i; ji,j - 1) + (0,j) + gap-cost

Proof: Similar to Lemma 3.3.3.

Lemma 3.3.5 For diSix i2 and ji < j ≤ j2, ifi= Pri(i) and j = pro(j), then

D(i1,i;j1,j)

A(i1,i;ji,j) = min < I(ix,i;j1,j) (3.24)

A(ii,i — 1;ji,j - 1) + y(i,j)

if ii ≤ pri(i) < i and j1 < pra(j) < j, then

D(i1,i;ji,j)

A(1,i;j1,j) = min <
I(1,1;ji,j)

A(ix,pri(i) - 1; ji,pr(j) - 1)

+A(pri(i) +1,i — 1; p,2(j) + 1J - 1) + Y(i,j)

otherwise,

A(in,i; ji,j) = min <
D(i1,i;j1,j)

(3.26)
I(i1,i;ji,j)

Proof: Consider the optimal alignment between Ri[il,i] and R2[j1,j]. There are 

three cases: 1. i = pri(i) and j = pr2(j), 2. 61 < Pri(i) < i and ji < pr2(j) < j, and 

3. all the other cases.

For case 1, since i = Pri(i) and j = Pr2(j), both Ri[i] and R2[j] are unpaired 

bases. In the optimal alignment, Ri[i] may be aligned to '—', R2[j] may be aligned 

to —, or Ri[i] may be aligned to Ro[j]. Therefore we take the minimum of the three 



43

cases.

For case 2, since 61 ≤ pri(i) < i and j1 < pr2(j) < j, both (Ri[pri(i)], Ri[i]) 

and (R2[Pr2(j)], R2[j]) are base pairs. In the optimal alignment, (Ri[pri(i)], Ri[i]) 

may be aligned to (—,-), (R2[pr2(j)], Ra[i]) ≡ay be aligned to (‘-,-), or 

(Ri[pr1(i)], Ri[i]) may be aligned to (R2[Pr2(j)], R2[j]).

If (Ri[Pri(i)], Ri[i]) is aligned to (‘—,-‘), then A(ii,i;ji,j) = D(i1,i;ji,j). If 

(Ra[pr2(j)], Ra[i]) is aligned to (-, - ) then A(i1,i-j1,j) = I(éi,i;ji,j).

If (R1[Pri(i)], Ri H) is aligned to (R2[Pr2(j)], R2[j]), then the optimal alignment 

between Ri[i,i] and R2[jij] is partitioned into three parts: 1. the optimal align­

ment between Riii,pni(i)- 1] and R2[ji,pr2(j)- 1], 2. the optimal alignment between 

Ri[Pri(i) +1,i-1] and R2[pra(j) +1,j- 1], and 3. the alignment of (Ri[pri(i)], Ri[i]) 

to (Rapr2(j)], Ra[i]). Hence we have A(i1,v,j1,j) = A(i1, Pri(i) - 1; j1,Pr2(j) - 

1) + A(Pri(i) + 1,i — 1; pr2(j) + 1,j — 1) + Y(i,j). Note that any base pair across 

(Ri[pri(i)], Ri[i]) or (R2[pr2(j)], R2[j]) should be aligned to '-' and the cost of such 

an alignment has already been included in part 1 and part 2.

In case 3, we consider all the other possibilities in which we cannot align Ri[i] to 

R2[j]. This includes many cases.

• sub-case 1: Ri[i] is a single base and R2[j] is a base in a base pair. This means 

that we have to align Ri[i] to —‘ or align R2[j] to ‘—‘.

• sub-case 2: Ri[i] is a base in a base pair and R2[j] is a single base. This is 

similar to sub-case 1.

• sub-case 3: Ri[i] is a base in a base pair and pri(i) > i. This means that 

R1[pri(i)] is outside the interval [i1,i] and we have to align R1[i] to

• sub-case 4: R2[j] is a base in a base pair and pr2(j) > j. This is similar to 

sub-case 3. Together with sub-case 3, this implies that when pri(i) > i and 

pr2(j) > j, even if Ri[i] = R2[j], we cannot align them to each other.
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• sub-case 5: Ri[i] is a base in a base pair and Pri(i) < in. This is similar to 

sub-case 3. Together with sub-case 3, we know that if a base pair is across an 

aligned base pair, then it has to be aligned to '—'.

• sub-case 6: R2[j] is a base in a base pair and pr2(j) < ji. This is similar to 

sub-case 5.

3.3.2 Algorithm

From the above lemmas, we can compute Align(R1, R2) = A(1, |R1; 1, R2) us­

ing a bottom up approach. From Lemma 3.3.5, we only need to compute those 

A(1,12; j1,j2) such that (Ri[i1 — 1],¾[⅛ + 1]) is a base pair in Ri and (R2[ji — 

1], R2[2 + 1]) is a base pair in R2.

Given R1 and R2, we can first compute sorted base pair lists Lι for R1 and L2 for 

R^- For each pair of base pairs L1[i] = (i1,i2) and L2[j] = (j1,j2), we use Lemma 3.3.1 

through Lemma 3.3.5 to compute A(ii + 1,⅛ — 1; j1 + 1, j2 — 1).

Let Rι and R2 be the two given RNA structures and Pi and P2 be the number of 

base pairs in Ri and R2 respectively. The time to compute A(i1,12; ji, j2) is O((i2 — 

i1)(2 —ji)) which is bounded by O(R1 × R2). The time complexity of the algorithm 

in worst case is O(P × P2× Ri × R2l). We can improve our algorithm so that the 

worst case running time is O(stem(R1) x stem(R2) x Ri × R2|) where stem(R1) and 

stem(R2) are the number of stems, in Ri and R2 respectively. The space complexity 

of the algorithm is O(R1 × |R2|).

Notice that when one of the RNAs is a secondary structure, this algorithm com­

putes the optimal solution of the problem. Also, since the number of tertiary base 

pairs is relatively small compared with the number of secondary base pairs, we can 

use this algorithm to compute the alignment between RNA tertiary structures. Es­

sentially the algorithm tries to find the best sets of non-crossing base pairs to align 
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and delete tertiary interactions. Although this is not an optimal solution, in practice 

it would produce a reasonable result by aligning most of the base pairs.

3.3.3 Constrained Alignment

Wang and Zhang also proposed a heuristic method to align tertiary structures in [19]. 

The method is as follows.

Given two RNA tertiary structures, we first apply the alignment algorithm pre­

sented in Section 3.3.2 to produce an alignment where aligned base pairs are non­

crossing and then, using these aligned base pairs as the constraints, we align tertiary 

base pairs if they are compatible with the base pairs already aligned. The second 

step can be considered as a constrained alignment problem where the goal is to find 

the optimal alignment using these aligned base pairs as the constraints.

3.4 Môhl et al.’s Algorithm

In this section, we review Môhl et al.,s RNA alignment algorithm which serves as a 

basis of our algorithm.

Môhl et al. presented a fixed parameter tractable algorithm to compute the op­

timal alignment between two RNA tertiary structures in [13]. The parameter, which 

determines the exponential runtime, depends on how complex the crossing stems are 

arranged. They used wm to denote base mismatch cost, Wd to denote base inser- 

tion/deletion cost, wam to denote base-pair mismatch cost (it costs wam∕2 if one base 

in the base pair is replaced or wam if both bases in the base pair are replaced), wr to 

denote base-pair insertion/deletion cost, Wb to denote base-pair bond breaking cost, 

and wa to denote base-pair altering cost. The algorithm is under the restricted score 

schemes wa = (wb + wr)∕2. This algorithm is a generalization of the algorithm in [9] 

to tertiary structures.

The main idea of the algorithm is partitioning the set of arc pairs Pi × P2 into a set 
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NC of “non-crossing” arc pairs and a set of “crossing” arc pairs CR =PxP2- NC 

such that the algorithm can apply a polynomial alignment method for the arc pairs 

in NC and an exponential alignment method for the arc pairs in CR.

3.4.1 Partition Arc Pairs into Crossing Arc Pairs and Non­

crossing Arc Pairs

Now we discuss how to do the partition of the set of arc pairs.

Môhl et al. give a definition about valid partition of the set of arc pairs P × P2 

into NC and CR in [13].

Definition 3.4.1 A partition of P × P2 into NC and CR is valid if and only if for 

all a, a' ∈ NC it holds that a and a' do not cross.

And they give a partition method according to left crossing arcs.

Lemma 3.4.2 The partition of P x P2 into CR = CR xCR2 = {pi € PIpi is left 

crossing} × {p2 EP2 p2 is left crossing} and NC =Px P2 - CR is valid.

It is easy to see Lemma 3.4.2 holds, because for two arbitrary crossing arc pairs, 

one of them is in CR. Thus a valid partition can be obtained if CR and CR2 contain 

all left crossing arcs. Analogously, a valid partition can be obtained if CRi and CR2 

contain all right crossing arcs.

Lemma 3.4.3 The partition of P x P2 into CR = CRixCR2 = {pi € PIpi is right 

crossing} × {p2 E P2 |p2 is right crossing} and NC =PxP2- CR is valid.

In the example shown in Figure 3.5 in Section 3.1, P = {1, 2, 3} and P2 = {I, 

II, III}. Applying Lemma 3.4.2 to the example, we can get CR = {2, 3} × {II, III} 

= {(2, II), (2, III), (3, II), (3, III)} and NC = {(1, I), (1, II), (1, III), (2, I), (3, I)}. 

Applying Lemma 3.4.3 to the example, we can get CR = {1, 2} × {I, II} = {(1,1), 

(1, II), (2,1), (2, II)} and NC = {(1, III), (2, III), (3,1), (3, II), (3, III)}.



47

Because the algorithm applies a polynomial alignment method for the arc pairs in 

NC and an exponential alignment method for the arc pairs in CR, i.e. the algorithm 

handles arc pairs in NC more efficiently than arc pairs in CR, we want to make the 

cardinality of CR as small as we can. A good partition should be local minimal, i.e. 

it becomes invalid if any element is removed from CR. Unfortunately, the partition 

according to Lemma 3.4.2 or Lemma 3.4.3 may not be local minimal (for the example 

shown in Figure 3.5 in Section 3.1, the partition according to Lemma 3.4.2 puts arc 

pair (3, III) in CR which actually can be moved to NC; similar for the partition 

according to Lemma 3.4.3). We will propose a method to optimize the partition 

result in Section 4.2. The optimized partition will be local minimal.

3.4.2 Precomputation of Stem Pairs

Because the algorithm applies an exponential alignment method for the arc pairs in 

CR and that will cost a lot of runtime, we should consider aligning whole crossing 

stems in one step. In order to align whole stems in one step, we need to group arc 

pairs in CR into pairs of stems.

Before we discuss how to do the precomputation, we need to introduce some 

notions given in [13].

Môhl et al. give a definition of stem which is different from the original one 

introduced in Section 1.2. We call the stem defined by the new definition “extended 

stem”. In the remaining part of this thesis, we will use this definition. We simply 

refer to extended stem as “stem”, and the stem defined by the original definition as 

“traditional stem”.

A stem QrnP (for P ∈ {Pi, P2}) is defined as a set of arcs {pι, • • ∙ ,pk} C P with 

p < <p <pr <.. < pf such that no end of arcs in P — Q is in one of the 

intervals [p{..pe] or [pR..pf]. Notice that stems do not need to be maximal, and can 

include bulges and internal loops (that is, there can be bases between two adjacent 

arcs in the same stem) according to this definition. An example of stem is shown in 



Figure 3.7.

Figure 3.7: An example of extend stem

The stem pair of two stems Qi G P1 and Q2 G P2 is characterized by the pair 

(ao,ax) of arc pairs, where ao = (poj,P02) is the pair of the outermost arcs and 

aι = (P1,P12) is the pair of the innermost arcs of Q1 and Q21 i.e. Qk consists of 

the arcs Pk ∩ [p5..pl] x [pR..p8] (k = 1,2). The stem pair covers an arc pair a iff 

a € Q1x (2. A stem pair is realized in an alignment (R1, R2) iff ao and ar are realized 

in (R1, R2). According to this definition, we know that only the outermost arcs and 

the innermost arcs are required to be matched. Figure 3.8 gives an illustration of a 

stem pair (ao, ar) = ((po,,Po2), (p1,,PI2)) which covers the dotted arc pair (p1,P2).

Figure 3.8: An example of stem pair

PO:

P12

PR 
PR

PTPoi

Pa2

Po1 1

Po2

The set of all stem pairs (ao, at) where {ao,ar} G CR is denoted as STCR- A stem 

pair (ao, ar) is open for a subalignment (R1, RQ)[1,12; j1,12] in an alignment (R1, R2) 

iff ao,aι are open for (R1, R2)[1,12; ji,i2]. The set of maximal open stem pairs of a 

subalignment (R1, R2)[1,12;j1,12 in an alignment (R1, R2) is the smallest set M of 
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open stem pairs of (R, RQ)[1,12; ji,12] such that each a € OA((R1, R2)[1,12; 31,12]) 

is covered by a stem pair in M.

Now we discuss how to do the precomputation.

We precompute the cost to align each stem pair (ao, ax) ∈ STCR as the value of 

an item S(ao,ar). The cost of aligning a stem pair is the cost to align bases in the 

stem. Formally, for a0 = (po1,P02) and ay = (p1,P12), the value of S(ao,ar) is the 

cost to align Ri [P5,, ⅛] to R2 [P52, ⅛] and simultaneously Ri [pR , pg1] to R2[pf ,P82..

The computation of S items is based on temporary items S‘(i,i‘;j,j‘;ar) that 

correspond to S(((i,i), (j,j')); ar) if ((i,i‘), (j,j')) is an arc pair, but are not limited 

to this case. S‘(i,i;j,j’; ((ka,4a), (ja,ja))) is invalid if i > ia, i' < i'a, j > ja or j, < j'a. 

The recursion to compute S' items given in [13] is as follows.

S‘(i,i‘;j,j‘;ar) =

S'(i + 1,i‘;j,j‘;ar) +wd + Pi(i)(w,/2 - Wd) (1)

S‘(i,i‘;j + 1,j'; ar) + Wd + 2(j)(w-/2 — wd)

min

S'(i,i' - 1;j,j’; aι) + Wa + Vi(i)(wr/2 - Wd)

S‘(,i;j,j - 1;aj) + Wd + %2G5)(w-/2 - wa)

S'(i + 1,i;j + 1,j; ar) + x(i,j)wm + (J1(i) + 2(j))wb/2

(2)

(3)

S‘(i,8‘-1;3,3-1;ai)+x(",j‘)wm+(i(t) +V2())wb/2 (6)

if ((4,4),0,50) ∈ CR

S'(i+1,0-1j+1,j 1ar) + (x(i,j) +x(i,j))wam/2 (7)
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The functions X and Ux(k = 1,2) in previous recursion are defined as follows.

1

0

{
1

0

We consider positions i,

(3.28)

(3.29)

if Rid = Rzlil

otherwise

if Bj : (i,j) ∈ Pk or (j,6) ∈ Pk (for k = 1,2)

otherwise 

i', j and j', there are exactly the following cases directly 

corresponding to the recursion shown in Eq. 3.27.

(1) Ri[i] is aligned to ‘—. If Ri[i] is a single base, this is due to a base deletion 

with cost ¾. Otherwise, the base pair which Ri[i] is involved in is either deleted or 

altered, with cost wr∕2.

(2) R2[i] is aligned to —. This is analogous to case (1).

(3) Ri[i] is aligned to '—'. This is analogous to case (1).

(4) R2[j'] is aligned to '—'. This is analogous to case (1).

(5) Ri[i] and R2[j] are matched by the alignment, but no arc pair involving 

(Ri[i], R2[j]) is realized. Thus all adjacent arcs are broken, each resulting in cost 

Wb/2. If Ri[i] and R2[j] mismatch, this causes an additional cost wm.

(6) Ri[i'] and R2[j'] are matched by the alignment, but no arc pair involving 

(Ri[i’], R2[j']) is realized. This is analogous to case (5).

(7) ((i, i'), (j,j')) € CR and this arc pair is realized. If Ri[i] and R2[j] mismatch, 

this causes a cost Wam/2. If Ri[i"] and R2[j'] mismatch, this causes an additional cost 

Wam/2.

The alignment of the innermost arc pair is computed as 

S(i,i;5,5;((ü,€),(,j))) = (x(i,j) + x(i,j))Wam/2 and step by step enlarged 

with the recursion given in Eq. 3.27, where implicitly cases relying on invalid items 

are skipped. By the recursion for S', only the arc pair ar is guaranteed to be realized 

in the precomputed optimal stem alignments. But we want to consider only items 
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S(ao,aι) where both a; and ap are realized in the core algorithm discussed in 3.4.4 

in order to avoid ambiguity in the recursion. Thus items where a0 is not realized 

are defined as invalid, and cases referring to these items are skipped in the core 

algorithm.

In the original paper [13], it is not clear when the computation of the S' items will 

terminate. We assume that for each S' item, the computation will terminate when 

the outermost arc pair of the maximal stem pair which covers ar is encountered. We 

will add a new concept called “local maximal stem pair” in Section 4.1, and show that 

we only need to compute the alignment of local maximal stem pairs in Section 4.5.2.

3.4.3 Property of Optimal Alignment

We consider the optimal alignment between Ri[i,i'] and R2[j, j']. We use 

D(i,i;j,j‘M) to represent the optimal alignment cost between Ri[i, i'] and R2[j, j'] 

where M C STcr is its set of maximal open stem pairs. A helpful intuition of M 

in the D items is that one end of each stem pair in M is aligned inside the range 

(i,i‘;j,j‘) and the other end is required to be aligned outside the range (i, i‘;j,j‘).

D(i,i‘;j,jM) is valid if i' ≥ i — 1, j' 2 j — 1, and there is an alignment 

(R1, R2) such that M is the set of maximal open stem pairs of the subalignment 

(R1, R2)[41,42301,62] in (R1, R2).

We can now consider how to compute the optimal alignment between Ri[i, i'] and 

Rabj,5l

Assume an optimal alignment Align with a subalignment Align[i, i‘;j,j‘]. We 

consider positions i' and jr, there are exactly the following cases directly corresponding 

to the recursion shown in Eq. 3.30. An intuitive illustration is given in Figure 3.91. 

The red dotted arcs in Figure 3.9 represent the set of open stem pairs M.

1Image quoted from [13].



D(i,i;j,j‘M) =

min 2

D(i,7 - 1;j,j|M) +wa+ vi(i)(w,/2 - wa)

D(i,i‘;j,j‘ - 1|M) +wd + Q2(j‘)(w-/2 - wd)

D(i,i - 1;j,j‘ - 1|M) + x(i',j')wm + (Vi(i') + Q2(j‘))wb/2

if there exist some i1, J1 with ((ix,i'),(ji,j')) ∈ NC

D(i,i1 - 1;j,ji - 1MI)

min S + D(i+1,i 1; ji+1,j — 1M2)

, +(x(1,ji) + x(i',j))w am /2

if there exists some (ao,ar) € M with

M1, M2 C STCR, where

M = (M1 U M2) - (Min M2)

Kao = (1,j1) AKar= (i',j') or ar = (1,j1) Ayao = (i',j')

D(i,i1 — 1;j,ji — 1M - {(ao, ar)}) + S(ao,ar)/2

min <
D(i,il - 1;3,01 - 1M U {(ao,ar)}) 

+ S(ao,ar)/2

(ao,ar) € STCR, where 

yap = (i',j) and

Nar = (i1,j1)

(1)

(2)

(3)

(4)

(5)

(6)

(3.30)

(1) Ri[i'] is aligned to ‘—. If Ri[i'] is a single base, this is due to a base deletion 

with cost Wd. Otherwise, the base pair which Ri[i'] is involved in is either deleted or 

altered, with cost wr/2.

(2) R2[j'] is aligned to '—'. This is analogous to case (1).

(3) Ri[i'] and R2[j'] are matched by the alignment, but no arc pair involving 

(Ri[i'], R2[j']) is realized. Thus all adjacent arcs are broken, each resulting in cost 

Wb∕2. If R1[i'] and R2[j'] mismatch, this causes an additional cost wm.

(4) Ri[i'] and R2[j'] are matched by the alignment, and an arc pair ((i1,i), (j1,j°)) 

with right end (i,,j') is realized. Then the subalignment is partitioned into three parts:
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Figure 3.9: Illustration of Mohl et al.'s recursion to compute D items

or

6 
$

the arc pair, the subalignment before the arc pair and the subalignment inside the arc 

pair. The cost of aligning the arc pair ((1,i'), (ji,j')) is 0 (if both pairs R1 [i1] — R2[ji], 

Ri[i1] — R2[j1] match), or Wam/2 (if one of the pairs R1[ii] — R2[ji], Ri[i1] - R2[j1 

mismatch), or Wam (if both pairs Ri[i1] — R2[ji], ¾[h] — R2[j1] mismatch). For the 

two subalignments, their corresponding maximal open stem pairs sets are denoted 

by M1 and M2, respectively. We need to minimize over all possible alternatives. 

Particularly, these include the cases where M1 and M2 contain open stem pairs which 

are not contained in M, that is, those cases where M1 ∩ M2 7 0. In case (4) of 

Figure 3.9, the green dotted arcs represent the set of stem pairs shared between 

the two alignment fragments (i.e. M1 ∩ M2) and the red dotted arcs represent the 

remaining elements of M1 U M2, which make up M.

(5) An arc pair a in CR has left or right end in (i',j') and a is open for the 

subalignment Align[i,i‘;j,j‘]. The maximal open stem pair that cover a is contained 

in M and therefore uniquely determined. Hence we can decompose into the respective 

Subalignment of this maximal open stem pair and the remaining subalignment, where 

this stem pair is no more open. In case (5) of Figure 3.9, concrete stem pair is shown 

in light red (in M).

(6) An arc pair a in CR has right end in (i',j') and a is not open for the sub-
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alignment Align[i,i'; j,j']. We minimize over all possible maximal open stem pairs 

that cover a. Each time we decompose again into the respective subalignment of this 

maximal open stem pair and the remaining subalignment, where now the stem pair 

is open in this remaining subalignment. In case (6) of Figure 3.9, concrete stem pair 

is shown in light green (not in M).

Notice that the cost of the precomputed stem pairs is distributed equally among 

the two subalignments. This is correct, because it is guaranteed that each alignment 

contains either both subalignments or none of them. When descending in the recur­

sion, open stem pairs are introduced via cases (4) or (6) and are removed again via 

case (5).

3.4.4 Algorithms

The main part of the algorithm recursively computes costs of subalignments.

The cost of the global alignment is the value of D(1, Si; 1, S2||0). It is computed 

following the recursion in Eq. 3.30 with base cases D(i,i — 1;j,j — 1/0) = 0 (for all i, 

j). Implicitly, in each recursive step the cases involving invalid items are skipped.

Now we analyze the time and space complexities of the algorithm.

Let n be max(S1, S2), and let S and t be the maximal number of arcs and bases 

in a crossing stem, respectively.

For an item S(ao, at), we have O(n2s2) possible instances:

• for ao: we can freely choose among the O(n2) arc pairs in CR;

• for ar: we have O(s2) possible choices (because the arcs of ao and ar must 

belong to the same stem).

For the S' items, it is not clear when the computation of the S' items will termi­

nate in the original paper [13]. We assume that for each S' item, the computation 

will terminate when the outermost arc pair of the maximal stem pair which covers 

Cr is encountered. Thus S‘(i,i‘;j,j‘;ar) has O(t4) possible instances of i, i', j, j'
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and 0(n2) possible instances of aj. So we need O(n2t4) space for the S' items; the 

time complexity coincides with the required space, since each of these items can be 

computed in constant time according to the recursion in Eq. 3.27.

2Similar to the partition of the set of arc pairs, we could partition the set of maximal stems to 
get the set of crossing maximal stem pairs and the set of non-crossing maximal stem pairs. We will 
discuss this in Chapter 4.

D(i,i‘;j,j‘M) has O(n4) possible instances of i, i', j, jl; but only O(n2) of them 

need to be maintained permanently. (More precisely, we only need to maintain items 

D(i+1,4 - 1j+1,j - 1|M) when ((i,4),(,5)) ∈ NC.)

To measure the number of instances of M, we need the notion of the crossing 

number of a position (x, y), defined as

C(x,v) = K((ao, aj) ∈ STMRAX ∣ R ar < (t,u) < war}l, (3.31)

where STCHX denotes the subset of STcr that only contains pairs of maximal stems. 

The maximal crossing number is denoted as k. Now we give an illustration of this 

notion. In the example shown in Figure 3.10, the set of crossing maximal stem pairs 

STMAX is {(2,II), (2,III), (3,II)}2. The position (x,y) is inside the innermost arc pair 

of stem pair (2,II), the innermost arc pair of stem pair (2,III) and the innermost arc 

pair of stem pair (3,II). Thus the fixed parameter k of this example is 3.

1

X

III

Figure 3.10: An illustration of the crossing number of a position (x, y)

Now we can measure the number of instances of M. Since each maximal stem 

pair has O(s4) fragments, there are at most O((s4)C(b)+C(’»)) = O(s8k) possible 
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instances of M for fixed i, i', j, jl. Thus we need to compute O(n4s8k) D items, and 

maintain O(n2s8k) of them permanently.

The computation of a D item needs only for the recursive cases (4) and (6) of 

Eq. 3.30 more than constant time:

• for case(4): we need to iterate over all possible instances of M1 and M2; since 

M2 is uniquely determined by M and M1, there are O(s8k) of these instances;

• for case (6): we need to iterate over all O(s2) possible instances of ar.

