Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

2010

Improved Algorithms for Alignment between RNA Tertiary
Structures

Qichan Ma
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Ma, Qichan, "Improved Algorithms for Alignment between RNA Tertiary Structures" (2010). Digitized
Theses. 4497.

https://ir.lib.uwo.ca/digitizedtheses/4497

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4497?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Improved Algorithms for Alignment between RNA
Tertiary Structures

(Spine title: Algorithms for Alignment between RNA Tertiary
Structures)

(Thesis format: Monograph)
by
Qichan Ma

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

(© Qichan Ma 2010

CERTIFICATE OF EXAMINATION

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

Supervisor Examining Board

Dr. Kaizhong Zhang Dr. Michael Dawes

Dr. Charles Ling

Dr. Bob Webber

The thesis by

Qichan Ma

entitled

Improved Algorithms for Alignment between RNA Tertiary Structures

is accepted in partial fulfillment of the
requirements for the degree of
Master of Science

Date

Chair of Examining Board
Dr. Mike Katchabaw

ii

Abstract

RNA is an important molecule which performs a wide range of functions in bio-
logical systems. The comparison between RNA secondary and tertiary structures has
received much attention recently. It is a well known fact that structural features of
RNAs are among the most significant factors in the molecular mechanisms involved
in their functions. The presumption is that, to a preserved biological function there
corresponds a preserved molecular structure. Therefore, the ability to compare RNA
structures is useful. Furthermore, in many problems involving RNAs, it is required
to have an alignment between RNA structures in addition to a similarity measure.

Computing alignment between RNA tertiary structures is NP-hard and MAX
SNP-hard. In this research, we present algorithms for computing the alignment be-
tween two RNA tertiary structures. For simple tertiary structures, we can compute
the optimal alignment efficiently. For moderate tertiary structures, we adopt the con-
strained alignment approach. Although the result produced by constrained alignment
1s not guaranteed to be an optimal solution, in practice it would be reasonable. Ex-
perimental tests show that our algorithms can be used to compute alignment between

RNA tertiary structures in practical applications.

Key words: dynamic programming, sequence alignment, RNA, RNA secondary

structure, RNA tertiary structure, RNA structural alignment.

111

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor, Dr.
Kaizhong Zhang, for his guidance, support and encouragement during my master
study and research. I could not have imagined having a better advisor and mentor
for my master study:.

I sincerely thank the members of the examination board for their helpful sugges-
tions.

I would like to thank my family for their love and support.

1v

AR

PR AT el el A TRl oo TP LR Lk g S S L L e o T ot et T e e a e el e e el S e B
A i et SR A e LR e B A e, e DR T e] e e e T D e Rt ..,‘._A_A)h-}i S

L

Contents

Certification of Examination
Abstract
Acknowledgements
Contents

List of Tables

List of Figures

List of Algorithms

1 Introduction
1.1 Objective and Motivation
1.2 RNA Structures e e e e,

2 A Review of Sequence Alignment

2.1 Alignment e
2.1.1 Edit Operations
2.1.2 Number of Alignments
2.1.3 Dynamic Programming Solution

2.1.3.1 Dynamic Programming
2.1.3.2 Property of Optimal Alignments
2.1.3.3 Algorithm oL,
2.1.34 AnExample 0.

2.2 Gap . ..
2.2.1 GapPenalty Models,
2.2.2 Computing Optimal Alignment with Affine Gap Penalty

2.2.2.1 Property of Optimal Alignments
2.2.2.2 Algorithmo 000,

ii

iii

v

viii

ix

x1

S

O O O

3 A Review of RNA Structural Alignment 27

3.1 RNA Alignment Models 28
3.2 Hardness Results 35
3.3 Wang and Zhang’s Algorithm 37
3.3.1 Property of Optimal Alignments. 38
3.3.2 Algorithm 44
3.3.3 Constrained Alignment 45
3.4 Mohl et al.’s Algorithm, 45
3.4.1 Partition Arc Pairs into Crossing Arc Pairs and Non-crossing
Arc Pairs S 46
3.4.2 Precomputation of Stem Pairs, .. 47
3.4.3 Property of Optimal Alignment 51
3.4.4 Algorithms 54
4 Improved Algorithms for Alignment between RNA Tertiary Struc-
tures 57
4.1 Basic Definitions L 58
4.2 Partition Arc Pairs into Crossing Arc Pairs and Non-crossing Arc Pairs 61
4.3 A General Score Scheme 64
4.4 Property of Optimal Alignments 66
4.5 Algorithms. 70
4.5.1 Partition m_stem Pairs into Crossing m_stem Pairs and Non-
crossing m_stem Pairs oL 71
4.5.2 Accelerating Computation by Preprocessing Crossing Stem Pairs 74
4.5.2.1 Preprocess Crossing Stem Pairs 79
4.5.3 Formula for Computing Optimal Alignment 86
4.5.4 Computing All Possible Proper Open Stem Pairs Sets 91
4.5.5 Algorithm for Computing Optimal Subalignment without Open
Stem pairs 92
4.5.5.1 Modifying Conditions of Lemma 4.5.11 94
4.5.5.2 Organizing Values - 96
4.5.5.3 Generate New Matrices 97
4.5.5.4 Maintain livel and activeL 100
4.5.5.5 Computation of Lemma 4.5.11 101
4.5.6 Algorithm for Computing Optimal Subalignment with Open
Stem pairs e e e e e e 103
4.5.7 Algorithm for Computing Optimal Global Alignment 106
4.5.8 Trace Back to Produce Optimal Alignment 106
4.5.9 Complexity 109
4.5.10 Possible Further Optimization 112
4.6 Constrained Alignment oo 114

Vi

5 Implementation and Experiment Results 117

5.1 Implementationo 117
5.2 Experiment Results oo, 120
5.2.1 Results of Filtering Crossing Stem Pairs 120

5.2.2 Comparison to Mohl et al.’'sresults 124

5.2.3 Comparison to Wang and Zhang’'sresults 125

6 Conclusions and Future Work 136
Bibliography 138
Vita 140

vil

List of Tables

2.1
2.2

2.3

5.1
5.2
3.3
5.4
3.9

2.0

A simplescore scheme 15
Computation matrix of alignment between two sequences AAUAAGU
and AUAACAU e 16
Trace back to produce an optimal alignment between two sequences
AAUAAGU and AUAACAU 16
An example of score scheme for single bases 118
An example of score scheme for base pairs 119
The results of filtering crossing stem pairs 123
Comparisons of our results to Mohl et al.’s results [13] 125
First comparison of our results to Wang and Zhang’s constrained align-
ment resultso 129
Second comparison of our results to Wang and Zhang’s constrained
alignment results Lo oL 134

Viii

List of Figures

1.1
1.2
1.3

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
9.3
5.4
9.9
5.6
5.7
5.8
5.9

An example of RNA secondary structure
An example of RNA tertiary structure and pseudoknots
Anexampleofstem

Sequence alignment with edit operations

pis before p’; p'isafterp. L,
pisinside p’; p'isoutsidep
p is right crossed by p’; p’ is left crossed by p
An example of arc pairs e e e e e
An example of crossing arcpairs
RNA structure alignment with edit operations
An example of extend stem L.
An exampleof stem pair L
Hlustration of Mohl et al.’s recursion to compute D items
An illustration of the crossing number of a position (x,y)

[lustration of the proof of Lemma 4.56.
A simple illustration of computing the S"item
A simple illustration of inner local m_stem pair
A simple illustration of open stem pairs of a segment (i1, %2; j1, J2)

An illustration of open area of a crossing stem pair
An illustration of open area of a crossing stem pairsset
An illustration of computing A(iy,4s; j1, ja| M) (Mo #0)
An illustration of redundant computation

RNA input file of Alcaligenes eutrophus and Streptomyces bikiniensis
Region table representation for MB
Region table representation for CC
Region table representation for UP
Region table representation for UPnest
Optimal alignment between UPand MB
Optimal alignment between UP and CC
Optimal alignment between UP and UPnest
Optimal alignment between MB and CC

1X

o v n

5.10 Optimal alignment between MB and UPnest 128

5.11 Optimal alignment between CC and UPnest 128
5.12 Constrained alignment between UPand MB 130
5.13 Constrained alignment between UP and CC 131
5.14 Constrained alignment between MBand CC 132

5.15 Structures of Alcaligenes eutrophus and Streptomyces bikiniensis from
the RNase P database. Source: http://www.mbio.ncsu.edu/RNaseP . 133
5.16 Constrained alignment between AE and SB produced by Wang and
Zhang’s algorithm 134

5.17 Constrained alignment between AE and SB produced by our algorithm 135

http://www.mbio.ncsu.edu/RNaseP

List of Algorithms

2.1
2.2
2.3
24
2.5
2.6
2.7
4.1
4.2
4.3

Sequence-Distance(S1, S2) oo 13
Sequence-Traceback(Sy, So, M(0..|51];0..0S2|)) - 14
Sequence-Align(Sy, Sa, M(0..|S11;0..4S2)) . - - . . . o oo 15
Sequence-Distance-Gap(Sy, Sa) - - - . .. oo 23
Sequence-Traceback-Gap(S1, So, Ma p1(0..51];0..]Ss])) Part 1 25
Sequence-Traceback-Gap(S1, Sz, Ma p 1(0..]51];0..|Ss|)) Part 2 26
Sequence-Align-Gap{Sy, So, Map1(0..|51];0..1S20)) o 26
Inner-Local-Maz-Stem-Pair-Align{{ap,ar)) 83
Preprocess-Crossing-Stem-Pairs(STHSX) . . o o oo oo oL 85
Gen-OSP-for-NC-Seg(STMAX STer) - v o o v oo oo 93

X1

Chapter 1

Introduction

1.1 Objective and Motivation

In this research, the problem of interest is structural alignment between two RNA
molecules. More specifically, we focus on alignment between two RNA tertiary struc-

tures.

The comparison and alignment between RNA secondary and tertiary structures
has received much attention recently. The motivation for this kind of work is mainly
due to the importance of RNA molecule. RNA is an important molecule which
performs a wide range of functions in biological systems. At the ribosomal level,
messenger RNA (mRNA) is used to read the genetic code and transfer RNA (tRNA) is
utilized to make the protein sequence. In the case of certain viruses, such as HIV, it is
RNA (not DNA) that carries genetic information and regulates the functions of these
viruses. RNA has recently become the center of much attention due to its catalytic

properties, leading to an increasing interest in obtaining structural information.

It is a well known fact that structural features of RNAs are among the most signif-
icant factors in the molecular mechanisms involved in their functions. The presump-
tion is that, to a preserved biological function there corresponds a preserved molecular

structure. Hence the ability to compare RNA structures is useful [1, 5, 6, 8, 11, 21].

Furthermore, in many problems involving RNAs [3,'16], 1t is required to have an
alignment between RNA structures in addition to a similarity measure [17].

The primary structure of RNA is a sequence of nucleotides (bases). The primary
structure, also called RNA sequence, is denoted by a sequence over the four-letter
alphabet ¥ = {A4,C,G,U}. The secondary or tertiary structure of RNA is a set of
base-pairs. For RNA secondary structures, these base-pairs have traditionally been
é,ssumed to be nested, i.e. one-to-one and non-crossing. For tertiary structure, there
1s no restriction of non-crossing.