Therefore, the computation of all the O(n4s8k) D items requires O{nis8k - s8k) = 

O(n4s16k) time.

So the space complexity of the whole algorithm is O(n2s8k), and time complexity 

is O(n4s16k).

Unfortunately, this algorithm only works if the fixed parameter k is very small, 

for example k =1. When the parameter is large, it is not affordable due to too high 

usage of space and time.
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Chapter 4

Improved Algorithms for

Alignment between RNA Tertiary
Structures

We follow the work of Mohl et al. [13] which has been introduced in Section 3.4. The 

main idea of their algorithm is partitioning the set of arc pairs P × P2 into a set NC 

of “non-crossing” arc pairs and a set of “crossing” arc pairs CR =PxP - NC. 

Then the algorithm applies a polynomial alignment method for the arc pairs in NC 

and an exponential alignment method for the arc pairs in CR.

The results of Mohl et al. [13] show that they can only compute the alignment 

between RNA tertiary structures if the fixed parameter k of their algorithm is very 

small, for example k = 1. Even for very simple tertiary structures, their implemen­

tation still takes too much time and space to compute optimal alignment. When the 

parameter is large, that is, for moderate tertiary structures, their algorithm does not 

work due to too high usage of space and time.

We have made several optimizations to accelerate their algorithm. For simple 

tertiary structures, we can compute the optimal alignment efficiently. For moderate 

tertiary structures, we adopt the constrained alignment approach. Although the result 
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produced by constrained alignment is not guaranteed to be an optimal solution, in 

practice it would be reasonable.

4.1 Basic Definitions

In this section, we first give some definitions that will be used later. The section 

supplements Section 3.1.

Recall that in Section 3.1, we define a set of tertiary arcs of an RNA structure 

R(P) as a subset of crossing arcs Pter C P which satisfies the condition that for any 

two arcs p,p' € P- Pter, p and p' do not cross. Psec = P- Pter is a set of secondary 

arcs. If an arc p E Pter, then we say that p is a tertiary arc. If an arc p E Psec, then 

we say that p is a secondary arc.

We define the relation between two arc pairs as follows. Let a and al be two arc 

pairs. We say that a is before al if ∖ a - K a’; alternatively, we say that a' is after 

a. We say a is inside al if K a' - K a and yaXy a'; alternatively, we say that 

a' is outside a. We say that a is right crossed by a'if Ka <Ka'<ya «ya; 

alternatively, we say that a' is left crossed by a.

1The definition of stem is on page 47.

In Section 3.4.2, we introduced a new definition of “stem”1 proposed by Mohl et 

al. [13]. In this research, we adopt their definition. We also treat a single arc as a 

stem. We say that a stem q covers an arc p iî p E q. A stem q is characterized by 

the pair (po,Pr) of arcs, where po is the outermost arc which q covers and Pr is the 

innermost arc which q covers.

Let q = (po,Pr) and q' = (po,pT) be two stems. We define the relation between 

q and q' as follows. We say that q is before ql if p8 < PU; alternatively, we say that 

q' is after q. We say that q is inside q' if pr <Po < Po < pr; alternatively, we say 

that q, is outside q. We say that q is crossed by q' if pl < Po ≤ pr <pf Spo < pr 

or pl < Po - Pi ^ pI ≤ P'o < pf; in the first case, q is right crossed by q,, in the 

second case q is left crossed by ql.
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An stem q is called crossing if it is crossed by a stem q'. If q is right crossed by qt, 

we say that q is right crossings if q is left crossed by q', we say that q is left crossing. 

A stem q is called non-crossing if it is not crossed by any stem q’.

A maximal stem (denoted as m-stern) q, is defined as a stem with maximal number 

of arcs {P1, • • • Pk} C P with pl< <p<pe <.< pf such that no end of arcs 

in P — q is in one of the intervals [pl..pE] or [pE..pE]. We denote the set of maximal 

stems of an RNA structure R(P) as STMAX.

We define a set of tertiary mstems of an RNA structure R(P) as a subset of 

crossing m_stems STMAX C STMAX which satisfies the condition that for any two 

m.stems q, q' € STMAX-STMAX, q and q' do not cross. STmax = STmax-STmax 

is a set of secondary mstems. If a m_stem q ∈ STMAX, then we say that q is a tertiary 

m_stem. If a m_stem q ∈ STMAX, then we say that q is a secondary mstem.

Môhl et al. gave a definition of stem pair in [13] which we have introduced on 

page 48.

Recall that we defined the partial order - as (x1,Y1) - (x2,Y2) iff 1 < X2 and 

Y1 < Y2 in Section 3.1. We now define another two partial orders. We define X as 

(X1,Y1) X (x2,Y2) iff 1 ≤ 02 and yl ≤ Y2. We define < as (x1,Y1) <(2,Y2) iff 1 < X2, 

or x1 = 32 and yi <y2.

We define the relation between an arc pair and a stem pair as follows. Let a be 

an arc pair and c = (co,Cr) be a stem pair. We say that a is before c if y a - ∖ Co. 

We say that a is after c if y co a. We say a is inside c if ∖ CI Ka and 

ya XyCr. We say a is outside c if ∖ a - A Co and Co Xy a. We say that a 

is right crossed by c if Ka KCo and KCrXya XyCr. We say that a is left 

crossed by cifKCr<KaXCI and yCo Xy a.

We define the relation between two stem pairs as follows. Let b = (bo,br) and 

c = (co,cι) be two stem pairs. We say that b is before c if ∖ bo K CO; alternatively, 

we say that c is after b. We say that b is inside c if K Cr -Kbo and ybo Xy Cr; 

alternatively, we say that c is outside b. We say that b is right crossed by c ifKbr < 

K co, KCIXbr and bo Xy Cr; alternatively, we say that c is left crossed by 
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b.

Môhl et al. gave a definition that a stem pair covers an arc pair in [13] which 

we have introduced on page 48. We say that a stem pair (ao,,ar) is covered by 

another stem pair (a02,al2) if its outermost arc pair ao, and innermost arc pair an 

are covered by (aox, af2).

Similar to the partition method of arc pairs P × P2 into NC and CR, we can 

partition the set of mstem pairs STMAX x STNMAX into a set of crossing m_stem 

pairs and a set of non-crossing m_stem pairs. We denote the set of crossing mstem 

pairs as STCHX, and the set of non-crossing mstem pairs as STMAY.

We use STq1r to denote the set of all crossing stem pairs (ao,ar) covered by 

crossing mstem pairs in STMRAX.

A stem pair (ao, ax) ∈ STqr is open for a subalignment (RI, R2)[i1,12;j1,12] in an 

alignment (R1, R2) iff ap and ar are open for (RU, R2)[1,2; j1,12].

The set of proper open stem pairs of a subalignment (R1, R2)[1,12;j1,12] in an 

alignment (R1, R2) is a set M of open stem pairs of (RI, R2)[1,2; j1,12] such that 

no two stem pairs in M are covered by the same mstem pair. The reason for this 

definition is that for two open stem pairs b = (bo,br) and c = (co,Cr) which are 

covered by the same mstem pair s, we can actually substitute b and c with another 

stem pair d that is covered by s (d = (bo,CI) if b is outside c; d = (co,br) if c is 

outside b).

We call the stem pair (ao, at) local maximal if it is maximal among all stem pairs 

of which innermost arc pair is ar or it is maximal among all stem pairs of which 

outermost arc pair is ap; in the first case, (ao,ar) is called inner local maximal, in 

the second case (ao, ar) is called outer local maximal.

We say that an arc pair a is compatible with an arc pair a' if a is inside a’, or a 

is outside a,, or a is before a', or a is after a', or a is left crossed by ar, or a is right 

crossed by al.

We say that an arc pair a is compatible with an arc pairs set Ar if and only if 

Va' ∈ A', a is compatible with a'. Notice that if Al = 0, we also say that a is 
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compatible with A'.

We say that an arc pairs set A is compatible with an arc pairs set A' if and only if 

Va ∈ A,a' ∈ A', a is compatible with a’. Notice that if A = 0 or A' = 0, we also say 

that A is compatible with A'.

We say that an arc pair a is compatible with a stem pair c if a is inside c, or a is 

outside c, or a is before c, or a is after c, or a is left crossed by c, or a is right crossed 

byc.

We say that an arc pair a is compatible with a stem pairs set C if and only if 

Vc € C, a is compatible with c. Notice that if C = 0, we also say that a is compatible 

with C.

We say that a crossing stem pair b ∈ STCA is compatible with a crossing stem 

pair c ∈ STCk if b is inside c, and b, c are not covered by the same crossing mstem 

pair; or b is outside c, and b, c are not covered by the same crossing mstem pair; or 

b is before c; or b is after c; or b is left crossed by c; or b is right crossed by c. The 

condition that b, c are not covered by the same crossing mstem pair in first two cases 

are required by the property of proper open stem pairs set.

We say that a crossing stem pair b ∈ STCk is compatible with a crossing stem pairs 

set C C STcA if and only if Vc € C,b is compatible with c. Notice that if C = 0, we 

also say that b is compatible with C.

We say that a crossing stem pairs set B C STCA is compatible with a crossing 

stem pairs set C C STck if and only if Vb € B,ceC,b is compatible with c. Notice 

that if B = 0 or C = 0, we also say that B is compatible with C.

4.2 Partition Arc Pairs into Crossing Arc Pairs 

and Non-crossing Arc Pairs

In Section 3.4.1, we introduced two partition methods of arc pairs set given in [13]. In 

this section, We propose a new partition approach (two partition methods) according 
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to tertiary arcs and crossing arcs, and adopt the greedy strategy to make further 

optimization.

The first partition method is according to tertiary arcs of the first RNA and 

crossing arcs of the second RNA.

Lemma 4.2.1 The partition of P × P2 into CR = CRi × CR2 = {p1 €P p1 is 

tertiary} × {p2 E P2l p2 is crossing} and NC =P x P — CR is valid.

Proof: We have

NC = P1 × P2-CR

= (CR U (P. - CR1)) × (CR, U (P, - CR2)) - CR1 x CR2

= ^P1 - CR1) x CR2) U (CR, x (P, - CR2)) U ((P1 - CR1) x (P, - CR))

= ((P. - CR) x CR2) U (P. x (P, - CR2)

where P1 — CR1 is the set of secondary arcs of the first RNA and P2 — CR2 is the set 

of non-crossing arcs of the second RNA.

From the definition of crossing arc pairs in Section 3.1, we know that two arc pair 

a = (a1,a2) and b = (b1,b2) cross if and only if the arc a1 is left crossed by the arc b1 

and the arc a2 is left crossed by the arc b2, or the arc a1 is right crossed by the arc b1 

and the arc a2 is right crossed by the arc b2.

No arc pair in P1 x P2 cross arc pairs in P1 x (P2 — CR2), since arcs in P2 — CR2 

are non-crossing.

For an arc pair c = (p1,P2) ∈ (P — CR1) x CR2, we have the following cases.

• p1 is non-crossing. Thus no arc pair in P1 x P2 crosses c.

• p1 is crossing. For this case, we have three subcases. (1) No arc left crosses 

p1 (i.e. all arcs crossing p1 right cross p1) and no arc right crosses p2 (i.e. all 

arcs crossing p2 left cross p2), thus no arc pair in P1 × P2 crosses c. (2) No arc 

right crosses p1 and no arc left crosses p2. Similar to subcase (1), no arc pair in 
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Pi × P2 crosses c. (3) All other cases. There must be some arc pair crossing c. 

Since all arcs that cross p1 must be in CR1 and all arcs that cross P2 must be 

in CR2, all arc pairs that cross c = (p1,P2) must be in CR1 × CR2, that is CR.

Therefore, for all c, c' ∈ NC it holds that c and d do not cross. Hence the lemma 

holds. □

Thus a valid partition can be obtained if CRi contains all tertiary arcs of the first 

RNA and CR2 contains all crossing arcs of the second RNA. Analogously, a valid 

partition can be obtained if CRι contains all crossing arcs of the first RNA and CR2 

contains all tertiary arcs of the second RNA.

Lemma 4.2.2 The partition of Pi × P2 into CR = CRι × CR2 = {pι €P ∣ pι is 

crossing} × {p2 E P2 p2 is tertiary} and NC =Px P2 - CR is valid.

Proof: Similar to Lemma 4.2.1. □

In the example shown in Figure 3.5 in Section 3.1, Pι = {1, 2, 3} and P2 = {I, 

II, III}. Applying Lemma 4.2.1 to the example, we can get CR = {2} × {I, II, III} 

= {(2, I), (2, II), (2, ΠI)} and NC = {(1,1), (1, II), (1, III), (3,1), (3, II), (3, III)}. 

Applying Lemma 4.2.2 to the example, we can get CR = {1, 2, 3} × {II} = {(1, II), 

(2, II), (3, ∏)} and NC = {(1,1), (2,1), (3, I), (1, III), (2, III), (3, III)).

The partition according to Lemma 4.2.1 or Lemma 4.2.2 sometimes is not local 

minimal.

We can use the following method to make further optimization.

For each partition method we have discussed (Lemma 3.4.2, Lemma 3.4.3, Lemma 

4.2.1 and Lemma 4.2.2), we use the result of the method as a starting point. We check 

each element of CR against all elements of NC; if it does not cross any arc pair in 

current NC,then we move it to NC. We continue to do this step until all elements 

of CR have been checked. Then we get a local minimal partition.

For the example shown in Figure 3.5 in Section 3.1, the partition according to 

Lemma 3.4.2 is CR = {(2, II), (2, III), (3, II), (3, III)} and NC = {(1, I), (1, II), 
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(1, III), (2,1), (3,1)}. Applying the optimization method to the result, we can move 

(3, III) from CR to NC and get the final result CR = {(2, II), (2, III), (3, II)} and 

NC = {(1,1), (1, II), (1, III), (2,1), (3, I), (3, III)}.

We select the best partition, i.e. the partition which has the smallest ∣CR∣, from 

optimized results produced by the four partition methods for later use.

4.3 A General Score Scheme

We now describe a general score scheme for computing alignment scores.

In this research, we will not consider an explicit base-pair altering operation in­

troduced in Section 3.1 since that operation is replaced by a base-pair bond breaking 

operation and then an unpaired base deletion operation. We adopt the linear gap 

penalty model.

Consider two RNA structures Ri and R2, we use Γ( ) introduced in Section 3.1 

to define 7(i,j) for 0 ≤ i ≤ ∣¾∣ and 0 ≤ j ≤ ∣⅛∣, and δw,i),(j',jy) where 

(½[i'j, ¾[i]) and (½[il ½b]) are base pairs in Rγ and R2, respectively. We dis­

tribute evenly the deletion/insertion/bond breaking cost of a base pair to its two 

bases.

If i = prι^ and j = pr2(j},

7(i,0) =Γ(R1[z]→Λ) (4.1)

7(0,j) = Γ(λ → ⅛[j]) (4.2)

7(i,j) = Γ(⅛[f] →R2^) (4.3)

If i' = prι(i) < i,

7(√,0) = Γ((⅛[√],⅛[z]) → λ)∕2 (4.4)

7(i,0) = Γ((⅛[√], ¾[i]) → λ)∕2 (4.5) 
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If j’ = Pτ2(j) < j,

N(0,3) = Γ(λ → (Ra1, Ra[/1))/2 

N(0,j) = ro → (R/1, Ra[1))/2

If i = Pri(i) and j' = Pra(j) < j,

Y(ij) = T((Ra[i"1, Ra[jD))/2 + I(R,[0 → ⅛D 

Y(i,i) = T((Rali"l, ½b]))∕2 + F(Ra[4 - Rail)

If i‘ = Pri(i) < i and j = Pra(j),

Y7,j) = Γ6((¾[√], ¾[i]))∕2 + T(Ri4 → Rail) 

1(i,i) = T((R./1, R,[/D)/2+T(R,[4 - Ra[jl)

If i' = Pri(i) < « and j‘ = Pra(j) < j,

Y(7,5) = T((R,4), ¾H))∕2 + T((Rali"1, RabjD)/2 

+ T(R.//1 → Ra[j'l)

1(6,1) = Γ6((⅛[η,¾[i]))∕2 + T((Ral, R2[/D))/2 

+ T(Ri[41 → Ralil)

1(6,5) = Γb((¾[iz],¾[i]))∕2 + T((RaliT, Ral/1)/2 

+ Γ(β1[i] → Rali'T)

1(6,5) = T((R,[4], Λ1H))∕2 + T((Ralj", Ral/D)/2 

+ T(Ri[4] - Ra[il)

s((i, i), (j,j)) = T((R,i],R,[0]) → (R23'], R2[5]))

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4∙12)

(4.13)

(4.14)

(4.15)

(4.16)

From this definition, if Ri[i] is a single base, then Y(i, 0) is the cost of deleting this
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base and if Ri[i] is a base of a base pair, then Y(i,0) is half of the cost of deleting 

this base pair. The meaning of (0,j) is similar. If both Ri[i] and R2[j] are single 

bases, then Y(i,j) is the cost of aligning bases Ri[i] and R2[i]. If Ri[i] is a single base 

and R2[j] is a base of a base pair, then Y(i,j) is half of the bond breaking cost of the 

base pair involving R2[j] plus the cost of aligning bases Ri[i] and R2[j]. If Ri[i] is a 

base of a base pair and R2[j] is a single base, then Y(i,j) is half of the bond breaking 

cost of the base pair involving Ri[i] plus the cost of aligning bases Ri[i] and R2[j]. If 

both Ri[i] and R2[j] are bases of base pairs, then Y(i,j) is half of the bond breaking 

cost of the base pair involving Ri[i] plus half of the bond breaking cost of the base 

pair involving R2[j] plus the cost of aligning bases Ri[i] and R2[j]. This is used to 

deal with the cases where the two base pairs involving Ri[i] and R2[j] are not aligned. 

8((i', i), (j',j)) is the cost of aligning base pairs (Ri[i'], Ri[i]) and (R2[j'], R2[j]).

Obviously, our score scheme is an extension of the score scheme of Wang and 

Zhang’s algorithm introduced on page 38. It is more general than the score scheme 

of Mohl et al.,s algorithm introduced on page 45.

4.4 Property of Optimal Alignments

In this section, we consider the property of optimal alignment between two RNA 

tertiary structures.

We consider the optimal alignment between R1[i1,i2] and R2[j1,j2]. We use 

A(i1,i;ji,j|N) to represent the optimal alignment cost between Ri[il,i] and R2[j1,j] 

where N C CR is the set of open arc pairs2 of the optimal alignment.

2The definition of open arc pairs set is on page 30.

We can now consider how to compute the optimal alignment between Ri[i1,12 

and R2[jι,j2.-

Lemma 4.4.1

A(0;0/0) = 0 (4.17)
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Proof: Consider A(i1,01; j1,j10) where R1[1] and R2[j1] are single bases. If the 

optimal alignment results from aligning R1[ii] to R2[ji], then we only need to account 

for the cost for aligning Ri[ii] to R2[ji]. Hence we may set A(0; 0∣0) = 0. •

Lemma 4.4.2 For diSiX 12,

A(i1,i; 0|0) = A(i,i - 1; 0∣0) + Y(,0) (4.18)

Forj1 <j <j2,

A(0;31,310) = A(0;31,3 - 1∣0) + 7(0, j) (4.19)

Proof: For A(i,i; 0|0), it is obvious that each element in Ri[ii,i] is aligned to —. 

That is, Ri[i] is aligned to ‘—‘, each element in Ri[in,i — 1] is aligned to r-' and the 

open arc pair set is still 0. Hence we have A(i1,i; 0∣0) = A(in,i — 1;0|0) + Y(i,0).

Similarly, we can obtain the other formula.

Lemma 4.4.3 For i1 < i < i2 and j1 <j< j2,
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A(1,i;j1,j|N) =

skip (1) if there exists some arc pair a€ N with Ka= (i,j') or∖a = (i,j,) 

where ji < j' < j

A(iι,i - 1;h,j|N) + 7(i,0)

skip (2) if there exists some arc pair a E N with ∖ a = (i',j) or∖a = (i',j) 

where di Si'Si

A(ii,i;ji,j - 1/N) + Y(0,j)

skip (3) if there exists some arc pair a € N with ∖ a = (i,j') or∖a = (i,j') 

where jι ≤ j' < j, orsa = (i',j) or y a = (i',j) where i1 SiSi

A(ix,i - 1;j1,j - 1|N) + ~(i,j)

if (21,j1) X (Pri(i),Pr2(j)) - (i,j) and ((pr.(i),i), (pr2(j),j)) € NC,

and ((pr.(i),i), (p,2(j),j)) is compatible with N 
min <

A(i1,pri(i) — 1; j1,pr2(j) — 1N1)
Ni, N2 C CR, where

Nahore = N. A N2,

min 3 + A(pri(i) + 1,i - 1; Pr2(j)+1,j - 1N2)

+ O((pri(i),i), (pr2(j),j)) 

N — (N1 U N2) — Nshare

and Nshare is

compatible with N 

if there exists some arc pair a€N with ∖a = (i,j)

A(iι,i - 1;jisj - 1N - (a)) + 5(i, (Pr.(i)), (j. Pra(j)))/2 

if there exists some arc pair a E N with ya = (i,j)

A(iι,i - 1;31,3 - 1/N - {a}) + 8((Pri(),1), (Pr2(j),j))/2

if there exists some arc pair a ∈ CR with

ya = (i,j) and (i1,j1) XKa = (pri(i),Pr(j)), and a is compatible with N 

A(il,i — 1;j1,j — 1|N U {a}) + 8((pri(i),i), (pr(j),j))/2 
(4.20)
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Proof: Consider Ri[i] and R2[j]. There are exactly the following cases.

(1) Ri[i] is aligned to '—'. Thus Riii,i — 1] is aligned to R2[ji,j] and the open 

arc pairs set is still N. Hence the A(ii,i — 1; ji,j|N) + Y(i,0) item. Notice that if 

there exists some arc pair a E N with 5a= (i,j') or ∖ α = (i,j,) where ji ≤ jl ≤ j, 

then Ri[i] must be aligned to R2[j'] since a is an open arc pair and realized in the 

alignment. Thus for these situations, we need to skip case (1).

(2) R2[j" is aligned to —. Similar to case (1). Notice that if there exists some 

arc pair a € N with κ∖ a = (i',j) or y a = (i',j) where ii<i< i, then R2[j] must 

be aligned to Ri[i'] since a is an open arc pair and realized in the alignment. Thus 

for these situations, we need to skip case (2).

(3) Ri[i] is aligned to R2[j], but no arc pair involving (Ri[i], R2[j]) is realized. 

Thus Ri[ii,i- 1] is aligned to R2[j1, j — 1] and the open arc pairs set is still N. Hence 

the A(i1,i — 1;ji,j — 1|N) +Y(i,j) item. Notice that if there exists some arc pair 

a € N with ∖ a = (i,j') or y a = (i,j') where j1 ≤ j' ≤ j, then Ri[i] must be 

aligned to R2[i" and a must be realized in the alignment since a is an open arc pair; if 

there exists some arc pair a Ç. N with Ka= (i',j) or y a = (i',j) where di<i'< i, 

then R2[j] must be aligned to Ri[i"] and a must be realized in the alignment since a 

is an open arc pair. Thus for these situations, we need to skip case (3).

(4) ¾[i] is aligned to R2[j], and the arc pair ((pri(i),i), (pr2(j),j)) is realized. This 

requires that ((pr.(i),i), (pr2(j),j)) is compatible with N. Then the optimal alignment 

between Ri[il,i] and R2[ji,j] is partitioned into three parts: 1. the optimal alignment 

between Ri[i1,Pri(i) — 1] and R2[j1,Pr2(j) — 1], 2. the optimal alignment between 

Ri[pni(i)+ 1,i-1] and R2[pr2(j)+ 1,j — 1], and 3. the alignment of (Ri[pri(i)], Ri[i]) 

to (R2[pr2(j)], R2[j]). For part 1 and part 2, we denote their corresponding open arc 

pairs sets by Ni and N2, respectively. Hence the A(ii,Pri(i) — 1; j1,Pr2(j) — 1|N1) + 

A(pi()+1,i-1; pr(j)+1,j-1N2)+8((Pr1(i),4),(Pr2(j),j)) item. Ni and N2 may 

contain open arc pairs which are not contained in N. We use Nshare to denote the 

set of arc pairs that are shared between part 1 and part 2, i.e. Nshare = Ni A N2. 

N, N1,N2,Nshare satisfy that N = (N1 U ¾) — Nshare and Nshare is compatible with
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N. We need to minimize over all possible alternatives.

(5) We have two subcases, (a) An arc pair aEN has left end in (i,j). Then the 

optimal alignment between Ri[i,i] and R2[j1,j] is partitioned into two parts: 1. the 

optimal alignment between Ri[in,i — 1] and R2[ji,j — 1], 2. the alignment of ¾[i] 

and R2[i]. For part 1, a is no more open, thus its open arc pairs set is N — {a}, and 

the alignment cost is A(il,i — 1; ji,j — 1|N — {a}). For part 2, the cost is half of the 

cost of aligning base pair (Ri[i], Ri[(pri(i)]) to base pair (R2[j], R2[(pr2(j)]). (b) An 

arc pair aE N has right end in (i,j). It is similar to subcase (a).

(6) An arc pair a in CR has right end in (i,j), a is compatible with N, and a is not 

open for the alignment between Ri[il,i] and R2[j1,j]. Then the optimal alignment 

between Riil,i] and R2[j1,j] is partitioned into two parts: 1. the optimal alignment 

between Ri[il,i — 1] and R2[jn,j — 1], 2. the alignment of Ri[i] and R2[j]. For part 

1, a is now open, thus its open arc pairs set is N U {a}, and the alignment cost is 

A(il,i — 1; ji,j - 1|N U {a}). For part 2, the cost is half of the cost of aligning base 

pair (Ri[(pri(i)], Ri[i]) to base pair (R2[(pr2(j)], R2[j]).