Arc-annotated sequences [6, 8, 9, 13| are useful in representing the structural
information of RNA sequences. In general, RNA secondary and tertiary structures
can be represented as a set of nested arcs and a set of crossing arcs, respectively.

Computing alignment between RNA tertiary structures is NP-hard and MAX
SNP-hard [21, 12, 19, 9]. This means that this problem has no solutions in polynomial
time, and there is no polynomial time approximation scheme (PTAS) for it unless P
= NP.

Wang and Zhang presented an algorithm to compute the alignment between RNA
structures for the case where aligned base pairs are non-crossing [19]. They treated
a base pair as a unit and do not allow it to match to two unpaired bases. Un-
der this restricted assumption, when at least one of the RNA structures involved
is a secondary structure, their algorithm can compute the optimal alignment in
O(stem(R1) x stem(Rz) x |R;| x |Rz|) time. One more step, can be added to the
algorithm to align tertiary base pairs. This step can be considered as a constrained
alignment.

An improved edit distance model was proposed by Jiang et al. in [9] to measure
the similarity between RNA structures. In addition to base insertion, base deletion,
base substitution, base-pair insertion, base-pair deletion, base-pair substitution, the
authors introduced two new edit operations, base-pair bond breaking and base-pair
altering. Under this model, even computing edit distance between a tertiary struc-

ture and a primary structure is MAX SNP-hard. Jiang et al. present a dynamic

programming algorithm for computing edit distance between a secondary structure
and a primary structure, and a dynamic programming algorithm for a solvable case
of edit distance between a tertiary structure and a secondary structure under a class
of restricted scoring schemes [9].

Another line of works related to similarity comparison between RNA secondary
and tertiary structures is focused on primary structure [1, 5] where the comparison
is basically done on the primary structure while trying to incorporate the secondary
and tertiary structural information. The weakness of this approach is that it does
not treat a base-pair as a whole entity:.

Recently, a fixed parameter tractable algorithm was proposed in [13]. This algo-
rithm is a generalization of the algorithm in [9] to tertiary structures. It computes
the optimal alignment between two RNA tertiary structures. The parameter, which
determines the exponential runtime, depends on how complex the crossing stems are
arranged. Unfortunately, this algorithm only works if the fixed parameter k is very
small, for example £ = 1. When the parameter is large, it is not affordable due to
too high usage of space and time.

In this thesis, we present algorithms for computing the alignment between two
RNA tertiary structures. We follow the work of M6hl et al. [13], and have made
several optimizations to accelerate their algorithm. For simple tertiary structures,
we can compute the optimal alignment efficiently. For moderate tertiary structures,
we adopt the constrained alignment approach. Although the result produced by
constrained alignment is not guaranteed to be an optimal solution, in practice it
would be reasonable. Experimental tests show that our algorithm can be used to
compute alignment between RNA tertiary structures in practical applications.

The rest of the thesis is organized as follows.

In the remaining part of this chapter, we provide a brief introduction to the RNA
structure.

Chapter 2 gives an overview of sequence alignment. It serves as a useful back-

ground for RNA structural alignment problem which is discussed in Chapter 3.

Chapter 3 gives a review of RNA structural alignment. It serves as a useful
background for our algorithms.

In Chapter 4, we present algorithms for alighment between two RNA tertiary
structures. This work is based on [13] by Mohl et al..

Chapter 5 presents the detail of implementation and a discussion of experimental

results.

In Chapter 6, several conclusions are drawn and suggestions for future work are

given.

1.2 RNA Structures

An RNA (Ribonucleic Acid) is a polymer consisting of ribonucleotides linked together
in a chain. Each ribonucleotide contains one of four possible bases, which are adenine
(A), cytosine (C), guanine (G) and uracil (U).

An RNA molecule has two sets of structural information. First, the primary
structure of an RNA molecule is a single strand made of the ribonucleotides A, C,
G and U. Second, the ribonucleotide sequence folds over onto itself principally by
means of hydrogen bonds to form double-stranded regions of base pairings, yielding
higher order secondary structure or tertiary structure.

Because an RNA sequence is composed of four possible bases, we can use a four-
letter alphabet ¥ = {A, C,G, U} to represent an RNA sequence. This base sequence
is usually referred to as primary structure. Formally, the character sequence R =
rire - -, Wherer; € ¥ (1 < i < n) is called RNA primary structure. Conventionally,
we will refer to the left end of the sequence as the 5 end of the RNA and the right
endlof the sequence as the 3’ end of the RNA.

RNA secondary and tertiary structures are represented as a set of bonded pairs
of bases. Various base pairings have been detected, but three kinds occur more
frequently than any others. These three base pairings are A — U (U — A), C - G
(G—C)and G—U (U—-G). Basepairs A-~U (U—-A) and C -G (G —C) are called

Watson-Crick base pairs. The base pair G — U (U — G) is referred to as Wobble base

pair. These three types of pairings are referred to as canonical base pairs. Others are

called non-canonical base pairs.

A bonded pair of bases (base-pair) is usually represented as an arc between the
two complementary bases involved in the bond. It is assumed that any base partic-
ipates in at most one such pair (i.e., one-to-one). If there is no crossing in the set
of arcs representing a structure, the structure is considered as secondary structure.
Otherwise, the structure is considered as tertiary structure. The crossing pairs form
pseudoknots. An example of secondary structure is given in Figure 1.1. Tertiary

structure and pseudoknots are illustrated in Figure 1.2.

N AN NN

AAAGAAUAAUUUACGGGACCCUAUAAA

Figure 1.1: An example of RNA secondary structure

pseudoknots

AAAGAAUAAUUUACGGGACCCUAUAAA

Figure 1.2: An example of RNA tertiary structure and pseudoknots

In an RNA structure, it occurs frequently that base pairs are stacked up one next
to another. These stacked base pairs together form a stem, as shown in Figure 1.3.
In the traditional definition, the stem is stacked pairs of maximal length. We will

introduce a different definition in Chapter 3.

GAUGAAGCGGCCCGCUGAG

Figure 1.3: An example of stem

Chapter 2

A Review of Sequence Alignment

In this chapter, we give an overview of the most foundation problem of biological
sequence analysis — sequence alignment. Most algorithms discussed in this chapter
are extended from Zhang’s course notes [20]:

A sequence can be viewed as a primary structure without base pairs. Thus the
structural alignment problem which we will discuss in Chapter 3 is actually an ex-

tension to the sequence alignment problem.

2.1 Alignment

In this thesis, we will not touch local alignment or fitting one sequence into another.
We only discuss global alignment which serves as a basis for the structural alignment
problem in Chapter 3. When there is no confusion, global alignment will be referred

to as just “alignment”.

A sequence alignment is a possible way in which characters of one sequence may
be matched with characters of another sequence. It shows one way, out of many, to
edit one sequence into the other. It can show how similar two sequences are.

Now we give a formal definition of alignment.

If S is a sequence, then |S| denotes the length of S and Si| denotes the i-th

character of S. We use S|, j] to represent the subsequence of S from S[i] to S[j]. We
use symbol '—’ to denote space.
Given two sequences S; and Sy which are over some alphabet X, the alignment of

S1 and Sy is represented by (S, S%) satisfying the following conditions:

e 5] is S with some new symbol ‘~’ which is not in ¥ inserted and S} is S, with

some new symbol '—’ inserted such that |S7| = |S5].
o Vie{l,...,|S1|}, at least one of Si[i] and Sh[i] cannot be '—'.

In the case of RNA sequence alignment, ¥ = {A,C,G,U}.

2.1.1 Edit Operations

The most popular measurements that are used to compare the similarity of two se-
quences are distance and similarity. In this research, we adopt the distance measure.
There are three basic edit operations, insertion, deletion and substitution in se-

quence alignment. They are defined as follows.
e Insertion: insert a character into a sequence.
e Deletion: delete a character from a sequence.

e Substitution: replace a character in a sequence with another character. There
are two types of substitution. One is match (a character is replaced by an
identical character), and the other is mismatch (a character is replaced by a

different character).

Now we give a formal presentation. We represent an edit operation as a — b,
where a and b are either A, the null label, or labels from the alphabet ¥.

We call a — b a substitute operation if a # X and b # A (if a = b, it is a match
operation; else it is a mismatch operation); a delete operation if 6 = A; and an insert

operation if a = A. (Figure 2.1 gives a simple illustration of sequence alignment

with edit operations.) Let I" be a cost function which assigns to each edit operation
a — b a nonnegative real number I'(a — b). We constrain I" to be a distance metric.
That is, (1) I'(a - b) > 0, I'(a — a) = 0, (2) T'(a = b) = I'(b = a), and (3)
'a—=c)<T(a—b)+T(b—c).

base deletion base mismatch

Voo

AAUAAG-U

A-UAACAU

T T

base match base insertion

Figure 2.1: Sequence alignment with edit operations

Given an alignment (S, S5), we define substitution M, deletion D, insertion I, as

follows.

M = { 1| 5i[i] and S5[i] are characters from X}.

D = {1i] Si[i] is a character from ¥ and Sy[i] ='~'}.

I ={1i] S3[i] is a character from ¥ and Si[i] ='-"}.
The cost of an alignment (57, 55) is defined as follows.

cost((S7, Sy)) = ZF(SHZ] — Syli])

ieM

+) T(Sili] = A)

€D

+) T(A = Si]) (2.1)

el

Given two sequences S; and S, the edit alignment between them is defined as

Align(Sy, S2) = (gpg}){cost((1,59))}- (2.2)

A similarity (maximization) version can also be considered, where the goal is to
find the maximum-scoring edit alignment. It is similar to the distance alignment
problem. We still define three edit operations: insertion, deletion and substitution,
which are the same as the ones in the distance version. The major difference is the
scoring method. In the similarity alignment problem, a mismatch is assigned a real
score, a match is assigned a positive score, and each deletion/insertion is assigned
a non-positive score. The similarity alignment problem was proposed and solved by
Needleman and Wunsch in [14]. We will explain a variation of their algorithm under
the distance measure later.

Finding distance and similarity alignments are dual problems. That is, when
aligning two sequences by distance, there is a similarity algorithm that gives the
same optimal alignment and vice versa. A score from distance alignment or similarity
alignment can indicate the homology between sequences. Smaller distance score or

higher similarity score reflects the higher degree of homology.

2.1.2 Number of Alignments

A naive way to find the optimal alignment between two sequences is to try all possible
combinations of edit operations and pick the best one. However, the number of all
possible alignments is exponential with respect to the sequence length. Consider
two sequences S = $18y3...8, and T = t1t5...%,,. An alignment between these two

sequences can end in only three ways:

..Sn ...Sn P R

ot | ot

Define f(n,m) to the number of possible alignments between sequence S with

length n and T' with length m. Therefore we have the recursion

fln,m)=f(n—-1,m—-1)+ f(n~-1,m)+ f(n,m—1) (2.3)

10

If s, is aligned to t,,, there are f(n — 1,m — 1) ways of aligning s;sy...8,-1 to
tita. . . tm-1. If 5, is aligned to’'—’, there are f(n —1,m) ways of aligning s;5, ... 8,_1
to ¢1t9. ..ty If £, is aligned to '—’, there are f(n,m — 1) ways of aligning s;s;... s,

to tity. .. t—1.. When m =n, f(n,n) can be solved as
f(n,n) = (1+ V2" /m (2.4)

This approximation is obtained by H. T. Laquer [10).