Therefore we take the minimum of all the cases and get the above recursion. □

4.5 Algorithms

From Lemma 4.4.1 to 4.4.3, we can compute optimal alignment cost 

A(1, R1; 1, R2|0) between Ri and ¾ using a bottom-up approach. However, the 

complexity of the algorithm will be too high if we directly use these lemmas, since 

we need to enumerate all the combinations of crossing arc pairs. We need to con­

sider some methods to accelerate computation. We will show that we can preprocess 

crossing stem pairs in STCA to accelerate computation in Section 4.5.2.

Before we discuss the preprocessing of crossing stem pairs in STCk, we need to 

show how to compute the set STMHAX of crossing m_stem pairs and the set STMCX 

of non-crossing m_stem pairs that will be used later.



71

4.5.1 Partition m_stem Pairs into Crossing m_stem Pairs and 

Non-crossing m_stem Pairs

Similar to the partition method of arc pairs P × P2 into NC and CR, we can partition 

the set of m_stem pairs STMAX × STMAX into a set STMMAX of crossing m_stem pairs 

and a set STMAX of non-crossing m_stem pairs.

We extend Definition 3.4.1 to m_stem pairs, and the four partition methods of arc 

pairs to m_stem pairs. Lemma 4.5.2 to 4:5.5 can be easily proved by similar technique 

used in the proofs of lemmas for partition of arc pairs.

Definition 4.5.1 A partition of STMAX × STMAX into STMAX and STMAAX is valid 

if and only if for all b, b' ∈ STMAX it holds that b and b' do not cross.

Lemma 4.5.2 The partition of STMAX × STMMAX into STMAAX = {a1 € 

STMAX ∣ ai is left crossing} × {a2 ∈ STAX ∣ a2 is left crossing} and STMAX = 

STMAX × STMAX - STMAX is valid.

Lemma 4.5.3 The partition of STMAX × STMMAX into STMAAX = {ai ∈ 

STMAX ∣ ai is right crossing} × {a2 ∈ STMAX ∣ a2 is right crossing} and STMA-X = 

STMAX × STMAX - STMAX is valid.

Lemma 4.5.4 The partition of STMAX × STMAX into STMAAX = {a1 € STMAX ∣ a 

is tertiary} x {a2 ∈ STMMAX ∣ a2 is crossing} and STMAX = STMAX x STMAX — 

STMAX is valid.

Lemma 4.5.5 The partition of STMAX x ST,AX into STMAX = {α1 € STMAX ∣ p1 

is crossing} x {α2 ∈ STZAX ∣ a2 is tertiary} and STMAX = STMAX x STMAX - 

STMAAX is valid.

We can also make further optimization as we do in Section 4.2. For each partition 

method (Lemma 4.5.2, Lemma 4.5.3, Lemma 4.5.4 and Lemma 4.5.5), we use the 

result of the method as a starting point. We check each element of STMAX against
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all elements of STMX; if it does not cross any m_stem pair in current STMAX, then 

we move it to STMCX. We continue to do this step until all elements of STMHAX have 

been checked. Then we get a local minimal partition.

Assume that we already have sorted (by 5' end) list of mstems and sorted (by 5’ 

end) lists of tertiary mstems of two RNA structures Rι and R23. We first compute 

a sorted (by 5' ends) list of mstem pairs, sorted (by 5' end) lists of left crossing 

mstems of two RNAs, sorted (by 5' end) lists of right crossing mstems of two 

RNAs and sorted (by 5' end) lists of crossing mstems of two RNAs.

3As we will see in Chapter 5, the input file contains primary, secondary and tertiary structures 
information of two input RNAs. From that information, we can easily obtain these lists.

4This is different from the original representation of stem pairs where we use the outermost 
arc pair and the innermost arc pair. We only use this notation in this section to explain how to 
precompute the cardinality of STCA and generate NC.

Then we can partition the list of mstem pairs into a list of crossing mstem 

pairs and a list of non-crossing mstem pairs according to Lemma 4.5.2 to 4.5.5, 

respectively. For the four partition results, we use the method we discussed previously 

to make further optimization. Thus we will get four local minimal partitions. We need 

to select the best partition from these four results. As we will see in Section 4.5.3, the 

number of crossing stem pairs, that is STCk, highly influences the complexity. Thus 

we want to choose the partition which will produce the least crossing stem pairs.

Actually, we can precompute the cardinality of STCA without generating STCA. 

For each stem b, we can save the number of arcs that it covers along with it and 

denote this number as bsize. Then we can easily evaluate the cardinality of STqir via 

STMHX. We can do this as follows. For each crossing mstem pair (b1,b2) ∈ STMAX 

where bι is a mstem from the first RNA and b2 is a mstem from the second RNA4, 

we can generate two types of crossing stem pairs: (1) we can select one arc from b1 

and select one arc b2 such that these two arcs form a crossing arc pair which can 

be considered as a crossing stem pair; (2) we can select two arcs from b1 and select 

two arcs b2 such that these arcs form a crossing stem pair. The number of arc pairs 

of the first type is bj.size ∙ b2.size, and the number of arc pairs of the second type
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is ( 2we) ∙ (02-g42e). Thus for each crossing m_stem pair (b1,b2), we can generate 

by-size • ba-size + (ba-gzze) . (ba-gze) crossing stem pairs. Therefore from STMAAX, we 

can generate 2(b1,b2)esrMax (b1 size • b2.size + (0125e) . (bz^12e)) crossing stem pairs in 

total. For each partition result, we compute the number of crossing stem pairs that 

it can generate. Then we select the partition which will produce the least crossing 

stem pairs.

In the final partition, we have a sorted list STMHX5 of crossing m_stem pairs and a 

sorted list STMAX of non-crossing m_stem pairs. These two lists are sorted by 5' ends 

of two RNAs. More precisely, for stem pairs (ao,ar) ∈ STMRAX or (ao,ar) ∈ STM&X, 

(ao,ar) is already sorted by the left end of the outermost arc pair Kao = (i,j) 

according to the partial order < defined in Section 4.1.

However, as we will see in Section 4.5.3, we need a sorted list of non-crossing 

m_stem pairs which is sorted by 3' ends. Thus we need to sort the list STMAX by 

3' ends. For stem pairs (ao,ar) ∈ STMAX, we sort (ao,ar) by the right end of the 

outermost arc pair yap = (i,j) according to the partial order <.

As as we will see in Section 4.5.3, we also need a sorted list NC of non-crossing 

arc pairs which is sorted by 3' ends. It can be easily generated from STMX. For 

each non-crossing m_stem pair (b1,b2) ∈ STMAX where b1 is a mstem in the first 

RNA and b2 is a mstem in the second RNA, we can select one arc from bγ and select 

one arc b2, then these two arcs will form a non-crossing arc pair. We enumerate all 

possible alternatives, then get NC. Then we sort NC by 3' ends of two RNAs. For 

arc pairs a ∈ NC, we sort a by the right end ya = (i,j) according to the partial 

order <.

5When there is no confusion, we use the same notation to denote a set and its corresponding 
sorted list in the remaining part of this thesis. This is just for simplicity.
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4.5.2 Accelerating Computation by Preprocessing Crossing

Stem Pairs

In this section, we consider how to accelerate computation by preprocessing of crossing 

stem pairs in STcr- This section is based on Section 3.4.2. We propose some new 

methods. We present a method to filter out unnecessary “crossing stem pairs” to 

accelerate the computation of optimal alignment. We gave a definition of local mstem 

pair (including inner local mstem pair and outer local mstem pair) in Section 4.1. 

In this section, we will show that we only need to compute the alignment of crossing 

local mstem pairs. Ahgnment costs of other crossing stem pairs would be byproducts.

Recall that a stem pair is denoted by (ao,ar), where ao is its outermost arc 

pair and ar is its innermost arc pair. The cost of aligning a crossing stem pair 

(ao,ax) ∈ STc1r is the cost to align bases in the stem, and is denoted as S(ao,ar). 

Recall that a stem pair (ao,ax) is realized in an alignment (Ri, R2) if and only if 

both ao and at are realized in (R1, R2). Realized crossing stem pairs serve as open 

stem pairs for some subalignments in the core algorithm. So we want to consider only 

crossing stem pairs which are realized.

Môhl et al. proposed a approach to compute S(ao,ar) in [13], which we have 

described in Section 3.4.2. They let ar be realized and computed S(ao,ar) following 

the recursion given in Eq. 3.27. By this approach, only the arc pair ar is guaranteed 

to be realized in the precomputed optimal stem pair alignments. So they defined the 

S items where ao is not realized as invalid, and skipped cases referring to these items 

in the core algorithm discussed in 3.4.4 in order to avoid ambiguity. However, they 

did not give a proof that the optimal global alignment score would not be affected 

by doing this. Actually, we can compute S(ao,ar) in a more intuitive way: we let 

both ao and ar be realized and compute S(ao,ar) following the recursion given in 

Eq. 3.27, then use the results in the core algorithm discussed in 3.4.4.

We call the approach where only ar is required to be realized Approach, and the 

approach where only both ao and ar are required to be realized Approach^. We will 
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prove the following lemma.

Lemma 4.5.6 For a crossing stem pair [ao,aι) ∈ STCA, if its outermost arc pair 

a0 is not realized in the optimal stem pair alignment computed by Approachi, then 

we can safely remove (ao, at) from STq1r to avoid unnecessary computation in the 

core algorithm computing global alignment. This will not affect the optimal global 

alignment score.

Proof: For a crossing stem pair (ao,ar) ∈ STCA, we use S (OofUi)Appr0aChi to denote 

its optimal stem pair alignment cost computed by Approachi, and S(ao,ar) Approach, 

to denote its optimal stem pair alignment cost computed by Approach.

We use globalCost((ao,ar)) to represent the optimal global alignment 

cost with the constraint that the stem pair (ao,ar) is realized. We use 

subCost(R1[1,12], R2[31,j2]) to represent the optimal alignment cost between sub­

sequences Ri[ii,i2] and R2[31,j2].

Suppose there is a crossing stem pair ((A,a),(B,b)) ∈ STqr whose outermost arc 

pair (A, a) is not realized in the optimal stem pair alignment computed by Approach.

It is obvious that S((A, a), (B, b)) Approach! < S((A,a),(B,b)) Approacha- The reason 

is as follows. The computation of the two items only differs in (A, a). In the computa­

tion of S((A, a), (B, b)) Approach!, when (A, a) is encountered, we take the minimum of 

all seven cases of the recursion given in Eq. 3.27. Since (A, a) is not realized in the op­

timal stem pair alignment computed by Approachi, the seventh case realizing (A, a) 

is not minimal. While in the computation of S((A,a),(B,b))Approach2, when ((A,a) 

is encountered, we simply let (A,a) be realized. Thus S((A,a), (B,b))Approach, < 

S((A, a), (B, b)) Approachv 

In the optimal stem pair alignment of ((A, a), (B, b)) produced by Approachi, we 

suppose that the outermost realized arc pair is (C,c) (see Figure 4.1; this includes 

these subcases: 1. C = A and c ≠ α, 2. C* A and c — a, 3. CZA and c+ a).

It is easy to see that S((A,a),(B,b))Approach, = subCost(Ri[AL,CL —
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br^cr^ ar 
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1], R2[aL, cl - 1])+S((C, c), (B, b)) Approach: +subCost(Ri[C*+1, AF], Ra[ck+1, aR])6.

It is obvious that S((C, c), (B, b))Approachi = S((C, c), (B, b))Approacha-

We have

globalCost(((C, c), (B, b)))

= subCost(R,[1,Cl - 1], RA[1,c= - 1])

+ S((C, C), (B, b))Approach2

+ subCost(R1[B + 1, Br — 1], R2[b- + 1, δβ — 1])

+ subCost(R,[CR + 1, R,[], RAcR + 1, R2ll)

Since subCost(Ri[1,C5-1], Ra[1,c5-1]) ≤ subCost(R1[1, A5-1], R2[1,a5-1])+ 

subCost(R, [Al, CL — l],⅛[βi> cl - 1]) and subCost(RA[CR+1, Rill, Ra[cR+1, Rall) 

< subCost(R[CR+1, AR], R2cR+1, aR])+subCost(R[AR+1, R,lJ, RZaR+1, R2ll),

Recall that the left end of an arc p is denoted as pl, and the right end is denoted as pr. If 
C = A and c + a, then subCost(R1[A", CL — 1], Rz[a5, cL — 1]) will be the cost of insertion of 
subsequence R2[aL,c5 — 1] and subCost(Ri[CR +1, Ak], Ra[cR +1, ak]) will be the cost of insertion 
of subsequence R2 [CR +1, αβ] ; if C + A and c = a, then subCost(R1 [AL, CL — 1] ,R2[ab,cl —1]) will 
be the cost of deletion of subsequence RI[A,CL - 1] and subCost(Ri[CR + 1, AR], Ra[cR + l,αβ]) 
will be the cost of deletion of subsequence Ri[CR + 1, AF].
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then

globalCost(((C, c), (B, b)))

< subCost(Ri[1, A5 - 1], Ra[l, a- - 1]) + subCost(R[AL,C5 - 1), Rz[a5,c5 - 1])

+ S((C, C), (B, b)) Approach

+ subCost(Ri[B! +1, BR - 1], Ra[bl +I,⅛κ- 1])

+ subCost(RI[CR + 1, AR], R2[CR + 1,aR]) + subCost(R[AR + 1, Ril], R2[aR + 1

Since S(XA,(1), (Bfby)Approach! subCost(RI[A, CL — 1], Rz[ab,ch —

1]) + S((C, c). (B,b))Approacha + subCost(Ri[CR + 1, A4], Ra[ek + 1,afl) and 

S((C, c), (B, b))Approachi S((C, c), (B, b))Approach2, then

globalCost(((C, c), (B, b)))

≤ subCost(Ri[1, A° — 1], Ra[l,a5 — 1])

+ S((A, a), (B, b)) Approach

+ subCost(R[B +1, BR - 1],½[6l +1,bR- 1])

+ subCost(R)[AR + 1, Ril], R2[aR + 1, R2l])

Since S((A,a), (B,b)) Approach. < S((A,a),(B,b))Approach2, then

globalCost(((C, c), (B, b)))

< subCost(Ri[1, A° - 1], Ra[1,ab — 1])

+ S((A, a), (B, b)) Approach

+ subCost(R[B +1,BR-1], Rab- +1,6R- 1)

+ subCost(R,[AR + 1, Ril],R2aR + 1, R2l])

The right part of the above inequality is exactly the same as
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globalCost(((A, a), (B, b))), thus we obtain that

globalCost(((C,c), (B,6))) < globalCost(((A,a),(B,b)))

Therefore, the optimal constrained global alignment realizing ((C, c), (B,b)) has 

less cost than the optimal constrained global alignment realizing ((A,a), (B, b)). Thus 

realizing the stem pair ((A,a),(B,b)) will not lead to an optimal global alignment. 

So we can safely remove ((A, a), (B, b)) from STCA to avoid unnecessary computation 

in the core algorithm computing global alignment. This will not affect the optimal 

global alignment score.

Without loss of generality, for a crossing stem pair (ao, ar) ∈ STCA, if its out­

ermost arc pair ao is not realized in the optimal stem pair alignment computed by 

Approachi, then we can safely remove (ao,ar) from STCA to avoid unnecessary com­

putation in the core algorithm computing global alignment. This will not affect the 

optimal global alignment score. •

By Lemma 4.5.6, we can compute the alignment cost of crossing stem pairs by 

Approachi. After the precomputation of all crossing stem pairs is done, we can filter 

out stem pairs which are not realized. Then we use the filtered crossing stem pairs 

set which is a subset of STcA in the core algorithm computing global alignment. This 

approach is more efficient than Mohl et al.’s approach in which the S items where ao is 

not realized are defined as invalid, and cases referring to these items are skipped in the 

core algorithm. Since large crossing stem pairs set will cause huge space consumption 

and long runtime (as we will see in Section 4.5.3). Using our approach, we can avoid 

unnecessary computation and checking in the core algorithm. Although this will not 

improve the space and time complexities of the algorithm, space and time usage will 

be significantly improved in practice.
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4.5.2.1 Preprocess Crossing Stem Pairs

We now discuss how to preprocess crossing stem pairs. We will show that we only 

need to compute the alignment of crossing local mstem pairs. Alignment costs of 

other crossing stem pairs would be byproducts.

We first consider how to compute the optimal alignment cost S(ao, ar) of a cross­

ing stem pair (ao,ar) ∈ STCA using Approachi. The computation of S(ao,ar) is 

based on temporary items S‘(i,i‘;j,j‘;ar). Let a0 = ((io,Pri(io)),(jo,Pr2(jo))), 

aι - ((ix,Pri(ix)),(jr>Pr2(jr))) € CR. Then S‘(i,i‘;j,j‘;ar) represents the cost of 

aligning Rii,ir] to R2[j,jr] and R1Pri(iz),i to R2[pr2(jr),j]. S(((i,i),(j,j));ar) 

is exactly the same as S‘(i,i‘;j,j‘; ar) if ((i,i'), (j,j')) is an arc pair in CR.

We compute S‘(i,i;j,j‘;ar) (to <i< if, jo < j < jr, Pri(ix) <i< Pri(io), 

Pr2(jr) ≤ j' ≤ Pr2(jo)) using Lemma 4.5.7 and Lemma 4.5.8. The computation 

starts from ar and ends when ao is encountered (see Figure 4.2). The recursion in 

Lemma 4.5.8 is a modified version of the recursion shown in Eq. 3.27 and allows a 

more general score scheme. The condition of case (7) of the recursion in Lemma 4.5.8 

is a little different from the condition of case (7) of the recursion shown in Eq. 3.27. 

Both conditions are used to check whether ((i, i'), (j,j')) is a crossing arc pair which 

is in CR. Since an arc pair which is covered by a crossing stem pair must be in CR, 

we only need to check whether ((i,i‘), (j,j')) is an arc pair. The condition of case (7) 

of the recursion in Lemma 4.5.8 cost less checking time.

Lemma 4.5.7

S‘(ir,Pri(ir);jr,Pr2(jr); ar) = 8((ir, Pri(r)),(r,Pr2(jr))) (4.21)

Proof: The arc pair ar = ((ix,pri(ix)),(jr,Pr2(jr))) is realized, that is, the base pair 

(R1ir], Ri[pri(ix)]) is aligned to the base pair (R2[jr], R2[Pr2(jr)]). Thus we have 

S‘(ir,pn(ir);jr,Pra(jr);ar) = 8((r,pr (ir)),(jr>P-2(jr))).D
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Figure 4.2: A simple illustration of computing the S' item

Lemma 4.5.8 For io ≤i < i1, jo ≤ j ≤ jι, PrAiι) ≤ i' ≤ PrAio), PM) ≤ ï ≤

PrAjo), and A,j,i,,j') ≠ (jι, jι, Pr Ai rhPrAjι))7,

7That is, at least one of the following inequalities i ≠ iι, j ≠ jιy if ≠ prι (iι), jf ∕ Pr2(jι) holds.
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S'(i,il,j,3',a,) =

ifi*i

S‘(i+1,#:3.3;ar)+7(6,0) (1)

if j = Ji

S‘(i,#;j+1,5;a )+Y(0,5) (2)

if i‘ 7 Pri(in)

. if j’+pro(jr)
min < (4.22)

S'(i,isj,j - 1; ai) + Y(0,3) (4)

ifi — if and j7jr

S‘(i+1,#;j+1,/;a )+v(6,j) (5)

if i' = Pri(iz) and j' 7 Pr2(jr)

- l∙,aι)+y(i,j) (6)

ifi = pri(i') and j = pr2(j')

Sfι + lS-l-j + lJ-l∖a1)+∂^ (7)

Proof: Consider Ri[i], R2[j], Ri[i'] and R2[j']. There are exactly the following cases.

(1) Ri[i] is aligned to ‘—‘. Thus Ri+1,ir] is aligned to R2[j,jr] and R1[pri(ix),i'] 

is aligned to R2[pr2(jr), j']. Hence the S'(i + 1,i‘;j,j‘; ar) + (i,0) item. Notice that 

if i = ir, i + 1 will be out of the interval [io..ir] and the item S'(i + 1,i;j,j‘;ar) is 

invalid. Thus for this situation, we need to skip case (1). So we add the condition 

izix to case (1).

(2) R2[j] is aligned to ‘—. Similar to case (1). We need to add the condition 

j 7 jr to case (2).

(3) Ri[i"] is aligned to ‘—. Similar to case (1). We need to add the condition 
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i' 7 pri(ir) to case (3).

(4) R2[j'] is aligned to '—'. Similar to case (1). We need to add the condition 

j‘ + Pra(jr) to case (4).

(5) Ri[i] is aligned to R2[j], but no arc pair involving (Ri[i], R2[j]) is realized. Thus 

Ri[i + 1,ir] is aligned to R2[j + 1,jr] and R1[pri(ix),i is aligned to R2[Pr2(jr),j']. 

Hence the S'(i + 1,i;j + 1,j'; ar) +Y(i,j) item. Similar to the reason in case (1), we 

add the condition izir and j 7 jr to case (5).

(6) Ri[i"] is aligned to R2[j'], but no arc pair involving (Ri[i'], R2[j']) is realized. 

Similar to case (5). We need to add the condition if 7 Pri(ix) and j' 7 pr2(jr) to case 

(6)∙

(7) Ri[i] is aligned to R2[j], and ((i,i),(j,j')) is a crossing arc pair and it is 

realized. Then the optimal alignment is partitioned into two parts: 1. the alignment 

of the base pair (Ri[pri(i)], Ri[i]) to the basé pair (R2[Pr(j)], R2[j]), and 2. the 

remaining part. Hence the S'(i + 1,√ — 1;j + 1, j‘ - 1;ay) + 8((pri(i),i),(pr2(j),j)) 

item.

Therefore we take the minimum of all the cases and get the above recursion. □

By the meaning of the S, S' items, and Lemma 4.5.6 and Lemma 4.5.8, we only 

need to compute the alignment of crossing inner local m_stem pairs. Alignment costs 

of other crossing stem pairs would be byproducts. The details are as follows. During 

the computation of S‘(i,i‘;j,j‘;ar) for a crossing inner local m_stem pair (ao,ar), 

when current position (i, i‘;j,j‘) corresponds to an arc pair ((M'), (j,j')) € CR and 

this arc pair is realized (i.e. case(7) of Eq. 4.22 is the minimum at this position), we 

keep a record of the stem pair (((i, i'), (j,j’)); ar) with current alignment score as its 

alignment cost8. Thus when the computation is done, we will have all realized stem 

pairs which have the same innermost arc pair as (ao, ar) with associated alignment 

costs.

8We also record the stem pair (ar;ar) which is actually an arc pair ax, since we also consider a 
single arc as a stem and (ar;ar) is obviously realized.

For each crossing inner local m_stem pair (ao,ar) where ap = 
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((io,Pri(io)),(jo,Pr2(jo))) and ai = ((ir,Pri(iz)),(r,Pr2(jr))), we can compute 

its alignment cost S(ao,ar) = S'(io,Pri(io); jo,Pr2(jo); ar) using Lemma 4.5.7 and 

Lemma 4.5.8. Algorithm 4.1 shows how to compute S'(io,Pri(io); jo,Pr2(jo); ar).

Algorithm 4.1 Inner-Local-Max-Stem-Pair-Align((ao,ar))
Input: Inner local m_stem pair (ao,ar) where ao = ((io,pri(io)),(jo,Pr2(jo))) and 

ar = ((ix,Pr(r)), (jr,Pr2(jr))).
Output: Alignment score matrix T(io.ir jo- jr; Pr. (ir)..Pri (^o)',Pr2(jι)-Pr2(jo)), list 

L of crossing stem pairs, and array scoreL containing the corresponding alignment 
costs of these stem pairs.

1: compute S‘(ir,pri(ix);jr,Pr2(jr);ar) as in Lemmas 4.5.7, append the stem pair 
(ar; ar) to L and append S‘(ir,pri(r);jr.Pr2(jr);ar) to scoreL

2: for i—ir downto io do
3: for j — jr downto jo do
4: for i‘ — Pri(iι) to p∏(io) do
5; for j' 4 Pr2(jι) to Pra(jo) do
6: if (i,j,i,j') + (ir,jr,Pri(r),Pra(jr)) then
7: compute S‘(i,i‘;j,j‘;ar) as in Lemma 4.5.8, when the condition of

case (7) of the recursion is satisfied and case (7) is the minimum among all seven
cases, append the stem pair (((i,i'), (j,j')); ar) to L and append S‘(i,i‘;j,j‘;ar) 
to scoreL

8: end if
9: end for

10: end for
11: end for
12: end for
13: return (L, scoreL)

Crossing inner local m_stem pairs can be easily generated from STorX- We 

generate crossing inner local m.stem pairs in the following way.

For a crossing mstem pair (ooMAX,aiMAX), where aoMAX = (po1,Po2) and 

aIMAX = (Ph,P12), we first select an arc pair ar = (P1, P2) covered by (oomax,oimax). 