For example, given two sequences each of length 500, there are
£(500,500) = (1 + v/2)1%°1/500 & 3.22 x 10 possible alignments.

This example shows that it is just not feasible to enumerate all possible alignments
to get the optimal one. Therefore, a better é,lgorithm is needed to compute optimal

alignment between two sequences.

2.1.3 Dynamic Programming Solution

2.1.3.1 Dynamic Programming

Dynamic programming is an efficient programming technique for solving a broad range
of search and optimization problems which exhibit the characteristics of optimal sub-
structure and overlapping subproblems [4]. A problem exhibits optimal substructure
if an optimal solution to the problem can be constructed from optimal solutions to
its subproblems [4]. A problem has overlapping subproblems if it can be broken down
into subproblems which are reused multiple times [4]. Dynamic programming has
long been a major technique in the sequence alignment problem [14, 18].

The idea of dynamic programming is to solve a problem by first solving its sub-
problems. The smallest subproblems are explicitly solved first, and the results of these
are used to construct solutions to progressively larger subproblems. This constitutes

a bottom-up approach.

11

2.1.3.2 Property of Optimal Alignments

Consider two sequences S; and S;. We can observe that a prefix of the optimal
alignment between S; and S, which contains exactly first ¢ characters of 57 and first
j characters of Sy (this prefix may also contain spaces '—'s) is an optimal alignment
between a prefix Si[1,i] of S; and a prefix Ss[1,j] of S;. So an optimal alignment
score can be computed by scanning S; and Sy from left to right, recording only the

optimal alignment scores between prefixes of S; and 5.

We use I'() to define y(i,7) for 0 < i < [S;| and 0 < j < |S5] .

1(5,0) = T(S1fi] =) (2.5)
1(0,) = T(A = S17) (26
1(i,5) = T(S1il = Sl (27

From this definition, we know that (7, 0) is the cost of deleting character S;[i], (0, 5)
is the cost of inserting character Sy[j], and (i, §) is the cost of aligning 5;[i] to Sa[j].

We now consider the optimal alignment between S)[1,7] and Ss[1,7]. We use
A(i,7) to represent the optimal alignment cost between Si[1,7] and Ss[l,j]. The

following lemmas will show how to compute A(i, j).

Lemma 2.1.1

A(0,0) = 0 (2.8)

Proof: Consider A(1,1). If the optimal alignment results from aligning S1[1] to Sy[1],

then we only need to account for the cost for aligning S;[1] to Sp[1]. Hence we may

set A(0,0) =0. O]

Lemma 2.1.2 Fori > 0,

A(i,0) = A - 1,0) ++(,0) (2.9)

12

Proof: It is obvious that each element in S;[1,4] is aligned to '~’. That is, Si[i]

/

is aligned to '—’, and each element in S;[1,7 — 1] is aligned to '—’. Hence we have

A(7,0) = A(i — 1,0) + (3, 0). O

Lemma 2.1.3 Forj > 0,

A(0,7) = A(0,5 — 1) + (0, 5) (2.10)
Proof: Similar to Lemma 2.1.2.]

Lemma 2.1.4 Fori >0 and j > 0,

4

A(i—1,7) +v(4,0)

A(4,§) = min § A(i, j — 1) + (0,) (2.11)

Al = 1,7 = 1) +7(4,4)

\

Proof: Consider S;i] and S3[j]. There are exactly the following cases.

(1) Sile] is aligned to '—’'. Thus Si[1,7 — 1] is aligned to Sy[1,j]. Hence the
A —1,7) + v(4,0) item.

(2) Salj] is aligned to '—’. Thus Si[1,1] is aligned to S3[1,7 — 1]. Hence the
A(i,5 — 1) + (0, §) item.

(3) S1]t] is aligned to S3[j]. Thus Si[1,7 — 1] is aligned to Sp[1,j — 1]. Hence the
A(i—1,7—1)+~(,7) item.

Therefore we take the minimum of the three cases and get the above recursion. [J

2.1.3.3 Algorithm

From Lemmas 2.1.1 to 2.1.4, we can compute Align(Si, So) = A(|S1],|S2|) using a
bottom-up approach. Algorithm 2.1 shows how to compute optimal alignment score.

The implementation involves filling a matrix M (0..|51];0..|S2|) of size (|Si| +
1)(1Sa| + 1). We use Eq. 2.8 to 2.11 to fill the matrix, starting at the upper-left

13

Algorithm 2.1 Sequence-Distance(Sy, So)
Input: Two sequences S; and Sy with n = |Si| and m = |5,
Output: Alignment score matrix M (0..|S1[;0..|S2|).

. compute A(0,0) as in Lemmas 2.1.1

: for1 < 1tondo

compute A(%,0) as in Lemmas 2.1.2
: end for

1
2
3
4
5. for) « 1 tom do
6.
7
8
9

compute A(0, 7) as in Lemmas 2.1.3
. end for
. for 1+ 1 tondo

for 1 « 1tomdo

10: compute A(7,7) as in Lemmas 2.1.4
11: end for
12: end for

cell and scan the matrix from left to right, row by row as we are filling it. A matrix

entry is assigned a value based on its adjacent (top, left and top-left) entries of which

the values have been computed.

The time complexity of Algorithm 2.1 is O(|S51]|S2]), and the space complexity is
O(]51]]52]).

To produce an optimal alignment, we trace back the matrix containing alignment
scores. We start at the matrix cell holding the optimal score (that is the lower-right
cell), repeating the recurrence formulae to decide in which direction to move next. As
the recurrence returns, the alignment is output. We provide a stack based method

for traceback in Algorithm 2.2 and Algorithm 2.3.