If p1 = p01 or p2 = po2, then the stem pair (ar, aι) = ((p1>P2), (p1,P2)) is inner lo­

cal maximal9 (see cases (1) and (2) of Figure 4.3); else the stem pair (AOMAxQI) = 

((Po1,Po2), (p1,P2)) is inner local maximal (see case (3) of Figure 4.3). We iterate 

9(ar;ar) is actually an arc pair ar. Since we also consider a single arc as a stem, (ar;ar) can be 
considered as a stem pair.
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over all possible alternatives of ar, then can get all crossing inner local m_stem pairs 

covered by the m_stem pair (aOMAX,QIMAx). For each m_stem pair, we do the above 

step. Then we can get the set of crossing inner local m_stem pairs.

Po2

Figure 4.3: A simple illustration of inner local mstem pair

By Algorithm 4.1, we do not need to generate STek from STMMAX directly. After 

the precomputation of all crossing inner local mstem pairs is done, we will get a set 

of filtered crossing stem pairs which are realized. Many crossing stem pairs in STCk 

will not be realized in practice, thus this filtered set is usually much smaller than 

the original STCA. In the remaining part of this thesis, we will simply use STcr to
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denote this filtered crossing stem pairs set which is a subset of ST&A. We use this set 

in the core algorithm computing global alignment to avoid unnecessary computation.

For the set STcr of crossing stem pairs produced by the above method, we com­

pute a sorted list of STcr by 5' ends of two RNAs. For stem pairs (ao,ar) ∈ STcr, 

we sort (ao, ax) by the left end of the outermost arc pair Kao = (i,j) according to 

the partial order <.

Algorithm 4.2 shows the whole method to preprocess the crossing stem pairs.

Algorithm 4.2 Preprocess-Crossing-Stem-Pairs(STMkX)
Input: Sorted (by 5‘ ends) list STcrx of crossing m_stem pairs.
Output: Sorted (by 5' ends) list STcr of crossing stem pairs which has been filtered, 

and array scoreSTCR containing the corresponding alignment costs of these stem 
pairs.

1: for k — 1 to STMAAX do
2: let STMkA*[k] = ((Po,; P0a),(P1,Pra))
3: for i — pb, to pf,1 do
4: if i 7 Pri(i) then
5: for j + P5, toPi2 do
6: if j ± Pra(j) then
7: if i = P5, or j= P5, then
8; ar + ((i. pri()),(,Pr2(j)))
9: (L,scoreL) — Inner-Local-Max-Stem-Pair-Align((aι,aι)) // Algo­

rithm 4.1
10: append L to STcr
11: append scoreL to scoreSTCR
12: else
13: ar + ((, Pri(i)), (,Pra(j)))
14: ao ÷- (Poj, Poa)
15 : (L,s core L) — Inner-Local-Max-Stem- Pair-Align((ao,ar))
16: append L to STcr
17: append scoreL to scoreSTCR
18: end if
19: end if
20: end for
21: end if
22: end for
23: end for
24: sort STcr by 5’ ends of two RNAs; the order of elements of scoreSTCR also 

changes with STcr such that scoreSTCR[i] is the alignment score of STCR[i]
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Similar to Algorithm 4.1 and Algorithm 4.2, we can generate all crossing outer 

local m_stem pairs and compute their alignment. We will get another filtered crossing 

stem pairs set STOR and its sorted list.

We can compute the intersection of STcr produced by crossing inner local m_stem 

pairs and STCR produced by crossing outer local m_stem pairs, and use this inter­

section as the set of crossing stem pairs in the core algorithm. By doing this, we can 

filter out more crossing stem pairs and the core algorithm will be faster.

4.5.3 Formula for Computing Optimal Alignment

We use a bottom up dynamic programming algorithm to find the optimal alignment 

between R1 and R2. We consider the smaller substructures first and eventually con­

sider the whole structures Ri and R2.

We first consider how to compute the optimal alignment between Ri[i1,i2] and 

R2[j1j2,.

With the techniques discussed in the previous section, we can determine the align­

ment score of all crossing stem pairs in preprocessing. We update Lemma 4.4.1 to 

Lemma 4.4.3 to the stem pair version. We use A(i,i; ji,j|M) to represent the op­

timal alignment cost between Ri[i1,i] and R2[ji,j] where M C STCR is a set of its 

proper open stem pairs10. Lemma 4.5.9 to Lemma 4.5.11 correspond to Lemma 4.4.1 

to Lemma 4.4.3, respectively. The recursion in Lemma 4.5.11 is a modified version of 

the recursion shown in Eq. 3.30 and allows a more general score scheme.

10The definition of proper open stem pairs set is in Section 4.1.

Lemma 4.5.9

A(0;0/0) = 0 (4.23)

Proof: Similar to Lemma 4.4.1. □ 
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Lemrna 4.5.10 Fori1 <i<iι,

A(i1,i; 0∣0) = A(i1,i - 1; 0∣0) + Y(i, 0) (4.24)

Forj1 <j< j2,

A(0;31,30) = A(0,31,3 - 1/0) + 7(θ, j) (4.25)

Proof: Similar to Lemma 4.4.2.

Lemma 4.5.11 For iiSi<i2 and j1 <j< j2,
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A(in,i; ji,j|M) =

skip (1) if there exists some stem pair (ao, ar) ∈ M with 

Kar= (i,j') or ao = (i,j') where j1 < j' < j 

A(iι,i- 1;01,3|M) + %(6,0)

skip (2) if there exists some stem pair (ao,ar) € M with 

5a= (i',j) or ∖ao = (i',j) where diSiSi 

A(iι,i',jι,j - 1|M) + 7(0,j)

skip (3) if there exists some stem pair (ao,ar) ∈ M with 

ar= (i,j') or ∖ao = (i,j') where j1 S j, S j, or 

Nar= (i',j) or ∖ ao — (i',j) where in SiSi 

A(il,i - 1;j1,j - 1|M) + v(i,j)

if (1,j1) X (pri(i),pr2(j)) < (i,j) and ((pr,(i),i), (Pr2UAjf) € NC,

and ((pr,(i),i), (pr2(j),j)) is compatible with M
min <

min 
(M1,M2)

AA^prAi) ~ 1;ji,Pr2(j) - 1Mi)

+ A(prAi) +1,i- 1;Pra(j) + 1,j - 1|M2)

+ 8((pr.(i),i), (pr,(j),j))

M1, M2 C STCR, where

Mshare = M1 n M2,

M =(M.U M2) - Mshare

and Mshare is

compatible with M

if there exists some stem pair (ao, Qr) € M with

Kao = (i',j°) AKat= (i,j) or yar = (i',j') Ayao = (i,j) 

A(i1,i' — 1; ji,j' — 1M — {(ao, ar)}) + S(ao, ar)/2

min < 
(i',j')

A(bu,i - 1;ju>j - 1M U {(ao,a)}) 

+ S(ao,ar)/2

(ao,ar) € STCR, where 

yao = (i,j) and 

yar = (i',j'), and 

(ao,ar) is compatible 

with M
(4.26)
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Proof: Consider Ri[i] and R2[j]. There are exactly the following cases.

(1) Ri[i] is aligned to '-'. Thus Ri[ii,i — 1] is aligned to R2[j1,j] and the proper 

open stem pairs set is still M. Hence the A(i,i — 1; jι, j|M) + Y(i,0) item. Notice 

that if there exists some stem pair (ao, ar) ∈ M with Kar= (i,j') where ji ≤ j‘ ≤ j, 

then Ri[i] must be aligned to R2[j" since ar is the innermost arc pair of an open stem 

pair and realized in the alignment; if there exists some stem pair (ao, ar) ∈ M with 

∖ ao — (i,j') where ji ≤ j' ≤ j, then Ri[i] must be aligned to R2[j" for similar 

reason. Thus for these situations, we need to skip case (1).

(2) R2[j'] is aligned to ‘—. Similar to case (1). Notice that if there exists some 

stem pair (ao,ar) ∈ M with Sar = (i',j) or y ao = (i',j) where ii<i< i, we 

need to skip case (2) due to similar reason in case (1).

(3) Ri[i] is aligned to R2[j], but no arc pair involving (Ri[i], R2[j]) is realized. 

Thus Ri[il,i — 1] is aligned to R2[ji,j — 1] and the proper open stem pairs set is still 

M. Hence the A(iy,i — 1;ji,j - 1|M) +Y(i,j) item. Notice that if there exists some 

stem pair (ao, aj) € M with Kar = (i,j') or y ao = (i,j') where ji ≤ j' ≤ j, or 

∖ Qj = (i',j) or ∖ αo = (i',j) where di <i< i, we need to skip case (3) due to 

similar reason in case (1).

(4) Ri[i] is aligned to R2[j], and the arc pair ((pri(i),i), (pr2(j),j)) is realized. 

This requires that ((pri(i),i),(p,2(j),j)) is compatible with M. Then the optimal 

alignment between Ri[ii,i] and R2[ji,j] is partitioned into three parts: 1. the 

optimal alignment between Ri[ii,pri(i) — 1] and R2[j1,Pr2(j) — 1], 2. the optimal 

alignment between Ri[pri(i) + 1,i — 1] and R2[pr2(j) + 1,j — 1], and 3. the align­

ment of (Ri[pri(i)], Ri[i]) t° (R2[pr2(j)], R2[j]). For part 1 and part 2, we denote 

their corresponding proper open stem pairs sets by Mi and M2, respectively. Hence 

the A{ii,prι(i) - 1;j1,P,2(j) - 1∣M1) + A(pri(i) + 1,i - 1;pr2(j) + 1,j - 1∣M2) + 

8((pri(i),i),(pr2(j),j)) item. Mi and M2 may contain open stem pairs which are 

not contained in M. We use Mshare to denote the set of stem pairs that are shared 

between part 1 and part 2, i.e. Mshare =Min M2. M, Mi, M2, Mshare satisfy that 

M = (M1 U M2) - Mshare and Mshare is compatible with M. We need to minimize 



90

over all possible alternatives.

(5) We have two subcases, (a) The innermost arc pair of a proper open stem pair 

(ao,ar) ∈ M has left end in (i,j). (ao,ar) is uniquely determined. Assume the left 

end of the outermost arc pair ao of (ao,ar) is (i',j'). Then the optimal alignment 

between Ri[i1,i] and R2[j1,j] is partitioned into two parts: 1. the optimal alignment 

between Ri[i1,i' — 1] and R2[ji,j' — 1], 2. the left part of the alignment of stem pair 

(ao,ar). For part 1, (ao,ar) is no more open, thus its proper open stem pairs set is 

M — {(ao,ar)}, and the alignment cost is A(i1,i' — 1; ji,j' — 1M — {(ao,ar)}). For 

part 2, the cost is half of the cost of aligning stem pair (ao, ar), that is S(ao,ar)/2.

(b) The outermost arc pair of a stem pair (ao,ar) ∈ M has right end in (i,j). It is 

similar to subcase (a).

(6) The outermost arc pair of a stem pair (ao,ar) ∈ STCR has right end in (i,j), 

(ao,ar) is compatible with M, and (ao,ax) is not open for the alignment between 

Ri[ii,i] and R2[ji,j]. Assume the right end of the innermost arc pair ar of (ao,ar) 

is (i',j'). Then the optimal alignment between Ri[l,i] and R2[ji,j] is partitioned 

into two parts: 1. the optimal alignment between Ril,i' — 1] and R2[ji,j' — 1], 

2. the right part of the alignment of stem pair (ao,ar). For part 1, (ao,ar) is now 

open, thus its proper open stem pairs set is MU {(ao,ar)}, and the alignment cost is 

A(ix,i' — 1; ji,j- 1MU{(ao, ar)}). For part 2, the cost is half of the cost of aligning 

stem pair (ao,ar), that is S(ao,ar)/2. Notice that ar may have multiple instances. 

We need to minimize over all possible alternatives.

Therefore we take the minimum of all the cases and get the above recursion. □ 

From case (4) of Lemma 4.5.11, during the computation of alignment between 

Ri[i1,i2] and R2[j1,j2], when the position of (i,j) corresponds to the right end of 

a non-crossing arc pair ((pri(i),i),(pr2(j),j)) € NC, we need to use the optimal 

subalignment score A(pri(i) + 1,i — 1; pr2(j) + 1,j — 1|M2) of the segment (pri(i) + 

1,i - 1; p,2(j) + 1,j - 1) enclosed by the arc pair ((Pri(i),i),(Pr2(j),j)). Thus we 

need to compute A(p(i)+1,i-1; pr2(j)+1,j-1M2) before we compute alignment 

between Ri[il,i2] and R2[j1,j2]. Obviously, for A(pr.()+1,i-1; pr2(j)+1,j-1M2), 
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there may be multiple instances of M2. We need to know all possible alternatives and 

enumerate them. Thus we need to precompute a list of all possible proper open stem 

pairs sets for the segment (pri(i) + 1,i — 1; pr2(j) +1, j — 1)∙ Assume this list is Mii3t. 

Then we need to compute all possible A(pri(i) + 1,i — 1; pr2(j) + 1,j — 1M2) where 

M2 ∈ MLst- We can save these subalignment scores in an array for later use (for case 

(4) of Lemma 4.5.11).

Here we distinguish two kinds of subalignments of the segment (pr.(i) + 1,i — 

1; pr2(j) + 1,j — 1): one has no open stem pairs, i.e. M2 = 0; and the other one has 

open stem pairs, i.e. M2 7 0. The computation of these two kinds of subalignments is 

a little different. We will discuss methods to compute these two kinds of subalignments 

in Section 4.5.5 and Section 4.5.6 separately.

We first consider how to precompute all possible proper open stem pairs sets for 

all segments enclosed by non-crossing arc pairs in NC.

4.5.4 Computing All Possible Proper Open Stem Pairs Sets

We now consider how to generate all possible proper open stem pairs sets for segments 

enclosed by non-crossing arc pairs in NC.

For a segment (1,i2; 31,j2) enclosed by an arc pair a ∈ NC which is covered by the 

non-crossing m_stem pair ((po. , Pop), (pr,PI2)) € STMX, the list of possible proper 

open stem pairs sets of the segment (1,12;j1,j2) is exactly the same as the list of 

possible proper open stem pairs sets of the segment (pt + 1,pf — 1; pr, + 1,pf, — 1). 

So we only need to compute lists of possible proper open stem pairs sets for segments 

enclosed by the innermost arc pairs of non-crossing m_stem pairs in STMCX. These 

lists can be easily generated from the crossing stem pairs set STCR-

Now we can discuss how to generate a list of all possible proper open stem pairs 

sets for the segment (1,i2;j1>j2) which is enclosed by the innermost arc pair of a 

non-crossing m_stem pair in STMAX. First, we put each stem pair in STcr which 

has one end inside (i1,12;j1,j2) and the other end outside (1,12; j1,32) into a set M3et 
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(see Figure 4.4). Formally, if a stem pair (ao,ar) ∈ STcr satisfies that KatX (1,j1) 

Syar and v ao X (-2,j2), or (41,j1) SKao and Rars (42,j2) < w ar, we 

put it into Mset- Then we generate all subsets of Mset such that in each set, the stem 

pairs are compatible with each other. The list of these subsets is exactly what we 

want. Notice that 0 is also included in the list.

>αo
12 
j2

Figure 4.4: A simple illustration of open stem pairs of a segment (i1,12;j1,j2)

The algorithm for generating lists of all possible proper open stem pairs sets for 

segments enclosed by the innermost arc pairs of non-crossing m_stem pairs in STMAX 

is shown in Algorithm 4.311. We save the results according to non-crossing m_stem 

pairs for convenient reference. We can precompute an array which maps each non­

crossing arc pair a ∈ NC to the non-crossing m_stem pair in STMAX which covers a. 

Then when we compute the alignment of (i1,12;31,32) enclosed by a non-crossing arc 

pair a ∈ NC, we can easily find which non-crossing m_stem pair covers a and obtain 

the corresponding list of all possible proper open stem pairs sets.

11The procedure Append-Stem-Pair(b, C) in Algorithm 4.3 gets a stem pair b and a list C of stem 
pairs as input, and returns a list D of stem pairs containing all elements of C and b. b is at the end 
of D. It is not central to the thesis, thus we do not include the details of this procedure.

4.5.5 Algorithm for Computing Optimal Subalignment with­

out Open Stem pairs

In this section, we discuss how to compute optimal alignment between Ri[i1,i2] and 

R2[j1,j2] without open stem pairs, i.e. A(1,i2; 31>32|0). We will show that we need
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Algorithm 4.3 Gen-OSP-for-NC-Seg(STNCX, STCR)_ _ _ _ _ _ _ _ _ _ _ _ _ _
Input: Sorted (by 3' ends) list STMAX of non-crossing mstem pairs, and sorted (by 

5’ ends) list STCR of crossing stem pairs.
Output: Jagged array OSP[ ][ ] where OSP[k] is list of all possible proper open 

stem pairs lists of the segment enclosed by the innermost arc pair of STMX[k] 
and OSP[k][i] is the i-th proper open stem pairs list in OSP[k .

1: for k — 1 to STMGX do
2: let STMX[k] = ((Po,; Po), (Pr,Pr2)), and 21 =⅛ + l, i2 = PR-1, jι = P5,+1, 

j2 = p-1
3: for i — 1 to STCR do
4: if STCR[i] has one end inside (1,12; j1,32) and the other end outside 

(d1,12;31,32) then
5: append STCR[i] to Mset
6: end if
7: end for
8: append 0 to OSP[k]
9: for i — 1 to OSP[kIl do

10: for j — 1 to Mset do
11: if Mset[j] is compatible with OSP[k][i] then
12: append Append-Stem-Pair(Mset j], OSP[k][i]) to OSP[k]
13: end if
14: end for
15: end for
16: end for
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to maintain multiple matrices to hold alignment scores. These matrices are generated 

as needed and are indexed by the generated order. Each matrix has a corresponding 

proper open stem pairs set. These matrices may have different size. We will discuss 

how to determine the size of these matrices. At a given position (i,f), only some 

matrices exist. Thus we need to know which matrices exist at (i,j). We will address 

these problems in the remaining part of this section.

4.5.5.1 Modifying Conditions of Lemma 4.5.11

Since we require that the optimal subalignment has no open stem pairs, crossing stem 

pairs which have one end inside (1,2; 31,32) and the other end outside (1,12;j1>j2) 

will not be realized. Thus we need to modify Lemma 4.5.11 a little to compute 

A(1,12; jι, j2|0). The changes are as follows.

(a) We change the condition in case (1) from:

• skip (1) if there exists some stem pair (ao, ar) ∈ M with Kar= (i,j') °r y ap 

= (i,j') where j1 < j' < j

to:

• skip (1) if there exists some stem pair (ao,ar) ∈ M with (41,j1) KaoX 

∖ao (i2,j2) and Kar = (i,j') where ji ≤ j, ≤ j.

The reason is as follows. As we have said, crossing stem pairs which have one end 

inside (1,12; j1,j2) and the other end outside (1,42; j1,j2) will not be realized in the 

optimal subalignment of (i1,12;j1,j2). Thus they cannot be in the set of proper open 

stems M. The stem pairs (ao,ar) ∈ M must satisfy that (1,ji) XKao Xy ao 

X (i2,j2). If there exists some stem pair (ao,ar) ∈ M with KQ = (i,j') where 

j1 < j' ≤ j, then Ri[i] must be aligned to R2[j" since ay is the innermost arc pair of 

an open stem pair and realized in the alignment, thus we need to skip case (1).

(b) We change the condition in case (2) from:
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• skip (2) if there exists some stem pair (a0,aι) ∈ M with ∖ α∕ = (i,,j) or ∖ a0 

= (i',j) where il <il <i

to:

• skip (2) if there exists some stem pair (ao,af) ∈ M with (iι,jt) Kao- 

vao X (42,j2) and ∖ a∕ = (i',j) where 01 <iSi.

The reason is similar to the reason for changing the condition in case (1).

(c) We change the condition in case (3) from:

• skip (3) if there exists some stem pair (ao,ar) ∈ M with ∖ aj = (i,j') or∖ ao 

= (i,j') where jl ≤ j' ≤ j, or ∖ a∕ = (i',j) or\ao = (i',j) where ⅛ <i, <i 

to:

• skip (3) if there exists some stem pair (ao,ar) € M with (in,ji) KKao X 

vao X (i2,j2), and \ aj = (i,j°) where ji < j' < j or∖aι = (i',j) where 

ii<i< i.

The reason is similar to the reason for changing the condition in case (1).

(d) We change the condition in case (5) from:

• if there exists some stem pair (ao,ax) € M with Kao = (i',j') AKar= (i,j) 

or∖aι = (i',j') Aao = (i,j)

to:

• if there exists some stem pair (ao, ar) ∈ M with (i1,j1) KKAoXyao X 

(i2,j2) and Kao = (i',j') AKar= (i,j).

The reason is similar to the reason for changing the condition in case (1).
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4.5.5.2 Organizing Values

We now consider how to compute optimal alignment between Ri[i1,i2] and R2[j1,j2] 

without open stem pairs, i.e. A(i1,12; j1,32|0).

We can create a table S of size (i2 -1+1)(2-j1+1). Each cell S(i,j) (in — 1 ≤ 

i<i,ji-1<j< j2) of the table contains A(i1,i; ji,j|M). It is obvious that M 

may have multiple instances. So at each cell S(i,j) of the table, we need to maintain 

multiple values, and each value corresponds to an instance of the item A(i1, i; ji, j M). 

We can use Lemma 4.5.9 to Lemma 4.5.11 to fill the table cell by cell, starting at the 

upper-left cell and scan the table from left to right, row by row as we are filling it. At 

each cell, we fill all possible values one by one. The alignment cost between Ri[i1,i2] 

and R2[1,32] would be in the lower-right cell.

An intuitive way to implement this approach is as follows. For all values at each 

position (i,j) (41 — 1 ≤ i ≤ i2, jι — 1 < j ≤ j2), we store them in an array. Thus 

for the alignment between Ri[i1, i2] and R2[j1,j2], we need (i2 - i+ 1)(j2 - j1 + 1) 

arrays. However, this approach is not easy to implement, since it is hard to index 

multiple values of a position.

We can consider another way of organizing these values. Take a closer look at 

the item A(ii, i; jι, j|M). Actually, we can organize values according to the set of 

proper open stem pairs M. For values of different cells which correspond to the 

same M, we put them into a matrix; then there is only one value at each cell of the 

matrix. Thus for each instance of M, we have a matrix holding those values of which 

the set of proper open stem pairs is M. We need to maintain multiple matrices. 

Actually, during the bottom up approach computation, when a new instance of M 

appears (new instance of M are created by case (5) of Lemma 4.5.11), we create a 

corresponding matrix. For each matrix Tk (k ≥ 1), we save its proper open stem pairs 

set Tk.M, start position (Tk-Istart, Tk-Ystart) and end position (Tk-Tend, Tk-Yend) along 

with it. The entry Tk[i][i] of the matrix Tk whose proper open stem pairs set is M 

corresponds to the item A(ii,i; j1, j∖M).
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Consider the plane whose dimensions correspond to the two RNA sequences. 

At the beginning of the computation, we create a matrix Ti with start position 

(T1. start,Ti-Ystart) = (h - 1,ji - 1), end position (T1.end, Ti-Yend) = (i2,j2), and 

proper open stem pairs set T1.M = 0. We use Lemma 4.5.9 and Lemma 4.5.10 to 

initialize the first row and first column of Ti, i.e. compute boundary conditions. Then 

at each position (i,j) (di SiS i2, jι <j< j2), we compute all matrix entries at 

(i,j) by Lemma 4.5.11. The computation is from left to right and row by row.

Notice that during the computation, new matrices are produced by case (5) of 

Lemma 4.5.11. We now discuss how to generate a new matrix.

4.5.5.3 Generate New Matrices

Matrices are generated as needed and are indexed by the generated order.

We use inder to record the number of matrices that have been created. Assume 

that we are currently computing the entry (i,j) of the matrix Tk. If the modified 

condition of case (5) of Lemma 4.5.11 is satisfied, that is, if (i,j) corresponds to the 

left end of the innermost arc pair of a crossing stem pair (ao,ar) which is inside 

(1,12; j1,32), we check whether (ao, ar) is compatible with current proper open stem 

pairs set Tk.M. If (ao,ar) is compatible with Tk.M, we increase indexT by 1 and cre­

ate a new matrix Tindexr of which the proper open stem pairs set is Tk.MU{(ao,ar)}. 

We need to determine the size of this new matrix Tindexr.

We give definitions of the open area of a crossing stem pair and the open area of 

a crossing stem pairs set M as follows. These definitions are useful to determine the 

size of the matrices.

Consider a plane whose dimensions correspond to the two RNA sequences. We 

define the open area of a crossing stem pair (ao,ar) where ao = (a1,Q02) and 

a1 = (an,ar2)12 as the area enclosed by the rectangle with the upper-left corner 

(aT,af) and the lower-right corner (af — 1,at — 1) (see Figure 4.5). The open area

12ao, and ar, are arcs from the first RNA, and ao, and a^ are arcs from the second RNA.
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of a crossing stem pairs set M is the area shared by open areas of all stem pairs in

open area

L 
O1

L
11

Figure 4.5: An illustration of open area of a crossing stem pair

We now consider how to determine the size of the new matrix Tindexr.

Obviously, the new matrix Tιn^xτ corresponds to the open area of Tk.M U 

{(do,⅛)}. The start position of Tindear is the upper-left corner of the open area 

of Tk.M U {(ao,aι)} which is current position (i,f), and the end position is the 

lower-right corner of the open area of Tk-M U {(αo,⅛)}∙ We need to determine the 

lower-right corner of the open area of Tk-M U {(ao,ar)}. It can be easily obtained in 

the following way.