The time complexity of the traceback part (Algorithm 2.2 and Algorithm 2.3) is
O(|S1| + |S2|), and the space complexity is O(]S1]]S2]).

Therefore, the time complexity of the whole dynamic programming solution is

O(|S51||S2]), and the space complexity is O(|S1||S2|).

14

Algorithm 2.2 Sequence-Traceback(Sy, So, M(0..|51];0../52]))
Input: Two sequences S and S; with n = |S;| and m = | S|, and alignment score
matrix M(0..|S;];0..]S3]) as computed by Algorithm 2.1.
Output: A stack stack containing ordered pairs of sequence indices in an alignment
(57, S5) with the minimum score as computed by Algorithm 2.1.
I: 14671
2: ¢ m
3: whilei >0and 5 > 0do
4: if A(i,5) = A(G —1,7) +v(,0) then
5: push_stack(i, —1)
6: 11— 1
7. else if A(i,j) = A(i,j — 1) + (0,) then
8: push_stack(—1, j)
9: j+—7~—1
10: else // A(i,5) = A(i — 1,§ — 1) + (i,)
11: push_stack(, 7)
12: 14—1—1
13: j—7—1
14: end if
15: end while
16: while 7 > 0 do

17: push_stack(i, —1)
18 1+ 1—1

19: end while

20: while 7 > 0 do

21: push_stack(—1, j)
22 J+7—1

23: end while

15

Algorithm 2.3 Sequence-Align(Sy, S, M(0..]S1];0..|S2|))
Input: Two sequences S; and S with n = |S;| and m = |S;|, and alignment score
matrix M(0..|S1|;0..|S2|) as computed by Algorithm 2.1.
Output: An optimal alignment Align between S7 and 5.
1: Sequence-Traceback(Sy, So, M(0..|S1];0..|S2])) // Algorithm 2.2
2: while stack is not empty do
3: (i,7) < pop_stack
if 2 > 0and j = —1 then
append (S;[i],’—") to the alignment
elseif 1 = ~1and 7 > 0 then
append ('—’, S3[/]) to the alignment
else //i>0and j >0
append (S51[i], S2[j]) to the alignment
10: end if
11: end while

2.1.3.4 An Example

We now consider a simple example. We want to compute the alignment between two
sequences S; = AAUAAGU and S; = AUAACAU. The score scheme used is shown
in Table 2.1. The value of entry (a,b) of the table (a,b € {A,C,G,U,-}) is the cost
of substituting a with b if a # '—' and b # '—/, or the cost of deleting a if a # "'
and b ='—', or the cost of inserting b if a ='—'" and b # '—'. (Notice that the entry

('—',"=") does not exist since we cannot align '—' to '—".)

A|lC|G|U| -
Al0j11111]1
Cl|1]0}1}1]1
Gi1}j170]1]1
Uvi1;11170}1
—-11]111)1

Table 2.1: A simple score scheme

Applying Algorithm 2.1 to the example, we obtain the alignment score matrix
which is shown in Table 2.2. The optimal alignment score is 3 as the lower-right cell
shows.

Applying Algorithm 2.3 to Table 2.2, we obtain an optimal alignment between

16

Ol e x| | o =] O |
il o= = ol
= col pof =l pof = o] o]
ol pof =] Dof bo] bO| o | s
wol o o]l | w| x| o| O
ol ol o | x|]y o
Y BTSN TSN NG NS I] e Y N | Ry

T Q| e | T s |
~J OO o x| | Of |

Table 2.2: Computation matrix of alignment between two sequences AAUAAGU and
AUAACAU

S; and S;. In Table 2.3, the path marked by the asterisk signs corresponds to the

optimal alignment. The alignment is shown as follows.

A AU A A G - U
A - U A A C AU

- AU |A|A|C|A|U
-0t 11213141567
A{1{0*| 1|23 |4|5]|6
Al2 |11 111123]|4]5
U3 |2 }1*|2|2]|3|4]|4
Al4 132|112]3]|3]4
A543 |21 23|14
G|6 |5 |4 |3 |2 (23|14
U765]4]13]|3]3]3*

Table 2.3: Trace back to produce an optimal alignment between two sequences
AAUAAGU and AUAACAU

2.2 Gap

A gap in an alignment (S7, S5) is a consecutive subsequence of '—'’s in either 5] or 5,
with maximal length. More formally, [i--- j] is a gap in (5], S5) if either Si[k] ="'
for i < k < g, Sili —1] # '~ Si[j+1] # ', or S3lk] ="' fori < k < 5,
Solt — 1] # ', Soli +1] # '~

17

2.2.1 Gap Penalty Models

When mutations take place in nature, it is widely believed that the occurrence of
a gap with k consecutive spaces is more probable than k separated spaces. This is
because a gap may be due to a mutation which deletes several consecutive bases in one
single event whereas separated spaces are more\likely due to several different events.
A single event is more common to happen than several different events. Therefore,
it is sometimes required to weight the cost of deletion (or insertion) of a number of
consecutive bases differently from summing the costs of single deletions (or insertions).

Now we introduce a general gap penalty model. Let g;(i1,7) be the cost for
deletion of characters from Si[i1] to S1[i] of Si, and g¢2(j1,7) be the cost for insertion
of characters from Ss[j1] to Sa[j] of Ss. It is reasonable that g;(i1,1) < chzil g1k, k)
and g5(j1,5) < Y1, g2(1,1).

We now consider how to compute the optimal alignment cost A(7,j) between

S1[1,1] and S5[1, 7] under this model. Similar to Lemmas 2.1.1 to 2.1.4, we can get

following lemmas.