We know that the open area of Tk.MU{(ao, ax)} is the overlapped area of the open 

area of all stem pairs in Tk-M U {(ao,ar)}. Thus the open area of Tk.M U {(ao,ar)} 

must be the overlapped area of the open area of Tk.M and the open area of (ao, ar). 

The lower-right corner of the open area of Tk.M is the end position (Tk-Tend, Tk Yend) of 

Tk, and the lower-right corner of the open area of (ao, at) is (pri(i) - 1,pr2(j) — 1)13∙ 

Thus if (Tk-Xend1Tk-yeγι,d) - (Pri(i) 1, Pr2(j) 1), (Tk-Xend1Tk-Pend) Would be the

13Assume that ar = (ay,a12), then vat = (a,af) = (Pr1(i),Pr2(j)) since Nar = (i,j). Thus 
the lower-right corner of the open area of (ao, ar) is (pr.(i) — 1,Pr3(j) - 1)∙
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(((21,16), (j1,36)), ((42,15), (2,35)))
(((i3,ig), (j3,js)), ((i4,i7), (j4, j7)))

Two open stem pairs:

(24,j4)

(iz — 1,j7 — 1)

11

i2
is

Ù
is

66
i7

is

open area

J1 12 33 ji j5 36 37 38
(i2,j2)

X
(25 - 1,J5 - 1)

Figure 4.6: An illustration of open area of a crossing stem pairs set

lower-right corner of the open area of Tk.M U {(ao, ar)}, that is the end position of 

Tindeχτ'ι otherwise, (pri(i) — 1, pr2(j) — 1) would be the lower-right corner of the open 

area of Tk.M U {(ao, ar)}, that is the end position of Tindex.

After creating a new matrix Tindex+, we initialize the first row and first col­

umn of Tindezr. The upper-left entry Tindea+[i][j] can be filled by case (5) of 

Lemma 4.5.11. The first row except the upper-left entry of Tk can be filled by case 

(1) of Lemma 4.5.11 and the first column except the upper-left entry can be filled by 

case (2) of Lemma 4.5.11 directly.

Notice that there may be more than one crossing stem pair of which the left end 

of the innermost arc pair is (i,j). We need to iterate over all possible alternatives, 

thus there may be multiple matrices created at (i,j).

We can always generate new matrices in this way.
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4.5.5.4 Maintain liveL and activeL

At each position (i,j) (dlSi< i2, jι <j< j2), we compute all matrix entries at 

(i,j) by Lemma 4.5.11. At (i,j), only some matrices exist. Thus we need to know 

which matrices exist at (i,j). We can maintain several lists of matrices indices to 

avoid unnecessary check. We say that a matrix is active at (i,j) if it exists at (i,j).

We use two lists liveL and activeL. Assume that the computation is currently at 

position (i,j). Then liveL stores the indices of matrices of which the end positions 

the computation has not arrived at. Formally, liveL contains all k(k ≥ 1) which 

satisfy that i < Tk.Send, or i = Tk.Tend and j ≤ Tk-Yend. activeL stores the indices of 

matrices which exist at (i,j) (if i is the first row or j is the first column of a matrix 

Ts, we do not add s to activeL, since the first row and first column of a matrix are 

initialized when the matrix is created). Formally, activeL contains all k(k ≥ 1) which 

satisfy that (Tk.T starts Tk-Ystart) < (i,j) — (Tk-Tend, Tk-Yend).

When the computation moves into the matrices in liveL (except the first column 

and first row of the matrices), these matrices will become “active”. Thus we can use 

liveL to generate activeL. We need a temporary list tmpL to generate activeL from 

liveL.

We can maintain these lists as follows.

When a matrix Tk is created, we append its index k to the liveL list. When 

the computation arrives the end position of Tk, after computing all values of current 

position, we search liveL to find Tk's index k, then delete k from liveL.

Before computing each row, we copy liveL to tmpL, and append 1 to activeL since 

we begin computing each row i from the position (i,jι) where Ti is already “active”. 

When the first column of a matrix Tk is encountered, after computing all values of 

current position, we search tmpL to find Tk’s index, then append it to activeL and 

delete it from tmpL. By doing this, we can skip the first column of matrix Tk which 

is already initialized (except Ti whose first row and first column are already skipped). 

Notice that if Tk.Ystart = Tk.Yend, that is, the matrix Tk is just a single column, we do 
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not append k to actiυeL. When a matrix Tk is created, we do not append its index 

k to activeL either since the first column of matrix Tk is already initialized. When 

the last column of a matrix Tk is encountered, after computing all values of current 

position, we search actiυeL to find Tk's index, then delete it from activeL.

These lists can be implemented in linked list for fast insertion and deletion.

4.5.5.5 Computation of Lemma 4.5.11

At each position (i,j), for each matrix whose index is in activeL, we compute their 

values at (i,j) by Lemma 4.5.11. The first three cases of Lemma 4.5.11 are trivial. 

And we have already discussed case (5) which is used for generating new matrices in 

Section 4.5.5.3. Now we discuss how to compute cases (4) and (6).

Assume that we are currently computing the entry (i,j) of the matrix Tk. We 

first consider how to compute case (4) of Lemma 4.5.11.

If (i,j) is the right end of a non-crossing arc pair in NC inside (1,12;j1,32), we 

need to consider aligning this arc pair using case (4) of Lemma 4.5.11 if this arc pair 

is compatible with current proper open stem pairs set Tk.M. Assume that this arc 

pair is α ∈ NC with ya = (i,j), and ⅛ is compatible with current proper open stem 

pairs set Tk.M.

First, we need to determine Mi and M2 in case (4) of Lemma 4.5.11. We can 

partition current proper open stem pairs set Tk.M into two subsets: M' contains 

each stem pair whose left end is before the position (prι (i),Pr2(j)); M" contains each 

stem pair whose left end is after the position (pr.(i), Pr2(j)). It is easy to see that 

Mi =M'U Mshare and M2 = M" U Mshare. M' and M" are uniquely determined. 

Thus we only need to compute Mshare. Obviously, Mshare may have multiple instances. 

We need to enumerate all possible alternatives of Mshare. Actually, all instances of 

Mahare are in the list of all possible proper open stem pairs sets of the segment 

(pn(i)+1,i-1;pr(j)+1,j-1) which we have precomputed in Algorithm 4.3. Thus 

we can search Mshare in this list. After we get Mshare, we can easily obtain M1 and
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After we obtain Mi and M2, we need to find the score A(ii,Pri(i) — 1; ji,Pr2(j) — 

l∖Mι) and the subalignment score A(pri(i) + 1,i - 1; p,2(j) + 1,j — 1|M2). For 

A(i1,Pri(i) - 1; ji,Pr2(j) — 1M1), we need to find the matrix which contains the score 

A(i1,Pri(i) - 1; j1,Pr2(j) — 1|M1). Therefore, we can search the index of the matrix 

whose proper open stem pairs set is Mi. For A(pni(i)+1,i- 1; p-2(j)+1, j — 1|M2), we 

need to search it in the alignment scores of the segment (pr. (i)+l, i—1; pτ2 (j)+1, j-1) 

which are computed and saved before computing the subalignment between Ri[i1,i2] 

and R2[1,j2]. Therefore, we can search the index of the precomputed subalignment 

score whose corresponding subalignment’s proper open stem pairs set is M2 in the 

saved alignment score array of the segment (pr.(i) +1,i - IJPr2(J) +1,j — 1).

Notice that for non-crossing arc pairs covered by the same non-crossing m_stem 

pair, the instances of Mi and M2 do not change. Thus we can only compute all 

possible corresponding indices for Mi and M2 when the innermost arc pair of a non­

crossing m_stem pair is encountered, and save them for later use. When other arc 

pairs which are not innermost arc pair of a non-crossing m_stem pair is encountered, 

we can get those indices that we need directly.

We now consider how to compute case (6) of Lemma 4.5.11.

If (i,j) is the right end of the outermost arc pair of a crossing stem pair in STcr 

inside (1,12; j1,j2), we need to consider computing case (6) of Lemma 4.5.11 if this 

stem pair is compatible with current proper open stem pairs set Tk.M. Assume that 

this stem pair is (ao, ar) ∈ STcr with yap = (i,j), and it is compatible with current 

proper open stem pairs set Tk.M.

We need to find the score A(in,i' — 1; ji,j'-1M U {(ao,ar)} in case (6). Thus we 

need to find the matrix which contains the score A(in,i' — 1; ji,j' — 1M U{(ao, ar)}. 

Therefore, we can search the index of the matrix whose proper open stem pairs set is 

M U {(ao,ar)}.

In fact, case (6) is used to merge ending score of the matrix with proper open stem 

pairs set M U {(ao, ax)} to its corresponding matrix with proper open stem pairs set 
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M.

Notice that there may be more than one crossing stem pair in STcr of which 

the right end of the outermost arc pair is (i,j). We need to iterate over all possible 

alternatives, and take the minimum of all these alternatives.

4.5.6 Algorithm for Computing Optimal Subalignment with

Open Stem pairs

In this section, we discuss how to compute optimal alignment between R1[1,i2] and 

R2[j1>j2] with open stem pairs, i.e. A(1,42;j1, j2|Mo) (Mo 7 0). The computa­

tion of A(1,12; 31>32Mo) (Mo 7 0) is more complicated than the computation of 

A(1,12; j1,j2|0), but is similar. It can be considered as a constrained alignment prob­

lem where our goal is to find the optimal subalingment using stem pairs in Mo as the 

constraints.

The (left or right) ends of the outermost arc pairs or innermost arc pairs of stem 

pairs in Mo will partition the plane whose dimensions correspond to the two RNA 

sequences into several parts. Figure 4.7 gives a simple illustration. We only need to 

compute the shaded region in this figure.

Now we discuss how to compute A(1,2;ji, j2|Mo) (Mo 7 0).

We first compute two sorted lists of partition points formed by the ends (left or 

right) of the outermost arc pairs or innermost arc pairs of stem pairs in Mo. These 

lists are parPoints1 and parPoints2. Points in these two lists are sorted by the partial 

order "<" which is defined in Section 4.1.

The first list parPoints1 consists of the right ends of the innermost arc pairs of 

the stem pairs in Mo whose right ends are inside (i1,12;j1,j2) and the left ends of the 

outermost arc pairs of the stem pairs in Mo whose left ends are inside (i1,12;j1,j2).

The second list parPoints2 consists of the right ends of the outermost arc pairs of 

the stem pairs in Mo whose right ends are inside (iι,i2',jι,j2) and the left ends of the 

innermost arc pairs of the stem pairs in Mo whose left ends are inside (i1,12;j1,j2).
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hji-1
-1RXX

Figure 4.7: An illustration of computing A(i1,12; j1,j2Mo) (Mo 7 0)

X the region we need to compute 

Y precomputed open stem pair alignment
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We can also add the point (11 — 1,ji — 1) to parPoints2 and (i2,2) to parPointsγ 

to make the algorithm easy to be implemented.

Assume that parPointsi = parPoints2 = numpar. Then for each k ∈ 

{1,∙∙∙ ,numpar}, we need to compute the area enclosed by the rectangle with the 

upper-left corner parPoints2[k] and the lower-right corner parPointsi[k]. The align­

ment scores at parPoints2[k] (1<ks numpar) can be computed by case (5) of 

Lemma 4.5.11. Notice that we do not create new matrices for the stem pairs in Mo 

since they are required to be realized.

The computation of A(1,12; ji, j2|Mo) (Mo 7 0) is similar to the computation of 

A(i1,12;31,32|0). We can extend the algorithm for computing A(i1,i2;j1,j2|0) here. 

In the following text, we will point out the differences.

For the computation of case (4) of Lemma 4.5.11 in computing A(1,i2; jγ, j2Mo), 

we need to check whether the arc pair ((pri(i),i), (pr2(j),j)) is compatible with Mo 

first. When generating Mshare, we also need to check whether Mshare is compat­

ible with Mo. Other computation is the same as the computation of case (4) of 

Lemma 4.5.11 in computing A(h, i2;ji, j2|0).

For computation of cases (5) and (6) of Lemma 4.5.11 in computing 

A(i1,123 31,32Mo), we need to check whether the stem pair (ao,ar) is compatible 

with Mo first. Other computation is the same as the computation of cases (5) and 

(6) of Lemma 4.5.11 in computing A(ii,i2; j1,j2|0).

The method to maintain lists activeL and tmpL also changes a little. Before 

computing each row, for each index kl in liveL, we do the following step: if the first 

column of the matrix Tk is not before the first column that we need to compute (see 

Figure 4.7; the first column of the shaded region), then we append k' to tmpL; if the 

first column of the matrix Tk/ is before the first column that we need to compute and 

the last column of Tk/ is not before the first column that we need to compute, then 

we append k' to activeL. After computing each row, we clear lists activeL and tmpL. 

Other operations to maintain those lists remain the same.

Actually, we can use this algorithm to compute A(i1,i2; jι, j2|0). It is a general- 
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ization of the algorithm for computing A(1,i2; jι, j2|0).

4.5.7 Algorithm for Computing Optimal Global Alignment

The cost of the global alignment is the value of Align(R1, R2) = A(1, Ri; 1, R2|0). 

We can compute A(1, Ri; 1,| R2||0) using a bottom-up approach.

Given two RNA structures Rι and ¾, we can first partition the set of m_stem 

pairs STMAX x STMAX into the set of non-crossing mstem pairs STMAX and the 

set of crossing mstem pairs STMMAX. Then we generate NC from STMAX.

Then we preprocess crossing stem pairs by methods discussed in Section 4.5.2 and 

get the filtered crossing stem pairs set STCR.

Then we use Algorithm 4.3 to generate lists of all possible proper open stem pairs 

sets for segments enclosed by the innermost arc pairs of non-crossing mstem pairs 

in STMAX.

From case (4) of Lemma 4.5.11, we only need to compute alignment of segment 

(1,12; 31,j2) such that (in — 1,12 + 1JJ1 — 1, j2 + 1) is a non-crossing arc pair in NC.

For each arc pair ((i1,12), (j1,j2)) € NC, we can obtain a list of all possible proper 

open stem pairs sets MList of its corresponding segment (in +l,i2- 1;ji + 1, j2 — 1) 

from the output of Algorithm 4.3. Then we compute all possible A(i1 +1,02-1;ji + 

1,j2 — 1/Mo) (Mo ∈ Miist).

Finally, we compute A(1, Ri; 1, R2l|0).

4.5.8 Trace Back to Produce Optimal Alignment

In biological applications, in addition to the optimal alignment score between two 

RNA structures, it is often required to produce an alignment corresponding to the 

optimal score. The method employed to produce an alignment corresponding to the 

optimal score is called traceback. We have introduced the traceback method for se­

quence alignment in Chapter 2. We start from the cell position holding the optimal 

score in the alignment score matrices which is also the end position in the alignment, 
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then tracing back to the start position of the alignment to produce the whole align­

ment. Generally, there are two approaches for traceback: (1) saving pointers while 

computing alignment scores; (2) recomputation. In this thesis, we use the second 

approach to save space. Starting from the matrix cell holding the optimal score, 

we repeat the recurrence formulae and check to see which direction results in the 

given score. When there are more than one directions could result the given score, 

we select one direction to trace back. In this thesis, we set a preference order, from 

the highest to the lowest, is: insertion (case (1) of Lemma 4.5.11) > deletion (case 

(2) of Lemma 4.5.11) > base substitution (case (3) of Lemma 4.5.11) > base pair 

substitution (cases (4), (5) and (6) of Lemma 4.5.11).

We can do the traceback by a top-down approach. Starting from the position 

(R1, R2), we first do a top-layer traceback without going down further into the sub­

layers. We use four stacks to keep the information that we need to produce optimal 

global alignment. Assume that the optimal alignment is Align, stacki contains 

sequence indices in the resulting alignment and a sign number (1, 2, 3 or 4) which 

indicates the next traceback operation, stack2 contains proper open stem pairs lists of 

subalignments which need to be unraveled next, stacks contains the indices of crossing 

stem pairs in STcr whose left parts need to be unraveled next, stacks contains the 

indices of crossing stem pairs in STcr whose right parts need to be unraveled next.

When we encounter a situation where Ri[i] is deleted, we push (i, —1,1) to stacks. 

When we encounter a situation where R2[j] is inserted, we push (—1, j, 1) to stack. 

When we encounter a situation where Ri [i] is aligned to R2[j] but no arc pair involving 

(Ri[i], R2[j]) is realized, we push (i,j, 1) to stack↑. The first two numbers in each entry 

of stack denote sequence indices in an alignment. The third number “I” indicates 

that these indices can be converted to corresponding characters and appended to the 

alignment.

When we encounter a situation where (i,f) is the right end of a non-crossing arc 

pair and this arc pair is realized, we push (i,j, 2) to stackγ, and push the proper 

open stem pairs list of the subalignment enclosed by this arc pair to stack2. The 
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third number “2” in the entry of stack indicates that there is a subalignment 

Align[prι(i) + 1,i — 1; p,2(j) + 1,j — 1] which need to be unraveled next, stack2 

contains its corresponding proper open stem pairs list.

When we encounter a situation where (i,j) is the right end of the outermost arc 

pair of a crossing stem pair and this stem pair is realized, we push (i,j, 4) to stacks, 

and push the index of this stem pair in the sorted (by 5' ends) list STcr of crossing 

stem pairs to stacks. The third number “4” in the entry of stacks indicates that there 

is a stem pair alignment whose right part need to be unraveled next.

When we encounter a situation where (i,f) is the left end of the innermost arc 

pair of a crossing stem pair and this stem pair is realized, we push (i,j, 3) to stackγ, 

and push the index of this stem pair in the sorted (by 5‘ ends) list STcr of crossing 

stem pairs to stack3. The third number “3” in the entry of stack indicates that there 

is a stem pair alignment whose left part need to be unraveled next.

After this top-layer traceback, we pop the stack entries from stacks. Assume the 

first two numbers are i and j.

If the sign number, that is the third number of the entry is 1, we convert the first 

two numbers i and j to corresponding characters and appended to the alignment.

If the sign number of the entry is 2, then there is a pair of substructures Ri [prι (i) + 

1,i — 1] and R2[pr2(j) + 1,j — 1] that need to be unraveled. We push (i,j,1) to 

stack↑. Then we pop stack entry from stack2 to get the proper open stem pairs list 

for this segment. Then we recompute alignment between Ri[pri(i) + 1,i — 1] and 

R2[p,2(j) + 1,j — 1], and perform a next layer traceback for Ri[pri(i) + 1,i — 1] and 

R2[pr2(j)+1, j- 1] as what we do in the top-layer traceback. When traceback returns, 

we have unraveled the alignment in the next layer. Then the next item popped from 

stacks would be the one we pushed back to stack immediately before we performed 

the previous traceback. Since we changed its sign number to 1, it can be output 

directly now.

If the sign number of the entry is 3, then there is a crossing stem pair alignment 

whose left part need to be unraveled. We pop stack entry from stacks to get the 
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index of this stem pair. Then we recompute alignment of this stem pair, and perform 

a next layer traceback for this stem pair. When traceback returns, we will get the 

alignment of this stem pair. We append the left part of this stem pair alignment to 

the global alignment, and save the right part of this stem pair alignment for later use.

If the sign number of the entry is 4, then there is a crossing stem pair alignment 

whose right part need to be unraveled. We pop stack entry from stack½ to get the 

index of this stem pair. Then we can append the right part of this stem pair alignment 

which we have saved previously to the global alignment.

This procedure repeats until stacks is empty. Then we have the resulting align­

ment.

4.5.9 Complexity

Let n be max(Ri, R2), and let S and t be the maximal number of arcs and bases in 

a stem, respectively. Recall that we use STMAX and STMAX to denote the m_stems 

sets of R1 and R2, respectively; we use P and P2 to denote the arcs sets of R1 and 

R2, respectively.

The first step of the algorithm is the partition of mstem pairs using methods 

discussed in Section 4.5.1. For each partition method, we need at most O(n2) time, 

and at most O(n4) time to optimize the preliminary partition result. The space we 

need is at most O(n2). We also generate NC from STMAX in this step. This takes 

at most O(n2) time and space. Therefore, in the first step, we need at most O(n4) 

time and O(n2) space.

Next we preprocess crossing stem pairs using Algorithm 4.2. For each crossing 

inner local mstem pair (ao, at), there are O(n2) possible instances of at, and a0 is 

uniquely determined by ar. Thus we have O(n2) crossing inner local mstem pairs 

to compute. For each crossing inner local mstem pair, we compute its alignment 

by Algorithm 4.1. Computation of each crossing inner local mstem pair will need 

O(t4) time and space. Recall we also record realized stem pairs. Obviously, in the 
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computation of each crossing inner local mstem pair, there are at most s stem pairs 

which are realized at the same time. Notice that we compute each crossing inner 

local mstem pair one by one such that we only need at most O(t4 + n2s) space. 

Thus we need at most O(n2t4) time and O(t4 + n2s) space in this step. We can 

also compute alignment of all crossing outer local mstem pairs. This also takes at 

most O(n2t4) time and O(t4 + n2s) space. These two approaches will produce two 

sorted filtered crossing stem pairs lists, each of which has at most O(n2s) stem pairs. 

We compute the intersection of these two lists. This takes at most O(n2s • log(n2s)) 

time. Therefore, in the step of preprocessing crossing stem pairs, we need at most 

O(n2t4 + n2s • log(n2s)) time and O(t4 + n2s) space.

Then we use Algorithm 4.3 to generate lists of all possible proper open stem 

pairs sets for segments enclosed by the innermost arc pairs of non-crossing mstem 

pairs in STVCX. We adopt the notion of the crossing number of a position (x, y) 

proposed by Mohl et al. which is introduced on page 55 in Section 3.4.4 to measure 

the number of proper open stem pairs. The maximal crossing number is denoted 

as k. Consider a non-crossing mstem pair ((po,,Po2),(P1,P12)). Let in = pl + 1, 

i2 = pf - 1, Jι = p+1 and j2 = pf - 1. For each crossing mstem pair b which is 

open for the segment (1,12; 31,j2), there are O(ss+ (S) • (5)) = O(s4) crossing stem 

pairs that are covered by b. These crossing stem pairs can be realized and serve as 

proper open stem pairs for the alignment of segment (i1,42; j1,j2). Therefore, there 

are at most O((s4)C(1,j1) • (s4)C(2,2)) = O(s8k) possible proper open stem pairs for 

the segment (i1,12; j1>j2). Therefore, for each non-crossing mstem pair c, we will use 

O(s8k) time and space to compute and save all possible proper open stem pairs lists 

of segments enclosed by non-crossing arc pairs that are covered by c. Totally, we will 

use O(STMAXsSk) = O(n2s8k) time and space in this step.

For each non-crossing arc pair ((i1,12),(1,j2)) ∈ NC, we compute all possible 

A(ii + 1,62 - 1;ji + 1,j2 - 1|Mo) (Mo ∈ Must) where Miist is the list of all possible 

proper open stem pairs sets of the segment (in + 1,12 — 1;J1 + 1,j2 — 1). Miist is 

precomputed in last step and it has at most O(s8k) elements. Thus for each segment 
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enclosed by a non-crossing arc pair, we need to compute O(s8k) subalignments. Since 

there are O(n2) non-crossing arc pairs, we need to compute O(n2s8k) subalignments.

Now we consider the time and space complexities to compute a subalignment 

A(i1, 12; jι, j2|Mo) where Mo is the proper open stem pairs set of the segment 

(i1,12331,32) and is fixed here. We need to compute all A(1,i; j1,jM) (n-1 ≤ 

i ≤ 12,j1 -1<j< j2) where M is the proper open stem pairs set at position 

(i,j). We need to measure the number of instances of M. Since Mo is fixed, we only 

need to consider stem pairs that are inside (i1,12; j1,j2) and cross the position (i,j). 

Thus there are at most O((s4)C(,5)) = O(s4k) instances of M. That means there are 

at most O(s4k) values that we need to compute at each position. At each position 

(i,j), for each copy of A(in,i; ji, j|M), we compute its value by Lemma 4.5.11. The 

first three cases needs constant time. For case (4), we need to compute all possible 

instances of Mi and M2. Since Mi and M2 are uniquely determined by Mshare, we 

only need to consider the number of instances of Mshare. Obviously, there are at most 

O((s4)C(3,3)) = O(s4k) instances of Mshare- Thus there are at most O(s4k) instances 

of Mi and M2. Hence in case (4), we need O(s4k) time. When the left end of the 

innermost arc pair of a crossing stem pair is encountered, new instances of M are 

created. We need to iterate over all possible O(s2) alternatives of the outermost arc 

pair of this stem pair. For each new instance M, we need constant time according 

to case (5) of Lemma 4.5.11. Hence we need at most O(s2) time in this situation. 

Similarly, when the right end of the outermost arc pair of a crossing stem pair is 

encountered, we need to compute case (6). This also requires at most O(s2) time. 

Therefore, we need at most O(n2 ∙ str ∙ s4k) = O(n2sk) time for O(n2 • s4k) values 

of O(n2) positions. We need O(n2s4k) space to hold these values. Notice that we 

save all possible proper open stem pairs lists of segments enclosed by non-crossing 

arc pairs computed as by Algorithm 4.3 and we will use the saved result in this step. 

This takes O(n2s8k) space. Thus we need at most O(n2s8k) time and O(n2s8k) space 

in total.

Finally, we compute A(1, |R1; 1, R2|0). This also requires at most O(n2s8k) time 
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and O(n2s8k) space.

So the time complexity of the whole algorithm for computing optimal alignment 

score between two RNA tertiary structures is O(n2s8k • n2s8k) = O(n4s16k), and the 

space complexity is O(n2s8k).