Lemma 2.2.1

A(0,0) =0 (2.12)

Proof: Similar to Lemma 2.1.1. B
Lemma 2.2.2 Fori >0,

A(3,0) = g1(1,1) (2.13)

Proof: It is obvious that each element in S{[1,] is aligned to '—'. Thus subsequence

S1(1,14] is deleted. Hence we have A(i,0) = g1(1,1). O

Lemma 2.2.3 For j > 0,
A(0,7) = g2(1,7) (2.14)

Proof: Similar to Lemma 2.2.2.]

18

Lemma 2.2.4 Fori >0 and 7 > 0,

/

miny<k<i{ A — k,J) + g1(i — k +1,4)}
A(4,7) = min § min, < {A®i,j — 1) + g2(j — 1 + 1,5)} (2.15)

A(i—1,5 - 1) +7(,5)

\

Proof: There are exactly the following cases.

(1) Each element in Si[i —k+1,1] (1 < k < 1) is aligned to’—'. Thus subsequence
5102 — k+1,14] is deleted, and Si[1,7 — k] is aligned to S»[1, j]. Hence the A(i —k,) +
g1(i —k+1,1) item. We need to iterate over all possible instances of k. Thus we have
the miny<,x<;{A(¢ - k,7) + 916 — k + 1,4)} item.

(2) Each element in Sy[j —1+1, 7] (1 <1 < j) is aligned to '—'. Thus subsequence
Saj —1+1, 7] is inserted, and S;[1,1] is aligned to Sy[1,j —I]. Hence the A(i,j —1) +
g2(j — 1+ 1,7) item. We need to iterate over all possible instances of {. Thus we have
the min;<;<;{A(%,7 — 1) + g2(§ — 1 + 1, 7)} item.

(3) Sili] is aligned to Ss{j]. Thus Si[1,7 — 1] is aligned to S3{1,j — 1]. Hence the
At —1,7 = 1) +~(i,7)! item.

Therefore we take the minimum of the three cases and get the above recursion. [

From Lemmas 2.2.1 to 2.2.4, we can compute Align(S;, Se) = A(|S1],|S2|) using
a bottom-up approach. It is not hard to see that the computation time is 1 + |S;| +
Sal + 32320 25210 + 5 + 1) = O(IS1PISe] + [Sal*lSul).

It is possible to reduce the running time for some specific gap penalty functions.
When g¢1(%1,7) and go(j1,j) are linear (affine), the running time is O(]S;||S2|). The
linear gap penalty model has already been used in Section 2.1. Now we introduce the
affine gap penalty model.

The affine gap penalty model has long been used in sequence alignment (7).

For each gap in an alignment, in addition to the insertion/deletion costs, we will

assign a constant, gap_cost, as the gap initiation cost. This means that longer

1Recall that (i,) is the cost of aligning S;[7] to S2[7].

19

gaps are preferred since for a longer gap the additional cost distributed to each
base is relatively small. The corresponding gap penalty functions are g;(i1,7) =
gap_cost + Zﬁml g1(k, k) and g5(j1,7) = gap_cost + Z{zjl ga(1,1).

Under the affine gap penalty model, the cost of an alignment (57, 5%) is defined

as follows, where #gap is the number of gaps in (57, 55).

cost((S1,5;)) = gap_cost x #gap
+ > T(Si[i] — Sli])

ieEM

+) T(Sii] = A)

i€D

+ Y T(A — Shli)). (2.16)

i€l

2.2.2 Computing Optimal Alignment with Affine Gap
Penalty

In this section, we will discuss how to compute the optimal alignment between two

sequences 57 and S; under the affine gap penalty model.

2.2.2.1 Property of Optimal Alignments

We now consider the optimal alignment between Si[1,4] and S3[1, j]. We use A(¢, 7)
to represent the optimal alignment cost between Si[1,i] and Ss{l1, j]. We use D(i, j)
to represent the optimal alignment cost such that S, [i] is aligned to '—'. We use (2,)
to represent the optimal alignment cost such that Ss[j] is aligned to '='. +(7,0) is
the cost of deleting character S[i], (0,) is the cost of inserting character Ss[j|, and
v(i,7) is the cost of aligning S;[i] to S3[j]. The following lemmas will show how to
compute A(, 7).

20

Lemma 2.2.5
A(0,0) =0 (2.17)
D(0,0) = gap-cost (2.18)
I(0,0) = gap_cost (2.19)

Proof: For A(0,0), consider A(1,1). If the optimal alignment results from aligning
S1]1] to S3[1], then we only need to account for the cost for aligning S;[1] to Ss[1].
Hence we may set A(0,0) = 0.

For D(0,0), consider D(1,0) by which S;[1] is aligned to '—'. Aligning S;[1] to
'~ opens a gap, so we need to charge gap opening penalty for it. Hence we may set
D(0,0) = gap_cost.

Similé,rly, we can set I(0,0) = gap_cost. . [

Lemma 2.2.6 Fori > 0,

D(3,0) = D(i — 1,0) + v(%,0) (2.20)

A(4,0) = D(4,0) (2.21)

I(i,0) = D(i,0) + gap_cost (2.22)
For 7 >0,

I1{0,5) =1(0,j —1)+~(0,5) (2.23)

A(0,7) = 1(0,5) (2.24)

D(0,7) = I(0,7) + gap_cost (2.25)

Proof: For D(i,0), by definition $;[i] is aligned to ‘—/, hence we have the (3, 0)
term, and S;[1,7 — 1] is aligned to (. That is, each element in S;[1,7 — 1] is aligned
to '—’, by which we know that S;[i — 1] is aligned to '~’. Hence we have D(7,0) =
D(i—1,0) + ~(i,0).

21

For A(i,0), this is the optimal alignment between S;[1, 7] and 0. Thus each element
in Si[1,7] is aligned to '—', by which we know that S;[i] is aligned to '—'. Hence we
have A(i,0) = D(i,0).