Now we consider the traceback part.

We trace back from position (R1,R2) to (0,0). At each position, we repeat the 

recurrence formulae and check to see which direction results in the given score. There 

are only three directions to go: upper, left, or upper-left. Thus we only need to go 

through at most O(2n) = O(n) positions. At each position that is not inside the 

region enclosed by left ends or right ends of a realized crossing stem pair, we need 

at most O(s4h • s4k) = O(s8k) time (there are at most O(s4k) values at each position, 

and each value needs at most O(s4k) time). At each position that is inside the region 

enclosed by left ends or right ends of a realized crossing stem pair, we only need 

constant time. Thus we need at most O(nsk) time for traceback. Since we save all 

possible proper open stem pairs lists of segments enclosed by non-crossing arc pairs 

computed as by Algorithm 4.3 and this takes O(n2s8k) space, we still need O(TI2S8k) 

space.

Therefore, the time complexity of the whole algorithm for computing optimal 

alignment between two RNA tertiary structures is O(n4s16k), and the space complex­

ity is O(n2s8k).

Even though the worst case time and space complexities of our algorithm are 

the same as Mohl et al.'s, we will show that because of our improvement, our algo­

rithm could use much less resources (time and space) in practice to compute optimal 

alignment between two RNA tertiary structures in next chapter.

4.5.10 Possible Further Optimization

For the segment (i1,12;31,j2) that satisfies ((i1 — 1, ⅛ + 1), (ji - 1, j2 + 1)) € NC, we 

compute all possible instances of A(i1,i2; jι, j2Mo).



113

For each instance of A(1,12; jι, j2Mo) (Mo 7 0), we denote the partition point 

we encounter first as (io,jo). We found that there were redundant computations for 

positions from (m— 1, ji-1) to (io, jo) compared to the computation of A(1,12; j1,j2|0) 

(see Figure 4.8).

We can do as follows to avoid redundant computation.

During the computation of A(i1,12; ji, j2|0), when we encounter the first partition 

point of each instance of A(i1,12; j1, j2|Mo), we record all scores of current position. 

When we compute A(1,2; j1,j2Mo), we start computation from its first partition 

point, and get initial scores from the corresponding scores we record previously.

Unfortunately, this optimization technique is not easy to implement. Our current 

implementation does not include it.

S(io,jo)

j2

X the region we need to compute 

Th redundant compuation

Figure 4.8: An illustration of redundant computation
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4.6 Constrained Alignment

For simple RNA tertiary structures, we can compute the optimal alignment efficiently 

by algorithms discussed in Section 4.5. For moderate and complicated RNA tertiary 

structures, we need to consider other approaches to compute the alignment since 

using algorithms in Section 4.5 will cause high usage of space.

Like Wang and Zhang’s RNA alignment algorithm that we have discussed in 

Section 3.3, we can adopt the constrained alignment approach. The method is as 

follows.

We select two crossing m.stems q± and q2 which are very likely to be matched 

from two RNAs, respectively. These two stems form a stem pair. We impose the 

constraint, qi can only match to q2 and q2 can only match to qι, on the alignment. 

We call the stem pair formed by q1 and q2 constrained stem pair.

In the first step, we align the constrained stem pair. Then we compute the align­

ment of the two RNAs.

We can align the constrained stem pair by Lemma 4.5.7 and Lemma 4.5.8 with 

a little modification. For the constrained stem pair, we do not require its innermost 

arc pair and outermost arc pair to be realized. Assume the constrained stem pair 

is (ao,ai) with ao = ((to, Pri(io)), (jo,Pra(jo))) and a1 = ((ix,Pri(ir)), (jr,Pra(jr))). 

Then we start computation from the position (ix + 1,pri(ir) — 1; jr + 1, p-2(jr) — 1). 

Since we only have one constrained stem pair, we do not need ar in S' item. Thus in 

Lemma 4.5.7, we need to change Eq. 4.21 to the following equation.

S'(r+1, P(ir) - 15r+1, PGr) - 1) = 0 (4.27)

In Lemma 4.5.8, we only need to change the condition to “For io Si<in+1, 

jo ≤j≤ jr+1, Pri(ir) -1<i< Pri(io), Pra(jr) -I≤j'≤ Pra(jo), and (i,j,1,j) = 

[i1 + 1,jr + 1,p(ir) — 1,pr2(jr) — 1)”, and discard aj in the S' items in Eq. 4.22. 

Using the modified equations, we can align the constrained stem pair easily within 
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O(t4) time and space where t is the maximal number of bases in a stem.

Then we compute the alignment of the two RNAs using algorithms for computing 

optimal alignment discussed in the previous sections. Notice that after partitioning 

the set STMAX × STMAX of m_stem pairs, we need to filter out stem pairs in STMAX × 

STZAX, STMAAX and STMAX which are not compatible with the constrained stem 

pair. Then we use the filtered stem pairs sets in later steps of the algorithm.

The most part of the algorithm for computing constrained alignment is the same 

as the algorithm for computing optimal alignment. There is a difference that we need 

to discuss here. When we compute a subalignment A(1,12; ji,j2Mo) where Mo is 

the proper open stem pairs set of the segment (1,12; j1,j2) and is fixed. We need to 

add the ends which are inside (1,12; j1,j2) of the constrained stem pair (ao, ar) into 

the partition points lists of the segment (1,12; 31,32). Thus we need to determine the 

relation between the constrained stem pair (ao, ar) and a segment (i1,2; 31,32).

We can divide the relation between the constrained stem pair (ao, ar) and a seg­

ment (i1,2; 31,j2) into four types as follows.

(1) (ao,ar) is before (1,12; j1,j2), or (ao,ar) is after (in,12; j1>32), or the left part 

of (ao,ar) is before (1,i2;31,32) and the right part of (ao,ar) is after (1,12;j1,j2). 

Then the computation of A(ii,12; jι, j2Mo) is exactly the same as what we do in 

computing optimal alignment.

(2) Both the left and right parts of (ao,ar) are inside (1,12; j1,j2). Then we 

need to add the left end of ao and the right end of aι to the partition points list 

parPointSi, and add the left end of ar and the right end of ao to the partition points 

list parPoints2. Then we compute A(1,i2; 31,j2Mo). This can be easily done by 

modifying the algorithm for computing optimal subalignment with open stem pairs 

a little.

(3) The left part of (ao, ar) is inside (i1,12;31,j2) and the right part of (ao, ar) is 

after (in,i2; ji>j2). Then we need to add the left end of ao to the partition points list 

parPointSi, and add the left end of ar to the partition points list parPoints2. Then 

we compute A(i1, i2; ji, j2|Mo).
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(4) The left part of (ao, ar) is before (in,12; j1,j2) and the right part of (ao, at) is 

inside (1,12;31,j2). Then we need to add the right end of ar to the partition points 

list parPointsι, and add the right end of ao to the partition points list parPoints2. 

Then we compute A(ii,i2; ji, j2|Mo).

For the traceback part, we can also modify the traceback algorithm for producing 

optimal alignment a little.

Although the result produced by constrained alignment is not guaranteed to be 

an optimal solution, in practice it would be reasonable.
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Chapter 5

Implementation and Experiment
Results

5.1 Implementation

A software package has been written to compute global alignment between two RNA 

structures. This package implements algorithms discussed in Chapter 4 and is written 

in ANSI C.

Two alignment options are provided: optimal alignment and constrained align­

ment discussed in Section 4.6. User can select one of them. For the constrained 

alignment option, the program will ask user to select two crossing maximal stems 

which seem very likely to be matched from two input RNAs, respectively, and input 

the start (first 5') base’s positions of the two selected stems.

Three input files are needed.

The first input file specifies score scheme for single bases. Table 5.1 show an 

example of this file. The first column is the alphabet used to align unpaired base 

in R1, while the first row is the alphabet used to align bases in R2. We use D to 

represent space symbol '—' in the input file. We treat the first column and the first 

row as indices of the table formed by numeric values in the file. The value of entry
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(a, b) of the table (α, b ∈ (A, C, G, U, D}) is the cost of substituting a with b if a = D 

and b 7 D; or the cost of deleting a if a 7 D and b = D; or the cost of inserting b 

if a = D and b ≠ D. (Notice that the entry (D, D) has no meaning since we cannot 

align — to ‘-.)

ACGUD 
A 01111 

• ClOlll
G 1 10 1 1 
U11101 
D11110

Table 5.1: An example of score scheme for single bases

The second input file specifies score scheme for base pairs. Table 5.2 show an ex­

ample of this file. The first column is the alphabet used to align base pairs in Ri, while 

the first row is the alphabet used to align base pairs in ⅜∙ We use DD to represent 

(‘-, —z) in the input file. We treat the first column and the first row as indices of the 

table formed by numeric values in the file. The value of entry (a, b) of the table (a, b ∈ 

{AA, AC, AG, AU, CA, CC, CG, CU, GA, GC, GG, GU, U A, UC, UG, UU, DD, BB}) 

is the cost of substituting a with b if a 7 DD, a 7 BB, b 7 DD and b 7 BB; or 

the cost of deleting a if a 7 DD, a 7 BB and b = DD; or the cost of inserting b if 

a = DD, b 7 DD and b 7 BB; or the cost of breaking the bond of a if a 7 DD, 

a 7 BB and b = BB; or the cost of breaking the bond of b if a = BB, b 7 DD and 

b * BB. (Notice that the entries (DD, DD), (DD, BB), (BB, DD) and (BB, BB) 

have no meaning.)

The third input file is the RNA data file which contains the primary, secondary 

and tertiary structures information of two RNAs. We use the modified region table 

format where the energy column of secondary structure is removed.

Each RNA in the file contains three sections: first, the name of the RNA and 

the primary structure of the RNA, followed by the secondary structure of the RNA, 

followed by the tertiary structure of the RNA. Each section is separated by the > 

character alone on a line. If there is no tertiary structure, then after the '>' that ends



AA AC AG AU CA CC CG CU 
AA 0 1 1 1 1 2 2 2
AC 10112122
AG 1 1 0 1 2 2 1 2
AC 1 1 1 0 2 2 2 1
CA 1222011 1 

2 12 2 10 11 
22121101 
2 2 2 1 1 1 1 0 

GA 12221222
GC 2 1 2 2 2 1 2 2
GG 22122212
GU 2 2 2 1 2 2 2 1
UA 1 2 2 2 1 2 2 2
UC 2 1 2 2 2 1 2 2
UG 2 2 1 2 2 2 1 2
UU. 2 2 2 1 2 2 2 1
DD 22222222
BB 1 1 1 1 1 1 1 1

GA GC GG GU UA UC UG UU DD Bi 
122212222 1
212221222 1
221222122 1
22212221 2 1
122212222 1
212221222 1
221222122 1
22212221 2 1
011112222 1
1 0 1 1 2 1 2 2 2 1
110122122 1
1 1 1 0 2 2 2 1 2 1
122201112 1
2 12 2 10 112 1
2 2 12 110 12 1
2 2 2 1 1 1 1 0 2 1
2222222200 
1111111100

Table 5.2: An example of score scheme for base pairs
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secondary structure section, there should be another '>' in the next line.

The secondary and tertiary structures of the RNA are specified as follows:

(<stern number>) <start base> <end base> <stern size>

Figure 5.1 shows an example of an RNA input file which consists of the RNA 

Alcaligenes eutrophus and the RNA Streptomyces bikiniensis. We will use this data 

later.

Notice that we use traditional stems (i.e. stacked base pairs of maximal length) in 

the RNA input file as input, while we use maximal extended stems as input in algo­

rithms discussed in Chapter 4. Our package has a procedure that groups traditional 

stems into maximal extended stems.

5.2 Experiment Results

In this section, we give experiment results of RNA tertiary structure alignment by the 

algorithms presented in Chapter 4. We performed extensive experiments of our align­

ment algorithm on real RNA structures. Experimental tests show that our algorithm 

can be used to compute alignment between RNA tertiary structures in practical ap­

plications. We also compare our results to Mohl et al.'s results and Wang and Zhang’s 

results.

5.2.1 Results of Filtering Crossing Stem Pairs

We first give the results of filtering crossing stem pairs in the preprocessing crossing 

stem pairs step discussed in Section 4.5.2.

The RNA structures which we use are several tmRNAs that were used in Mohl 

et al.’s experiments [13]. These RNAs are selected from the tmRNA database [22]. 

They are the longest sequence (Mycobacteriophage Bxzl, MB), the shortest sequence 

( Cyanidium caldarium, CC) and the sequence that contains the largest crossing stems



121

Alcaligenes-eutrophus-pb-b
1 AAAGCAGGCC AGGCAACCGC UGCCUGCACC GCAAGGUGCA GGGGGAGGAA

51 AGUCCGGACU CCACAGGGCA GGGUGUUGGC UAACAGCCAU CCACGGCAAC
101 GUGCGGAAUA GGGCCACAGA GACGAGUCUU GCCGCCGGGU UCGCCCGGCG
151 GGAAGGGUGA AACGCGGUAA CCUCCACCUG GAGCAAUCCC AAAUAGGCAG
201 GCGAUGAAGC GGCCCGCUGA GUCUGCGGGU AGGGAGCUGG AGCCGGCUGG
251 UAACAGCCGG CCUAGAGGAA UGGUUGUCAC GCACCGUUUG CCGCAAGGCG
301 GGCGGGGCGC ACAGAAUCCG GCUUAUCGGC CUGCUUUGCU U

>
( 1) 1 337 10
( 2) 11 326 1
( 3) 12 278 7
( 4) 20 45 2
( 5) 23 42 8
( 6) 59 183 4
C 7) 71 179 5
( 8) 77 89 4
( 9) 91 105 1
( 10) 92 103 4

( 11) 106 174 2
( 12) 111 172 2
( 13) 127 156 4
( 14) 132 151 8
( 15) 187 235 4
( 16) 197 226 6
( 17) 206 220 5
( 18) 242 261 8
( 19) 281 308 2
( 20) 284 305 9

>
C 1) 50 324 3
( 2) 54 321 5
( 3) 66 215 4

>

Streptomyces-bikiniensis-gpb-h
1 CGAGCCGGGC GGGCGGCCGC GUGGGGGUCU UCGGACCUCC CCGAGGAACG

51 UCCGGGCUCC ACAGAGCAGG GUGGUGGCUA ACGGCCACCC GGGGUGACCC
101 GCGGGACAGU GCCACAGAAA ACAGACCGCC GGGGACCUCG GUCCUCGGUA
151 AGGGUGAAAC GGUGGUGUAA GAGACCACCA GCGCCUGAGG CGACUCAGGC
201 GGCUAGGUAA ACCCCACUCG GAGCAAGGUC AAGAGGGGAC ACCCCGGUGU
251 CCCUGCGCGG AUGUUCGAGG GCUGCUCGCC CGAGUCCGCG GGUAGACCGC
301 ACGAGGCCGG CGGCAACGCC GGCCCUAGAU GGAUGGCCGU CGCCCCGACG
351 ACCGCGAGGU CCCGGGGACA GAACCCGGCG VACAGCCCGA CUCGUCUG

>
( 1) 1 394 10
( 2) 11 383 1
( 3) 12 341 7
( 4) 20 43 2
( 5) 23 40 7
( 6) 57 223 4
( 7) 69 219 5
( 8) 74 88 5
( 9) 89 103 1
( 10) 90 101 4
( 11) 104 214 2
( 12) 109 212 2
( 13) 126 ' 153 2
( 14) 128 149 9
( 15) 161 179 6
( 16) 182 201 8
( 17) 227 298 4
( 18) 235 254 8
( 19) 257 289 6
( 20) 267 283 6
( 21) 305 324 8
( 22) 343 367 5
( 23) 350 361 4

>
( 1) 48 381 3
( 2) 52 378 5
( 3)

>
64 277 4

Figure 5.1: RNA input file of Alcaligenes eutrophus and Streptomyces bikiniensis
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( Ureaplasma parvum, UP). The region table representations for these RNA structures 

are shown in Figure 5.2 to 5.4, respectively.

Mycobacteriophage Bxz1 pre-tmRNA
1 GGGCCUGACA AGGUUUCGAC UGGUCGAUGG ACAACUGAAC AGCGGGCGAG

51 UGtJUGGCCGC ACUUCUACUC UGAGUGAACG CGGCAACUGA UAAACGCAAC
101 CGACACGGAU GCAACGGUGA CCGACGCCGA GAUCGAGGCC UUCUUUGCUG
151 AAGAGGCUGC CGCUCUCGUC UGAAGGAACC AGCCUGGCUC AGCGUGCUGC
201 UGUGCAGCGG CCAGGCUUCA UCUCUAACAG CAGCGAACGG ACAUGAGGGA
251 GCGCAAACCC UCGUCCCAAA CAUCAUGAAU GCGUCGCACG GGCUCCAGCG
301 UCAGGGGCCA GAGGUGGGAA ACGGUGUGAA ACUCCUGUCC UGGGGAUCAC
351 CGACCGAUAC GCCAAACCAG GACUACGCCC GUAGAACGCA GUGAGAAAGA 
401 CACCAGGACA GGGGUUCGAG UCCCCUCAGG UCCACgu

( 1) 1 433 7
( 2) 20 406 5
( 3) 34 392 4
( 4) 43 381 5
( 5) 56 84 5
( 6) 63 78 3
( 7) 146 194 6
( 8) 154 185 6
( 9) 322 356 4
( 10) 326 350 4
( 11) 333 346 3
( 12) 410 426 5

>
( 1) 48 70 4
( 2) 337 373 7

>

Figure 5.2: Region table representation for MB

Cyanidium caldarium plastid pre-tmRNA
1 GGGGCUGAAA GGAUAUUCGA CAUAUUAAUU

51 CGAGAAUGCU VAUCUCGUAA AAAAGCAGAC
101 UAUUAUUGAA AUUAGCAAUA UUAGAAAACC
151 AUUCAGUUAU UUCUAAAUUA UUUAUGUUAU
201 CUAUCUAGUG UACAAUUUCU AUGGACGUGG
251 ACaa

UCGUGCGCUA UGAUGCAAGC 
AAAGAAAUAA AUGCAAACAA 
AGCUCUAGUA GUCUAGCCUG 
GUUAUUUAAG CUUGUAGUAA 

GUUCAAUUCC CACCAGCUCC

( 1) 1 250 7
( 2) 21 223 4
( 3) 27 217 4
( 4) 33 213 8
( 5) 42 205 4
( 6) 46 194 5
( 7) 51 67 5
( 8) 227 243 5

>
( 1) 57 77 5

Figure 5.3: Region table representation for CC

The results are shown in Table 5.3. The second column shows the original number 

of crossing stem pairs in STck The third column shows the number of crossing stem 

pairs in STcr after the first filter (preprocessing crossing inner local m_stem pairs). 

The fourth column shows the number of crossing stem pairs in STcr after the second 

filter (preprocessing crossing outer local mstem pairs). The last column shows the 

total size reduction factor.



123

Ureaplasma parvum tmRNA
1 GGGGAUGUCA CGGUUUCGAC GUGACACAUU AAUUUUUAAU UGCAGUGGGG

51 UUAGCCCCUU AUCGCUUUCG AGGCAUUUUA AAUGCAGAAA AUAAAAAAUC
101 UUCUGAAGUA GAAUUAAACC CAGCGUVUAU GGCUUCAGCU ACUAAUGCAA
151 ACUACGCUUU UGCGUACUAA UVAGUUAUUA GUAGAAACGU UCAUUAACAU
201 AAUUACUAUU GGUUGGUUVU UGGGCUUAUU VUACAAUAGU UVUAAAUUUA
251 AAAUUCUUAU UUGUUGUUUA AAVUUAAAUA GAUVUAACAA AUAGUUAGUU
301 AAUUUUARAU UUGUUVUAUU AGUUAUUAAC UACACUAUUU VUAAUAAAAC
351 UAAACUGUAG AUAUVAUUAA UVAUGUGUUG CGGAAAGGGG UUCGACUCCC
401 CUCAUCUCCA CCA

( 1) 1 409 7
( 2) 20 382 10
( 3) 31 372 4
C 4) 37 366 4
( 5) 43 357 4
( 6) 47 59 4
( 7) 158 186 6
( 8) 189 225 5
( 9) 196 218 3
( 10) 200 215 4
( 11) 241 278 12
( 12) 296 332 8
( 13) 308 324 4
( 14) 386 402 5

>
( 1) 53 66 3
( 2) 205 240 7
( 3) 257 294 10
( 4) 313 350 8

>

Figure 5.4: Region table representation for UP

Table 5.3: The results of filtering crossing stem pairs

Aligned RNAs STall STOR after 1st filter STcR after 2nd filter total size reduction
UP ∕ UP 10193 3433 2345 77%
UP / MB 3617 1315 894 75%
UP/CC 1110 452 336 70%
MB / MB 1560 633 394 75%
MB / CC 325 164 114 65%
CC / CC 125 69 49 61%
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From the above results, we can see that many crossing stem pairs in STcA will 

not be realized in practice. The filtered crossing stem pairs set STCR is usually much 

smaller than the original SICA.

5.2.2 Comparison to Mohl et al.,s results

In this section, we compare our experiment results of the optimal alignment algorithm 

presented in Section 4.5 to Mohl et al.'s results [13].

The RNA structures which we use are MB, CC and UP introduced in the previous 

section, and a nested version (UPnest) of UP where all left crossing arcs are removed. 

The region table representation for UPnest is shown in Figure 5.5.
Ureaplasma parvum tmRNA - nested version

1 GGGGAUGUCA CGGUUUCGAC GUGACACAUU AAUUUUUAAU UGCAGUGGGG
51 VUAGCCCCUU AUCGCUUUCG AGGCAUUUUA AAUGCAGAAA AUAAAAAAUC

101 VUCUGAAGUA GAAUUAAACC CAGCGUUUAU GGCUUCAGCU ACUAAUGCAA
151 ACUACGCUUU UGCGUACUAA VUAGUUAUUA GUAGAAACGU UCAUUAACAU
201 AAUUACUAUU GGUUGGUUUU UGGGCUUAUU UUACAAUAGU VUUAAAUUUA
251 AAAUUCUUAU UUGUUGUUUA AAUUUAAAUA GAUVUAACAA AUAGUUAGUU 
301 AAUVUUAAAU VUGUUUUAUU AGUUAUUAAC UACACUAUUU UUAAUAAAAC 
351 UAAACUGUAG AUAUUAVUAA UUAUGUGUUG CGGAAAGGGG VUCGACUCCC

>
>

>
401 CUCAUCUCCA CCA

( 1) 1 409 7
( 2) 20 382 10
( 3) 31 372 4
( 4) 37 366 4
( 5) 43 357 4
( 6) 47 59 4
( 7) 153 186 6
( 8) 189 225 5
( 9) 196 218 3
( 10) 200 215 4
( 11) 241 278 12
( 12) 296 332 8
( 13) 30S 324 4
( 14) 386 402 5

Figure 5.5: Region table representation for UPnest

Comparing our experiment results with Mδhl et al.'s results [13], we can find out 

that our implementation is much faster and uses less space. The results are shown 

in Table 5.4 (n = sequence length, s = maximal number of arcs in crossing stem, 

pk = number of pseudoknots, fixed parameter k = number of crossing maximal stem 

matches that overlap in a common point). Notice that we ran experiments on an Intel 

P8600 processor with 2.4 GHz, and Mohl et al. ran experiments on an Intel Xeon 

5160 processor with 3.0 GHz. So our machine is slower. Our package is implemented 
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in C and Mohl et al.,s program is implemented in C++. Thus the différence between 

two program’s runtime should be due to algorithms.

Table 5.4: Comparisons of our results to Mohl et al.,s results [13]

Môhl et al.’s results [13] Our results
Aligned RNAs n S k pk runtime memory runtime memory

UP ∕ UP 413/413 10/10 1 4/4 726m 52s ≤ 2 GB 207s 17,520 KB
UP / MB 413/437 10/7 1 4/2 172m 53s ≤ 1 GB 51s 10,756 KB
UP / CC 413/254 10/5 1 4/1 11m 51s ≤ 1 GB 21s 5,404 KB

UP / UPnest 413/413 10/0 0 4/0 4m 43s ≤ 1 GB 11s 7,392 KB
MB / MB 437/437 7/7 1 2/2 43m 20s ≤ 1 GB 20s 9,100 KB
MB / CC 437/254 7/5 1 2/1 3m 56s ≤ 1 GB 8s 5,056 KB

MB ∕ UPnest 437/413 7/0 0 2/0 3m 27s ≤ 1 GB 8s 7,728 KB
CC∕ CC 254/254 5/5 1 1/1 lm Ils ≤ 1 GB 5s 3,028 KB

CC / UPnest 254/413 5/0 0 1/0 2m 6s ≤ 1 GB 6s 4,712 KB
UPnest ∕ UPnest 413/413 0/0 0 0/0 4m 21s ≤ 1 GB 10s 7,296 KB

Notice that all alignments produced here are optimal alignments.

Môhl et al. did not present concrete optimal alignments in [13]. We show several 

representative alignments produced by our package in Figure 5.6 to 5.11, respectively. 

In the alignment produced by our package, paired bases which belong to secondary 

structure are indicated by round brackets at corresponding positions above (for the 

first RNA) or below (for the second RNA) them. Paired bases which belong to tertiary 

structure are indicated by round brackets at corresponding positions above (for the 

first RNA) or below (for the second RNA) them. A left bracket indicates a 5' end 

and a right bracket indicates a 3' end.

Table 5.4 shows that even though the worst case time and space complexities 

of our algorithm are the same as Môhl et al.,s, our algorithm could use much less 

resources (time and space) in practice to compute optimal alignment between two 

simple RNA tertiary structures.

5.2.3 Comparison to Wang and Zhang’s results

We compare our experiment results of the constrained alignment algorithm presented 

in Section 4.6 to Wang and Zhang’s constrained alignment results.
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sequence 1: Ureaplasma parvum tmRNA
sequence 2: Mycobacteriophage Bxz1 pre-tmRNA

The optimal alignment score is 314.000
The optimal alignment is;

1
1

((((((( (--((-(((-(((( (((( (((( (-((((((-( ------[[[-)----------- ))) - -
GGGGAUGUCACGGUUUCGAC--GU-GAC--ACAUUAAUUUUUAAUUGC-AGUGGG-GUU------AGC-C-----------CCUU-A-U
GGGCCUGACAAGGUUUCGACUGGUCGAUGGACA- ACUG-----AACAGCGGGCGAGUGUUGGCCGCACUUCUACUCUGAGU

((((((C ((((( -((((---  (((((EICI ((((( ((( 1111

81
81

- 111 -  - - - -
------ CGCUUUCGAGGCAUUUUAAAUGCA------ GAAA------ AUAAAAAA-UCUUCUGAAGUAGA-AUUAAACCCAGCGUU--U-
GAACGCGG-CAA--C-UGAUAAACGCAACCGACACGGAUGCAACGGUGACC-GACGCCGAGAUCGAGGCCUUCUUUGCUG

))) ))))-) --- - (((((

161
161

- - -- -- -----((((((---------- -)))))) (-((((
AUG-G-CUUCAGCUACUAAU--GCA—AACUA-C—GCUUUUGCGU-A-C-UAAUUAGUU AUU-AGUAG AAACG-UUC AU
AAGAGGCUGCCGCU-CUCGUCUGAAGGAACCAGCCUG-----------GC-UCAGCGUGCU--GCUGUGCAGCGGCCAGGCUUCAU 

( (((((( - )))))) ------ -)))))) --

241
241

- ((( (((( [-ECECCE-)))-)))) ))-))) 111----]]]]((««««(-( CL----EEC
-UAACAUAAUUA-CUAUUG-GUU-GGUUUUUG-GGCUUAUUUUACAA------UAGUUVUAAAUUUAA--AAUUCUU------ AUU 
CU--C-UAA-CAGC-A--GCGAACGGACAU-GAGG-G-AGCGCA-AACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACG

321
321

[[[[[)))))))))))) ----- ]]]]]]]]]] ((((-(((( (-((( [[[[[[[[))))))))----))))
UGUUGUUUAAAUUUAAAU-------- AGAUUUAACAAAUAGUUAGU-UAAUUUUAA-AUUUGUUUUAUUAGUUAUUA------ ACUA 

-G-- GCUCCAGCGUCAGGGGCCAGAGGUGGGAAA-------- CGGUGUGA---------AACUCCUGUCCUGG-GGA- -UCACCGACCG 

----------------------------------------------- -----((((((((------ ((( [[[[[[[-)))--)))) ))))

401
401

]-]]]]]]] )))-) >)) ))))-))))--)))))--) ((((( ))))))))
CACUAUUUUUA-AUAAAACUAAACU-GUAGAUAUUAUUAAUU-AUGU--GUUGC-GGAAAGGGGUUCGACUCCCCUCAU  
-A-UACGCCAAACCAGGACUACGCCCGUAGA-A------CGCAGUGA-GAAAGACACCAGGACAGGGGUUCGAGUCCCCUCAG

- mm] ))))) ------  )))) - ))))) ««c ))))))))

481
481

)))) '
CUCCAGCA
GUCCACgu •

))))

Figure 5.6: Optimal alignment between UP and MB

sequence 1: Ureaplasma parvum tmRNA 

sequence 2: Cyanidium caldarium plastid pre-tmRNA

The optimal alignment score is 266.000
The optimal alignment is:

((((((C - (((((((((( (((( (((( - (-(-(((((( [[D)))) 133
1 GGGGAUGUCACGG-U-UUCGA CGUGAC AC AUUA AUUUUU A AUU-GC - A -GUGGGGUU AGCCCCUUA UCG CUUUCG AGGCA
1 GGGGCUGAAA-GGAUAUUCGAC----- AUA--UUAAUUUC- GUGCGCUAUGA-------- U--GC--------- AAGC-----------CGAGA-A

((((((( - (------(((-- (((( --(((((((( ((---------(--((--------((((------------(((((-

81 UU-UUAAAUGCAGAAAAUAAAAAAUC-UUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUACUAAUGCAAACU
81 UGCUUAUCU-C-G-------- UAAAAAAGCAGACA-AAG-A-AAU-AAAUGCAA-----------A------ CA-A-VAUUAUUG-AAAUU

IILEC )))-)-)----- ]]]]] - - - - ------------ ------ -

(((((( )))))) ((((( ((( (((( [ED[[D)))))) )))))
161 ACGCUUUUGCGUACUAAVUAGUUAUUAGUAGAAACGUUCAUVAACAUAAUUACUAUUGGUUGGUUUUUGGGCUUAUUUUA
161 A-GC-------------A-A-UA-VUAG--A--A--A--AC------ CAG------ C-----------U-CUA--G-UAG------ U----------- CU-AGCCU-

]]]]]]](((((((((((( CCCCCEECD))))))))))) 1131113113 (((((((( (((( [
241 CaauaguuuuaaauuuaaaauucuuauuuguuguuuaaauuuaaauagauuuaacaaauaguuaguuaauuuuaaauuuG
241 -----------G----------------------------- AUUC--A------ GU------------------------------ UA--UUU--CUAA-A-UUA------UUUA--------- UG

EECCCED))))))))))) - - m]∏]J )))-) )))) )))))))))))))) ((-((
321 UUUUAUUAGUUAUU AACUACA -CUAU- UUUUAA UAAAACUAAACU-GUA GAUAUUAUUAAUUAUGUGUUGCGGAAAG-GG
321 UU--AU--GUUAUU------ UA-AGCU-UGUAGUAA-----------CUA-UCUAGU-G-UAC----AAUU-UCUAU------ GGAC-GUGG 

- --------- ---- - )))-))--------- -------- ))-))))))-)-)))----- ))))- )))----) -((((

( )))-)))))))))
401 GUUCGACUCCC-CUCAUCUCCACCA
401 GUUCAAUUCCCAC-CAGCUCCACaa

( )))))-)))))))

Figure 5.7: Optimal alignment between UP and CC
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sequence 1: Ureaplasma parvum tmRNA 
sequence 2: Ureaplasrna parvum tmRNA - nested version

The optimal alignment score is 28.000
The optimal alignment is:

((((((( (((((((((( (((( (((( (((((((( [[D)))) in
1 GGGGAUGUCACGGUUUCGACGUGACACAUUAAUUUUUAAUUGCAGUGGGGUUAGCCCCUUAUCGCUUUCGAGGCAUUUUA
1 GGGGAUCUCACGGUUUCGACGUGACACAVUAAUVUUUAAUUGCACUGGGGUUAGCCCCUUAUCGCUUUCGAGGCAUUUUA

((((((( (((((((((( (((( (((( (((((((( ))))

(((
81 AAUGCAGAAAAUAAAAAAUCUUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUACUAAUGCAAACUACGCUUU
81 AAUGCAGAAAAUAAAAAAUCUUCUGAAGUAGAAUVAAACCCAGCGUUUAUGGCUUCAGCUACUAAUGCAAACUACGCUUU

(((

((( )))))) ((((( ((( (((( [[[[[[[))))))) ))))) 111331]
161 UGCGUACUAAUUAGUUAUUAGUAGAAACGUUCAUUAACA UAAVUACUA UUGGUUGGUUUUUG GGCUUAUUUUACAAUAGU
161 UGCGUACUAAUUAGUUAUUAGUAGAAACGUUCAUUAACAUAAUUACUAUUGGUUGGUUUUUGGGCUUAUUUUACAAUAGU

((( )))))) ((((( ((( (((( ))))))) )))))

(((((((((((( [CCOOEOCD)))))))))))) ]]]]]]]]]] (((((((( (((( [[[[[[[[
241 UUUAAAUUUAAAAUUCUUAUUUGUUGUUUAAAUUUAAAUAGAUUUAACAAAUAGUUAGUUAAUUUUAAAUUUGUUUUAUU
241 UUUAAAUUUAAAAUUCUUAUUUGUUGUUUAAAUUUAAAUAGAUUUAACAAAUAGUUAGUUAAUVUUAAAUUUGUUUUAUU

(((((((((((( )))))))))))) (((((((( ((((

)))))))))))) 13331131 )))) )))) )))))))))))))) ((((( )))
321 AguuauuaacuacacuauuuuuaauaaaacuaaacuguagauauuauuaauuauguguugcggaaagggguucgacuccC
321 AguuauuaacuacacuauuuuuaauaaaacuaaacuguagauauuauuaauuauguguugcggaaagggguucgacuccC 

)))))))))))) )))) )))) )))))))))))))) ((((( )))

)))))))))
401 CUCAUCUCCACCA
401 CUCAUCUCCACCA 

)))))))))

Figure 5.8: Optimal alignment between UP and UPnest

sequence 1: Mycobacteriophage Bxz1 pre-tmRNA
sequence 2: Cyanidium caldarium plastid pre-tmRNA

The optimal alignment score is 282.000
The optimal alignment is:

((((((( (-(((( -------- (((--( (((((-CEIC ((((( ((( ]]]]
1 GGGCCUGACAAGG-U-UUCGAC-UGGUCGA--U-G-GACAACU-GAACAGCGGGC-GAGUGUUGGCCGCACUUCUACUC
1 GGGGCUGA-AAGGAUAUUCGACAU-AUUAAUUUCGUG-C-GCUAUGAU--GCAAGCCGAGAAU GC--UU-AUCUC 

(((((((- (((-( (((( (((-(-(((( (((--((((((((((( [-----------[[--[[- ))))

- ))) ))))) ((((
81 -Ugagugaacgcggcaacugauaaacgcaaccgacacggaugcaacggugaccgacgccgagaucgaggccuucuuugcu
81 GUAAAA-AA-GC—A—GACAAA-GAAAU-A-A—AUGCAA----------AC-A---------- A--U-A—UUAUU-G- 

) -JJ-JJ-]—-- ------------------- ------ -------------------------- - -­

(((((((( ))))) ))))))
161 GAAGAGGCUGCCGCUCUCGUCUGAAGGAACCAGCCUGGCUCAGCGUGCUGCUGUGCAGCGGCCAGGCUUCAUCUCUAACA

161 -AA-A--------------------U-UAG-C--AAU-A-------------------------------------- U--U----------------AG-----------A------------- A-----------AAC-

241 GCAGCGAACGGACAUGAGGGAGCGCAAACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACGGGCUCCAGCGUCAGGGGCC
241 -CAGCU--C---------- U-AGU-AG--------------------UC-U------ AG-C--C-UGA-U------UC-A-GU--U--AUU-UC---------------

(((((((( (« [[[[[[[))))))) )))) ]]∏]]J ))))) -
321 AGAGGUGGGAAACGGUGUGAAACUCCUGUCCUGGGGAUCACCGACCGAUACGCCAAACCAGGACUACGCCCGUAG-AACG
321 -----------U------ AAA------U-U--A--U--U-U----------------AU------- G------- UUAUGUUAUU--------------- UAAGCUUGUAGUAACU 

________ ------------------------------------------ -------------------- _______ ))))) )

-)-))) - )))-) ((-((( )))-)))))))))
401 — C-AGUG-AGAAAGACACCA-GGACAG-GGGUUCGAGUCCC-CUCAGGUCCACgu
401 AUCUAGUGUACAAUUUC-U-AUGGAC-GUGGGUUCAAUUCCCAC-CAGCUCCACaa 

))))))))))))))) -)-))) -((((( )))))-)))))))

Figure 5.9: Optimal alignment between MB and CC
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sequence 1: Mycobacteriophage Bxzl pre-tmRNA 
sequence 2: Ureaplasina parvum tmRNA - nested version

The optimal alignment score is 304.500
The optimal alignment is:

((((((( ((((( -((((------  (((((CEIC ((((( ((( ]]]]- -

1 GGGCCUGACAAGGUUUCGACUGGUCGAUGGACA-ACUG—AACAGCGGGCGAGUGUUGGCCGCACUUCUACUC-U-GA
1 GGGGAUGUCACGGUUUCGAC--GU-GAC-ACAUUAAUUUUUAAUUGC-AGU-GGGGUUAGC-------- C-------- CCUUAUCGC

((((((( <—((-(«—<«( (((( (((( (-(((-(((( —)—)))

))))))) - «««((
81 GUGAACGCGGCAACUGAUAAACGCAACCGACACGGA UGCAACGGUGACC-GACGCCGAGAUCGAGGCCUUCUUUGCUGAA
81 UUU--CGAGGCAUUU--VAAAUGCA------ GAAA------ AUAAAAAA-UCUUCUGAAGVAGA-AUVAAACCCAGCGUU--U-AU

(((((( - - ))))-------- )) - )))))) -­
161 GAGGCUGCCGCU-CUCGU-CUGAAGGAACCAGC-------- CUG-GCUCAGCGUGCU--GCUGUGCAGCGGCCAGGCUUCAUCU
161 G-G-CUUCAGCUACUAAUGCA-AACUA-C- GCUUUU- GCG-U-A-C-UAAUUAGUUAUU-AGUAGAAACG-UUCAU-U

- - - --------((((-((--------------------- - )))))) (-(((( -

241 --C-UAA-CAGC-AGCGAACGGACAUGAGGG-AGCGCAAACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACGG-GCUCC
241 AACAUAAUUA-CUAVUGGUUGGUUUUU-GGGCUUAUUUUACAAUAGUUUUAAAUUUAA-AAUUCUUAUUU-GUUGUUUA 

((( (((( - ))))))) )-)))) (((((((((∙(<-( - ))))

(((-(-((((-------- ((( EECCCCE-)))------)))) ))-)) -
321 AGCGUCAGGGGCCAGAGGUGGGAAACGG-U-GUGAA-------- ACUCCUGUCCUGG-GGA------ UCACCGAC-CGAUACGCCA-
321 AAUUUAAAU-------- AGAUUUAACAAAUAGUUAGUUAAUVUUAAAUUUGVUVUAVUAGUUAUUAACU-ACACUAUUUUVAAU 

»)»))))) --------  (((((((( (((( )))))))))))-)

]]]]]]] »)) ----------- )))) - )))) ((((( ))))))))))))
401 AACCAGGACUACGCCCGUAGA-A------ CGCAGUGA-GAAAGACACCAGGACAGGGGUUCGAGUCCCCUCAGGUCCACgu
401 AA-A--ACUAAACU-GUAGAUAUUAUUAAUU-AUGU-GUUGC-GGAAAGGGGUUCGACUCCCCUCAUCUCCACCA 

-----------  )))-) )))) ))))-))))-)))))-) ((((( ))))))))))))

Figure 5.10: Optimal alignment between MB and UPnest

sequence 1: Cyanidium caldarium plastid pre-tmRNA 
sequence 2: Ureaplasma parvum tmRNA - nested version

The optimal alignment score is 250.500
The optimal alignment is:

((((((( - (----(((-- (((( --(((((((( (U—(-((-—((-(( — (((((­
1 GGGGCUGAAA-GGAUAUUCGAC------AUA-UUAAUUUC-GUGCGCUAUGA---------U--GC-------- AA--GC------ CGAGA-A
1 GGGGAUGUCACGG-U-UUCGACGUG AC ACAUUAAUUUUU A AUU-GC-A -GUGGGGUUAGCCCCUUAUCGCUUUCGA GG CA 

((((((( - (((((((((( (((C (((< - (-(-(((((( ))))

[[[[[ )))-)-)-------  ]]]]] - -- - -------------------- ----------- -
81 UGCUUAUCU-C-G-------UAAAAAAGCAGACA-AAG-A-AAU-AAAUGCAA----------- A------ CA-A--UAUUAUUG-AAAUU
81 UU-UVAAAUGCAGAAAAUAAAAAAUC-UUCUGAAGUAGAAUVAAACCCAGCGUUUAUGGCUUCAGCUACUAAUGCAAACU

161 A-GC------------ A-A-UA-UUAG--A--A--A---AC------CAG------- C-----------U-CUAGUAG-------------U-----------CU-AGC------
161 ACGCUUUUGCGUACUAAUUAGUVAUUAGUAGAAACGUUCAUUAACAUAAVUACUAUUGGUUGGUUUUUGGGCUUAUUUUA

(((((( )))))) ((((( ((( (((( ))))))) )))))

241 C--U-G-----------------------------AUUC--A------ GUU--------------------------------A--UUU--CUAA-A-UUA------------- UUUA------- UG
241 CaauaguuuuaaauuuaaaauucuuauuuguuguuuaaauuuaaauagauuuaacaaauaguuaguuaauuuuaaAuuug

(«((((««( )))))))))))) (((((((( ((C(

„ __ — - ))-)) ._ - )).)))))).).))).—))))- 2)—) -(((((
321 UU--AU-GUUAUU—UA-AGCU-UGU-AGUAA--CUA-UCUAGU-G-UAC- AAUU-UCUAU GGAC-GUGGG
321 UUUUAUUAGUUAUUAACUACA-CVAUVUUUAAUAAAACUAAACU-GUAGAUAUUAUUAAUUAUGUGUUGCGGAAAG-GGG

))))))))))) - )))-) »)) )))))))))))))) ((-(((

)))))-)))))))
401 UUCAAUUCCCAC-CAGCUCCACaa
401 UUCGACUCCC-CUCAUCUCCACCA

)))-)))))))))

Figure 5.11: Optimal alignment between CC and UPnest
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The first group of RNAs which we use are the same as the RNAs used in previous 

section. We only perform experiments on UP, MB and CC. The results are shown 

in Table 5.5 (n = sequence length, s = maximal number of arcs in crossing stem, 

pk = number of pseudoknots, fixed parameter k = number of crossing maximal stem 

matches that overlap in a common point, (i,j) = the start bases’s positions of the 

two selected maximal stems in our constrained alignment algorithm).

Table 5.5: First comparison of our results to Wang and Zhang’s constrained alignment 
results

Wang and Zhang’s results Our results
Aligned RNAs n S k pk runtime memory (i,j) runtime memory

UP / UP 413/413 10/10 1 4/4 8s 3,764 KB (296,296) 82s 11,416 KB
UP / MB 413/437 10/7 1 4/2 7s 4,020 KB (296,322) 10s 7,696 KB
UP / CC 413/254 10/5 1 4/1 4s 2,752 KB (47,51) 4s 4,568 KB
MB / MB 437/437 7/7 1 2/2 5s 4,180 KB (322,322) 3s 7,140 KB
MB ∕ CC 437/254 7/5 1 2/1 3s 2,492 KB (48,51) 2s 4,908 KB
CC/ CC 254/254 5/5 1 1/1 3s 1,796 KB (57,57) Is 2,832 KB

The concrete alignments produced by our algorithm and Wang and Zhang’s al­

gorithm are shown in Figure 5.12 to 5.14, respectively1. Notice that our constrained 

alignment algorithm is based on our optimal alignment algorithm which is exponen­

tial, and Wang and Zhang’s constrained alignment algorithm is based on their optimal 

alignment algorithm which is polynomial. Thus it is reasonable that our program uses

1Notice that we do not include the alignment between UP and itself, the alignment between MB 
and itself and the alignment between CC and itself, since it is obvious that there are matches at all 
positions of these alignments.

more time and space.

All alignments produced in this section are constrained alignments. They are not

guaranteed to be optimal. For example, comparing Figure 5.13 to Figure 5.7, we can

find that the constrained alignments between UP and CC produced by Wang and

Zhang’s algorithm and our algorithm are not optimal. But these two constrained

alignments are near-optimal. Comparing Figure 5.12 to Figure 5.6, we can find that

the constrained alignments between UP and MB produced by Wang and Zhang’s 

algorithm and our algorithm are optimal. Similar for the constrained alignments

between MB and CC.
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by Wang and Zhang’s algorithm:

Ureaplasma-parvum-tmRNA
Mycobact eriophage-Bxz 1-pre-tmRNA

score = 314.000000

((((((( (((((((((( -(--((C (((( ((((--(((( —[[[-)-—)))-----------
1 GGGGAUGUCACGGUUUCGACGUGACACAUU-A-AUUUUUAAUUGCAGU-GGGGUU—AGC-C-—CCU-U-A-U-
1 GGGCCUGACAAGGUUUCGACUGGUCG-AUGGACAACU- GAACAGCGGGCGAGUGUUGGCCGCACUUCUACUCUGAGUGA

((((((( ((((C - (((-( ((((([[[[ ((((( ((( ]]]] ))

- 111 ---- ___ - - -
81 -CGCUUUCGAGGCAUUUUAAAUGCA-GAAA------AUAAAAAA-UCUUCUGAAGUAGA-AUUAAACCCAGCGUU--U-AU
81 ACGCGG-CAA--C-UGAUAAACGCAACCGACACGGAUGCAACGGUGACC-GACGCCGAGAUCGAGGCCUUCUUUGCUGAA

)))))-) -- - - ((((((

-- -- - -----((((((---------- -)))))) (-(((( -
161 G-G-CUUCAGCUACUAAU--GCA-AACUA-C-GCUUUUGCGU-A-C-UAAUUAGUUAUU-AGUAGAAACG-UUCAU-U
161 GAGGCUGCCGCU-CUCGUCUGAAGGAACCAGCCUG---------- GC-UCAGCGUGCU-GCUGUGCAGCGGCCAGGCUUCAUCU

((O((( - ))))))---------- -)))))) -

((( (((( [-[[[[[[-)))-)))) ))-))) ]]]—]]]]«(((((((((-( CE—CEECC
241 AACAUAAUUA-CUAUUG-GUU-GGUUUUUG-GGCUUAUUUUACAA------UAGUUVUAAAUUUAA--AAUUCUU------ AUUUG
241 -C-UAA-CAGC-A--GCGAACGGACAU-GAGG-G-AGCGCA-AACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACG-G

[[[)))))))))))) ----- 1001013111 ((((-(((( (-((( [[[[[[[[))))))))----))))
321 UUGUUUAAAUUUAAAU-------- AGAUUUAACAAAUAGUUAGU-UAAUUUUAA-AUVUGUUUUAUUAGUUAUUA ------ ACUACA
321 -GCUCCAGCGUCAGGGGCCAGAGGUGGGAAA-------CGGUGUGA--------- AACUCCUGUCCUGG-GGA--UCACCGACCG-A

- - ------ ((((((((--------- ((( [[[[[[[-)))--)))) ))))­

]-]]]]]]] -)))) ))) ))))))))-)-))))) ((((( )))))))))))
401 CUAUUUUUA-AUAAAACUAA-ACUGUAGAUAUUAUUAAUUAUGU-G--UUGCGGAAAGGGGUUCGACUCCCCUCAUCUC  
401 -UACGCCAAACCAGGACUACGCCCGUAGA-ACGC-AGUGA-GAAAGACACCAGGACAGGGGUUCGACUCCCCUCAGGUC  

- 1131111 ))))) - )*))) - ))))) ((((( )))))))))))

) .
481 CACCA
481 CACgu 

)

by our algorithm:

sequence 1: Ureaplasma parvum tmRNA
sequence 2: Mycobacteriophage Bxz1 pre-tmRNA
The constrained stem pair:
1st stem:(outermost arc, innermost arc), 2nd stem:(outermost arc, innermost arc) 

((296, 332), (311, 321)), ((322, 356), (335, 344))

The optimal constrained alignment score is 314.000
The optimal constrained alignment is:

((((((( (--((-(((--(((( (((( (((( (-((((((-( ------[[[-)------------))) - -
1 GGGGAUGUCACGGUUUCGAC-GU-GAC-ACAUUAAUUUUUAAUUGC-AGUGGG-GUU AGC-C-----CCUU-A-U
1 GGGCCUGACAAGGUUUCGACUGGUCGAUGGACA- -ACUG A AC AGCGGG CGA GUGUUGGCCGC ACUUCUA CUCUGAGU 

((((((( ((((( --((((  ((((([[[[ ((((( ((( 1111

--- 111 --- --- _ - -
81 -CGCUUUCGAGGCAUUVUAAAUGCA—GAAA------AUAAAAAA-UCUUCUGAAGUAGA-AUUAAACCCAGCGUU--U-
81 GAACGCGG-CAA--C-UGAUAAACGCAACCGACACGGAUGCAACGGUGACC-GACGCCGAGAUCGAGGCCUUCUUUGCUG

))) ))))-) -- - - (((((

- - - — --------((((((---------------- -)))))) (-((((
161 AUG-G-CUUCAGCUACUAAU-GCA-AACUA-C-GCUUUUGCGU-A-C-UAAUUAGUUAUU-AGUAGAAACG-UUCAU
161 AAGAGGCUGCCGCU-CUCGUCUGAAGGAACCAGCCUG---------- GC-UCAGCGUGCU-GCUGUGCAGCGGCCAGGCUUCAU

( (((((( - )))))) ---------- -)))))) -

- ((( (((( [-[[[[[[-)))-)))) ))-))) ]]]------]]]](((((((((((--( [------[[[
241 -UAACAUAAUUA-CUAUUG-GUU-GGUUVUUG-GGCUUAUUUUACAA-UAGUUUUAAAUUUAA-AAUUCUU------AUU
241 CU--C-UAA -CAGC-A--GCGAACGGACAU-GAGG-G-AGCGCA-AACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACG

[[[[[)))))))))))) — 111111111] ((((-(((( Ht( [[[[[[[[))))))))—))))
321 UGUUGUUUAAAUUUAAAU-------- AGAVUUAACAAAUAGUUAGU-UAAUUUUAA-AUUUGUUUUAUUAGUUAUUA-ACUA
321 -G--GCUCCAGCGUCAGGGGCCAGAGGUGGGAAA-------- CGGUGUGA--------- AACUCCUGUCCUGG-GGA--UCACCGACCG

- -- -----((((((((----- ((( [[[[[[[-)))--)))) ))))

1-1131311 )))-) )))) ))))-))))--)))))--) ((((( ))))))))
401 CACUAUUUUUA-AUAAAACUAAACU-GUAGAUAUUAUUAAUU-AUGU- GUUGC--GGAAAGGGGUUCGACUCCCCUCAU
401 -A-UACGCCAAACCAGGACUACGCCCGUAGA-A------ CGCACUGA-GAAAGACACCAGGACAGGGGUUCGAGUCCCCUCAG 

1111111 )))))   )))) - ))))) ((((( ))))))))

))))
481 CUCCACCA
481 GUCCACgu

))))

Figure 5.12: Constrained alignment between UP and MB
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by Wang and Zhang’s algorithm:

Ureaplasma-parvum-tmRNA 
Cyanidium-caldarium-plastid-pre-tmRNA

score ■ 267.000000

((((((( - (((((((((( (C((---------------((-(( ((-(((((( CIE--------)))) -
1 GGGGAUGUCACGG-U-UUCGACGUGACACAUUAAUUU-U-------- UA--AUUGCA-GUGGGGUUAGC-------- CCCUUAUC-
1 GGGGCUGAAA-GGAUAUUCGAC-AUA--UUAAUUUCGUGCGCUAUGAU-GCAAGCCGAGAAUGCUUAUCUCGUAAAAA 

((((((( - (—(((- (((( (((((((( «(-(«(«((«( CECCC ))))) ]

-]]]
81 -GCUUUCGAGGCAUUUUAAAUGCAGAAAAUAAAAAAUCUUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUAC
81 AGCA------GA--CAAAG-AAAU-A-AA--UGCAAA--C----------- AA-UAUUAUUGAA--A------ UU-A-G-CA-A-UAU

11J1---- - __ ----------- _ --------- --------- ---------

(((((( )))))) ((((( ((( (((( [[[[[[[))))))) ))
161 UAAUGCAAACUACGCUUUUGCGUACUAAUUAGUUAUUAGUAGAAACGUUCAUUAACAUAAUUACUAUUGGUUGGUUUUUG

161 UA--GAAAACCA-GC--------------- U-CUAGU-AGUC-U-AG------------- C C-UG AU T-C-A--G_______UU--

))) ]]]]]]](((((((((((( [[[[[[[[[[)))))))))))) 1133131111 (((((((
241 GGCUUAUUVUACAAUAGUUUUAAAUUUAAAAUUCUUAUUUGUUGUUUAAAVUUAAAUAGAUUUAACAAAUAGUUAGUUAA
241 -----------AUUU--C--UA-----------A------------------AUU A-------------------------------------------U—UU-A----------------- U-G---------

( (((( [[[[[[[[)))))))))))) JJ31111 ))-)) - - ))-))--------)))))
321 UUUUAAAUUUGUUVUAUUAGUUAUUAACUACACUAVUUUUAAUAAAACUAAAG-UGUAG-A-UAU-UA-U-U-AAUUA
321 -UU-A-------- UGU----------------------------------------------- UAUUU-------------------------AAGCUUGUAGUAACUAUCUAGUGUACAAUU-

_ ------------- ----------------------------------------------- ------------------------ ))))) )))))))))))))))-

))))))))) ((-((( )))-)))))))))
401 UGUGUUGCGGAAAG-GGGUUCGACUCCC-CUCAUCUCCACCA
401 UCUAU--GGAC-GUGGGUUCAAUUCCCAC-CAGCUCCACaa 

))) ) -((((( )))))-)))))))

by our algorithm:

sequence 1: Ureaplaama parvum tmRNA
sequence 2: Cyanidium caldarium plastid pre-tmRNA
The constrained stem pair: .
1st stem:(outermost arc, innermost arc), 2nd stem:(outermost arc, innermost arc) 

(( 47, 59), ( 50, 56)), (( 51, 67), ( 55, 63))

The optimal constrained alignment score is 267.500
The optimal constrained alignment is:

((((((( -- (((((((((( ((((--------- ((-(( (-(((((-(( EEC---- ))-)) -
1 GGGGAUGUCACGG-U-UUCGACGUGACACAUUAAUUU-U-------- UA--AUUGC-AGUGG-GGUUAGC---CC-CUUAUC-
1 GGGGCUGAAA-GGAUAUUCGAC------ AUA-UUAAUUUCGUGCGCUAUGAU-GCAAGCCGAGAA-UGCUUAUCUCGUAAAA

((((((( - (----(((- (((( (((((((( (((-((((((((((( -[[[[[ )))))

81 — GCUUUCGAGGCAUUVUAAAUGCAGAAAAUAAAAAAUCUUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUA
81 AAGCA---GA--CAAAG-AAAU--A-AA--UGCAAA--C----------AA-UAUUAUUGAA—A UU-A-G-CA-A--UA

J1JJ]--- -- - - --------- - -------- -------- --------

(((((( )))))) ((((( ((( (((( [[[[[[[))))))) )
161 CUAAUGCAAACUACGCUUUUGCGUACUAAUVAGUUAUUAGUAGAAACGUUCAVUAACAUAAUUACUAUUGGUUGGUUUUU
161 UUA--GAAAACCA-GC-------------- U-CUAGU-AGUC-U-AG--------------C-C-UG----- AU—U-C-A--G---------------UU-

)))) ]]]]]]](((((((((((( [[[[[[[[[[)))))))))))) J]1131]01] ((((((
241 GGGCUUAUUUUACAAUAGUUUUAAAUVUAAAAUUCUUAUUUGUUGUUUAAAUUUAAAUAGAUUUAACAAAUAGUUAGUUA
241 ------------- AUUU--C--UA-----------A------------------AUU A-------------------------------------------U—-UU-A------------------U--G-—

(( (((( [[[[[[[[)))))))))))) ]]]]]]]] )))-) - -- ))-))-------------))))
321 AUUUUAAAUUUGUVUUAUUAGUUAUUAACUACACUAUVUVUAAUAAAACUAAACU-GUAG-A--UAU-UA-U-U--AAUU
321 --UU-A-------- UGU----------------------------------------------- UAUUU------------------------ AAGCUUGUAGUAACUAUCUAGUGUACAAUU

- ------------- _____________________ ------------------------ ))))) ))))))))))))))))

)))))))))) ((-((( )))-)))))))))
401 AUGUGUUGCGGAAAG-GGGUUCGACUCCC-CUCAUCUCCACCA
401 -UCUAU—GGAC-GUGGGUUCAAUUCCCAC-CAGCUCCACaa

- )))------) -((((( )))))-)))))))

Figure 5.13: Constrained alignment between UP and CC
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by Wang and Zhang’s algorithm:

Mycobacteriophage-Bxz1-pre-tmRNA
Cyanidium-caldarium-plastid-pre-tmRNA

score ■ 282.000000

((((((( ((((( (((-( (((((-[[[[ ((((( ((C 1311-
GGGCCUGACAAGG-U-UUCGACUGGUCGA- U-G-GACAACU- GAACAGCGGGC-GAGUGUUGGCCGCACUUCUACUC-
GGGGCUGA-AAGGAUAUUCGACAUAUUAAUUUCGUG -C-GCUAUGAU--GCAAGCCGAGAAU-----------GC--VU-AUCUCG
((((((( - (((( (((( (((-(-(((( (((-=((((((((((( [------ [[--[[- )))))

))) ))))) (((((
81
81

UGAGUGAACGCGGCAACUGAUAAACGCAACCGACACGGAUGCAACGGUGACCGACGCCGAGAUCGAGGCCUUCUUUGCUG
UAAAA-AA-GC-A------ GACAAA-GAAAU-A-A-------AUGCAA----------- AC--A-----------A--U--A---------UUAUU-G------

-]]-]]------J------  - ------------------ ----------- ------------------------------------------- ----------

C (((((( )))))) ))))))
161
161

AAGAGGCUGCCGCUCUCGUCUGAAGGAACCAGCCUGGCUCAGCGUGCUGCUGUGCAGCGGCCAGGCUUCAUCUCUAACAG

AA-A-- -U-UAG-C-AAU-A- ---------- U--U----------------AG--------- A______A----------- AAC--

1
1

CAGCGAACGGACAUGAGGGAGCGCAAACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACGGGCUCCAGCGUCAGGGGCCA 
241 CAGCU--C---------- U-AGU-AG--------------------UC-U-AG-C--C-UGA -U UC-A-GU--U-AUU-UC-----------------

(((((((( ((( [[[[[[D)))))> )))) ]]]]]]] ))))) - -
321 GAGGUGGGAAACGGUGUGAAACUCCUGUCCUGGGGAUCACCGACCGAUACGCCAAACCAGGACUACGCCCGUAG-AACG-
321-------- U--AAA-U-U-A-U-U-U--------------- AU-------- G----UUAUGUUAUU-----—UAAGCUUGUAGUAACUA

------------------ ------------------------------------------------------ ________ --------------- nn) j)

-)-))) - ))))) ((-((( )))-)))))))))
401 -C-AGUG-AGAAAGACACCAGGACAG-GGGUUCGAGUCCC-CUCAGGUCCACgu
401 UCUAGUGUACAAUUUC-UAUGGAC-GUGGGUUCAAUUCCCAC-CAGCUCCACaa

)))))))))))))) -)))) -((((( )))))-)))))))

by our algorithm:

sequence 1; Mycobacteriophage Bxz1 pre-tmRNA
sequence 2: Cyanidium caldarium plastid pre-tmRNA
The constrained stem pair:
1st stem:(outermost arc, innermost arc), 2nd stem:(outermost arc, innermost arc) 

(( 48, 70), ( 51, 67)), (( 51, 67), (55, 63))

The optimal constrained alignment score is 282.000 
The optimal constrained alignment is:

((((((( -- (-(((( ------------- (((--( (((((-[[[[ ((((( ((( ]]]]
1 GGGCCUGACAAGG-U-UUCGAC-UGGUCGA- U-G-GACAACU—GAACAGCGGGC-GAGUGUUGGCCGCACUUCUACUC
1 GGGGCUGA-AAGGAUAUUCGACAU-AUUAAUUUCGUG-C-GCUAUGAU-GCAAGCCGAGAAU_____GC--UU-AUCUC

((((((( - (((-( (((( (((-(-(((( (((--((((((((((( [---------- [[--[[- ))))

- ))) ))))) ((((
81 -UGAGUGAACGCGGCAACUGAUAAACGCAACCGACACGGAUGCAACGGUGACCGACGCCGAGAUCG  AGGCCUUCUUUG CU
81 GUAAAA-AA-GC-—A GACAAA-GAAAU-A-A AUGCAA-—--AC-A--------- A--U--A---------- UUAUU-G-

) -]]-]]---]------  - ------------------ ----------- ------------------------------------------- - --

(( (((((( )))))) ))))))
161 GAAGAGGCUGCCGCUCUCGUCUGAAGGAACCAGCCUGGCUCAGCGUGCUGCUGUGCAGCGGCCAGGCUUCAUCUCUAACA
161 -AA-A--------------------U-UAG-C--AAU-A------------------------------------- U--U--—--AG----------- A------------- A-----AAC-

241 GCAGCGAACGGACAUGAGGGAGCGCAAACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACGGGCUCCAGCGUCAGGGGCC
241 -CAGCU--C-—--U-AGU-AG------------------- UC-U------AG-C--C-UGA-U---UC--A-GU--U--AUU-UC----------------

(((((((( ((( [[[[[[[))))))) )))) ]]]]]]] ))))) -
321 AGAGGUGGGAAACGGUGUGAAACUCCUGUCCUGGGGAUCACCGACCGAUACGCCAAACCAGGACUACGCCCGUAG-AACG
321 ----------U------- AAA------U-U--A--U--U-U--------------- AU---------g---------UUAUGUUAUU--------------- UAAGCUUGUAGUAACU

-------------------- ------------------------------------------------------ ------------- ------ --------------- ))))) )

-)-))) - ))))-) ((-((( )))-)))))))))
401 -C-AGUG-AGAAAGACACCA -GGACAG-GGGUUCG AGUCCC -CUCAGGUCCACgu
401 AUCUAGUGUACAAUUUC-U-AUGGAC-GUGGGUUCAAUUCCCAC-CAGCUCCACaa

))))))))))))))) -)-))) -((((( )))))-)))))))

Figure 5.14: Constrained alignment between MB and CC
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Figure 5.15: Structures of Alcaligenes eutrophus and Streptomyces bikiniensis from 
the RNase P database. Source: http://www.mbio.ncsu.edu/RNaseP

The RNA tertiary structures that we used above are very simple. Now we perform 

experiments on two moderate RNA tertiary structures. These RNA structures are 

selected from the RNase P Database [2]. Ribonuclease P is the ribonucleoprotein 

endonuclease that cleaves transfer RNA precursors, removing 5’ precursor sequences 

and generating the mature 5’ terminus of the tRNA. Alcaligenes eutrophus (AE) is 

from the beta purple bacteria group and Streptomyces bikiniensis (SB) is from the 

high G+C gram positive group. Figure 5.15 shows a 2D drawing of these two RNA 

structures. The secondary bondings are represented by a dash or a dot between two 

bases and tertiary bondings are represented by a solid line between distant bases. We 

have shown their region table representations in Figure 5.1.

The results of the second comparison are shown in Table 5.6 (n = sequence length, 

s = maximal number of arcs in crossing stem, pk = number of pseudoknots, fixed 

parameter k = number of crossing maximal stem matches that overlap in a common 

http://www.mbio.ncsu.edu/RNaseP
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point, (i,j) = the start bases’s positions of the two selected maximal stems in our 

constrained alignment algorithm). •

Table 5.6: Second comparison of our results to Wang and Zhang’s constrained align­
ment results

Wang and Zhang’s results Our results
Aligned RNAs n s k pk runtime memory (i,j) runtime memory

AE ∕ SB 341/398 8/8 8 3/4 8s 2,972 KB (12,12) 34s 15,916KB
(50,48) 32s 16,028KB

The concrete alignments between AE and SB produced by Wang and Zhang’s 

algorithm and our algorithm are shown in Figure 5.16 and Figure 5.17, respectively.

These alignments are exactly the same.

by Wang and Zhang's algorithm:

Alcaligenes-eutrophus-pb-b 

Streptomyces-bikiniensis-gpb-h

score ■ 186.000000

(((((((((((((((( (( (((((((( )))))))) )) LEL [[[[[(((( LCEt (««« (C((
1 AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGC
1 CGAGCCGGGCGGGCGGCCGCGUGGGGGUCUUC-GGACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGC

(((((((((((((((((( (( ((((((( -))))))) )) CEC uu[(c(c COCE ((((((((((

)))) «((( )))) )C( (( - (((( ((((((-((-- -))-))))-))
81 UAACAGCCAUCCACGGCAACGUGCGGAAUAGGGCCACAGAGA-CGAGUCUUGCCGCCG-GG- UUCG- CC-CGGC-GG
81 UAACGGCCACCCGGGGUGACCCGCGGGACAGUGCCACAGAAAAC-AG ACCGCCGGGGACCUCGGUCCUCGGUAAGG

)))))((((( )))) )(( (( - -----  ((((((((((( ))))))))) ))

-))))-------- - --------------------------- ------------------- ))))))))))))) (((( -
161 G--AAGG-------------GU--GA-A-----------A---------------------- CG---------------------- C-GGUAACCUCCACCUGGAGCAAUCCCAA-
161 GUGAAACGGUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCAGGCGGCUAGGUAAACCCCACUCGGAGCAAGGUCAAG

(((((( )))))) (((((((( )))))))) ))))))))))))) ((((

------------------------------- (((((( -((((-( ]]]])-)))))))))) )))) -((((((((
241 AU---A------------ G-----------------------GCAGGCGAU-GAAG-CGGCCCG-CUGAGUCUGCGGGUAGGGAGCUGGA-GCCGGCUG
241 AGGGG AC ACCCCGGUGUCCCUGCG CGGAUGUUCGAGGGCUGCUCGCCCGAGUCCGCGGGUAGA CCGCACGAGGCCGGC-G

(((((((( )))))))) (((((( (((((( 1111)))))))))))) )))) (((((((-(

))))))))- - ))))) (( (((((((-(C ))-))))))) )) ]]]]]]]]
321 GUAACAGCCGGC-CUAGA-GGAAUGGUUGUCACGCACCGUUUG-CCGCAAGG-CGGGCGGGGCGCACAGAAUCCGGCUUA
321 GCAAC-GCCGGCCCUAGAUGGA-UGGCCGUCGC-C-CCGAC-GACCGCGAGGUCC-CGG-G-G-ACAGAACCCGGCGUA 

)-))))))) -))))))) (-(-((( -(((( )))) -)))-)-)- 11311131

) ))

401 UCGGCCUGCUUUGCUU
401 CAGCCCGACUCGUCUG

) ))))))))))

Figure 5.16: Constrained alignment between AE and SB produced by Wang and 
Zhang’s algorithm
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by our algorithm:

sequence 1: Alcaligenes-eutrophus-pb-b
sequence 2: Streptomyces-bikiniensis-gpb-h
The constrained stem pair:
1st stem:(outermost arc, innermost arc), 2nd stem:(outermost arc, innermost arc) 

(( 50, 324), ( 58, 317)), (( 48, 381), ( 56, 374))

The optimal constrained alignment score is 186.000
The optimal constrained alignment is:

(((((((((((((((((( (( (((((((( )))))))) )) EEC [[[[[(((( LIEC ((((( ((((
1 AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGC
1 CGAGCCGGGCGGGCGGCCGCGUGGGGGUCUUC- -GGACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGC 

(((((((((((((((((( (( ((((((( --))))))) )) [[[ ECCEE(((( EECI ((((((((((

)))) ((((( )))) )(( (( - (((( ((((((-((— --))-))))--))
81 UAACAGCCAUCCACGGCAACGUGCGGAAUAGGGCCACAGAGA-CGAGUCUUGCCGCCG-GG--UUCG-CC-CGCC-GG
81 VAACGGCCACCCGGGGUGACCCGCGGGACAGUGCCACAGAAAAC-AG ACCGCCGGGGACCUCGGUCCUCGGUAAGG 

)))))((((( )))) )(( (( - -------- ((((((((((( ))))))))) ))

--))))------------- — ----------------------------------------- ----------------------------- ))))))))))))) (((( -
161 G-AAGG------------- GU--GA-A-----------A---------------------- CG-----------------------C-- GGUAACCUCCACCUGGAGCAAUCCCAA-
161 GUGAAACGGUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCAGGCGGCUAGGUAAACCCCACUCGGAGCAAGGUCAAG 

(((((( )))))) (((((((( )))))))) ))))))))))))) ((((

----------------------------------------------- (((((( -((-((( ]]]])))-)))))))) )))) -((((((((
241 AU---A------------ G-----------------------GCAGGCGAU-GA-AGCGGCCCGCU-GAGUCUGCGGGUAGGGAGCUGGA-GCCGGCUG
241 AGGGGACACCCCGGUGUCCCUGCGCGGAUGUUCGAGGGCUGCUCGCCCGAGUCCGCGGGUAGACCGCACGAGGCCGGC-G 

(((((((( )))))))) (((((( (((((( B]])))))))))))) )))) (((((((-( 

))))))))- - ))))))) (( (((((((-(( ))-))))))) )) 11111111
321 GUAACAGCCGGC-CUAGA-GGAAUGGUUGUCACGCACCGUUUG-CCGCAAGG-CGGGCGGGGCGCACAGAAUCCGGCUUA
321 GCAAC-GCCGGCCCUAGAUGGA-UGGCCGUCGC-C-CCGAC-GACCGCGAGGUCC-CGG-G-G-ACAGAACCCGGCGUA  

)-))))))) - ))))))) (-(-((( -(((( )))) --)))-)-)- 11133111

) ))))))))))
401 UCGGCCUGCUUUGCUU
401 CAGCCCGACUCGUCUG ‘

) ))))))))))

by our algorithm:

sequence 1: Alcaligenes-eutrophus-pb-b
sequence 2: Streptomyces-bikiniensis-gpb-h
The constrained stem pair:
1st stem:(outermost arc, innermost arc), 2nd stem:(outermost arc, innermost arc) 

(( 12, 278), ( 18, 272)), (( 12, 341), ( 18, 335))

The optimal constrained alignment score is 186.000 
The optimal constrained alignment is:

(((((((((((((((((( (( (((((((( )))))))) )) [[[ [[[[[(((( [[[( ((((( ((((
1 AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGC
1 CGAGCCGGGCGGGCGGCCGCGUGGGGGUCUUC- GGACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGC 

(((((((((((((((((( (( ((((((( -))))))) )) [[[ [[[[[(((( EEU ((C(((((((

)))) ((((( )))) )(( (( - (((( ((((((-((-- --))-))))--))
81 UAACAGCCAUCCACGGCAACGUGCGGAAUAGGGCCACAGAGA-CGAGUCUUGCCGCCG-GG-UUCG--CC-CGGC-GG

81 UaacggccacccggggugacccgcgggacagugCCAC AG A A AAC-AG------- ACCGCCGGGGACCUCGGUCCUCGGUAAGG
)))))((((( )))) )(( (( - -----  ((((((((((( ))))))))) ))

--))))--------- - --------------------------- ____________ ))))))))))))) (((( -
161 G--AAGG-------------GU--GA-A-----------A---------------------- CG---------------------- C-GGUAACCUCCACCUGGAGCAAUCCCAA-
161 GUGAAACGGUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCAGGCGGCUAGGUAAACCCCACUCGGAGCAAGGUCAAG 

(((((( )))))) (((((((( )))))))) ))))))))))))) ((((

--------------------------------(({((( -((-((( ∏]])))-)))))))) )))) -((((((((
241 AU------ A------------- G---------------------- GCAGGCGAU-GA-AGCGGCCCGCU-GAGUCUGCGGGUAGGGAGCUGGA-GCCGGCUG
241 AGGGGACACCCCGGUGUCCCUGCGCGGAUGUUCGAGGGCUGCUCGCCCGAGUCCGCGGGUAGACCGCACGAGGCCGGC-G  

(((((((( )))))))) (((((( (((((( BB)))))))))))) )))) (((((((-( 

))))))))- - ))))))) (( (((((((-(( ))-))))))) )) 11131111
321 GUAACAGCCGGC-CUAGA -GGAAUGGUUGUCACGCACCGUUUG-CCGCAAGG-CGGGCGGGGCGCACAGAAUCCGGCUUA 
321 GCAAC-GCCGGCCCUAGAUGGA-UGGCCGUCGC-C-CCGAC-GACCGCGAGGUCC- CGG-G-G-ACAGAACCCGGCGUA 

)-))))))) -))))))) (-(-((( -(((( )))) -)))-)-)- ]B]]]B 

) ))))))))))

401 UCGGCCUGCUUUGCUU
401 CAGCCCGACUCGUCUG

) ))))))))))

Figure 5.17: Constrained alignment between AE and SB produced by our algorithm
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Chapter 6

Conclusions and Future Work

In this thesis, based on the previous works on the alignment between RNA struc­

tures, we have presented an improved algorithm for alignment between RNA tertiary 

structures. For simple tertiary structures, we can compute the optimal alignment 

efficiently. For moderate tertiary structures, we adopt the constrained alignment ap­

proach. Although the result produced by constrained alignment is not guaranteed to 

be an optimal solution, in practice it would be reasonable.

Major contributions of this thesis are summarized as follows:

• We proposed a new partition approach of the set of maximal stem pairs. And we 

proposed a method to optimize the preliminary partition result. The optimized 

partition is local minimal.

• We proposed a method to preprocess “crossing stem pairs” and filter out unnec­

essary “crossing stem pairs” to accelerate the computation of optimal alignment 

between RNA tertiary structures.

• We proposed a faster implementation to compute optimal alignment between 

RNA tertiary structures.

• We proposed a constrained alignment method to align moderate RNA tertiary 

structures.
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These algorithms have been implemented into a software package. We performed 

extensive experiments of our alignment algorithms on real RNA structures. Exper­

imental tests show that our algorithms can be used to compute alignment between 

RNA tertiary structures in practical applications.

For further work, we have several directions listed as follows.

• We can get local minimal partition of the set of maximal stem pairs by our 

method. But currently we have not found any polynomial algorithm to compute 

the minimum partition of the set of maximal stem pairs. We conjecture that 

this problem is NP-Hard.

• Currently, our alignment algorithm is under linear gap penalty model. It can 

be extended to affine gap penalty model.

• In the current implementation, we only accept the region table format for input 

RNA tertiary structures. We can extend our package to accept other RNA data 

formats (ct2 format, rnaml format).

• We can implement the optimization technique discussed in Section 4.5.10 to 

remove redundant computation.

• We can design artificial RNA tertiary structures to test how complicated tertiary 

structures that our optimal alignment algorithm can handle with limited mem­

ory (such as 1 GB). We can set a standard according to those designed tertiary 

structures. For tertiary structures which are simpler than the designed struc­

tures, we can compute the optimal alignment. For tertiary structures which are 

more complicated than the designed structures, we can compute the constrained 

alignment.

These issues are worth further investigation.
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