For I(%,0), consider I(%, 1), the optimal alignment between S1[1,7] and Sy[1, 1] that
ends with Sy[1] aligned to '—’. Thus S;[1,4] is aligned to . That is, each element in
S1(1,1] is aligned to '~', by which we know that S;[i] is aligned to '—'. Aligning S,[1]
to '~' opens a gap, so we need to charge gap opening penalty for it. Hence we have
I(¢,0) = D(3,0) + gap_cost.

Similarly, we can obtain other three formulas. o

Lemma 2.2.7 Fori >0 and j > 0,

4

D(4,7) = min ¢ Dl = 1.3) +1(0) (2.26)

A(i—1,7) +v(i,0) + gap_cost

\

Proof: We use M(i,j) to represent the optimal alignment cost such that Sj[i] is
aligned to S>[j]. Then

D(i,)
A(i,7) = min < 1(, §)

M(i,J)

According to the definition of D(i,j), S;i[i] is aligned to '—', hence ~(7,0). We
consider S;[i — 1] and Sy[j], there are exactly the following cases.

(1) S1]i — 1] is aligned to '~'. D(%,) is from D(i — 1, j), then aligning S;[¢] to '~
does not open a gap. Therefore there is no gap opening penalty.

(2) Saly] is aligned to '—'. D(i,5) is from I(i — 1,7), then aligning S;[i] to '~
opens a gap. Therefore there is a gap opening penalty.

(3) S1[i — 1] is aligned to Ss[j|. D(4,7) is from M (i — 1, j), then aligning S;[i] to

‘—" opens a gap. Therefore there is a gap opening penalty.

So we have the following recursion.

D(%,) = min ¢

/

D(i—1,7) +~(,0)

I(i—1,7)+~(%,0) + gap_cost

= min <

= min 4

Lemma 2.2.8 Fori >0 and j

I(3,7) = min «

\M(i ~1,7) +~(4,0) + gap_cost

/

D(i—1,j) +(,0)
D(i _ 1,7) + v(3,0) + gap_cost
I(z —1,7) +~(4,0) + gap_cost

\M(i —1,7) +7v(4,0) + gap_cost

D(i - 1,5) +1(i,0)

A(i —1,7) +~(4,0) + gap_cost

\

> 0,

4

Proof: Similar to Lemma 2.2.7.

Lemma 2.2.9 Fori >0 and j

(A(,7 = 1) +7(0,7) + gap-cost

> 0,

/

D(i, j)

A(%,J) = min ¢ I(3, 5)

Proof: Consider S;[i] and S;[j]. There are exactly the following cases.

Ali—1,7 - 1) +~(1,7)

\

(1) Si[¢] is aligned to '—'. Hence the D(i, j) item.

22

(2.27)

(2.28)

23

(2) Salj] is aligned to '—'. Hence the I(i,) item.
(3) S1[i] is aligned to Ss[j]. Thus Si[l1,7 — 1] is aligned to Sy[1,j — 1]. Hence the
A(i = 1,5 = 1) +7(3,) item.

Therefore we take the minimum of the three cases and get the above recursion. U

2.2.2.2 Algorithm

From Lemmas 2.2.5 to 2.2.9, we can compute Align(Si, Sa) = A(|S1],|S2|) using a
bottom-up approach. Algorithm 2.4 shows how to compute optimal alignment score

with affine gap penalty.

Algorithm 2.4 Sequence-Distance-Gap(Sy, Ss)

Input: Two sequences S; and S, with n = |S1| and m = |Ss|.

Output: Alignment score matrices My p 1(0..|51];0..]S2]).
1: compute A(0,0), D(0,0) and I(0,0) as in Lemmas 2.2.5
2: fori <+ 1tondo ~
3: compute D(i,0), A(Z,0) and I(i,0) as in Lemmas 2.2.6
4: end for

5. for j <~ 1tom do

6:

7

8

9

1(0,7), A(0,7) and D(0,) as in Lemmas 2.2.6

: end for

: for i+ 1tondo

. for 7 < 1tomdo
10: compute D(3,7), I(¢,j) and A(%,7) as in Lemmas 2.2.7, Lemmas 2.2.8 and

Lemmas 2.2.9, respectively

11: end for
12: end for

In the implementation, we need three matrices instead of one in Section 2.1.3.3.
These matrices are M4(0..|51];0..|S2|), Mp(0..]S1];0..|S2|), and M;(0..|5:];0..|S2|),
each with size (|S;]| + 1)(|S2| +1). We use My p 1(0..|51];0..]Sq]) to represent these
three matrices in the text to save space.

The time complexity of Algorithm 2.4 is O(]S1]|S2]), and the space complexity is
O([51]1521).

To produce an optimal alignment, we trace back among the three matrices. We

provide a stack based method for traceback in Algorithm 2.5 to 2.7. The variable ¢

R I A

24

used in algorithm Sequence-Traceback-Gap (see Algorithm 2.5 and 2.6) is matrix type
where t € {A, D, I}.

The time complexity of the traceback part (Algorithm 2.5 to 2.7) is O(]S1| +|Sa}),
and the space complexity is O(|Sy||Sa]).

Therefore, the time complexity of the whole algorithm for computing opti-

mal alignment with affine gap penalty is O(|S1]|S2]), and the space complexity is

0(1811Sa]).

25

Algorithm 2.5 Sequence-Traceback-Gap(Sy, S2, M4 p s(0..]51};0..]S2|)) Part 1

Input: Two sequences S; and Sy with n = |S;| and m = |S;|, and alignment score
matrices M4 p 1(0..]51];0..|Ss|) as computed by Algorithm 2.4.

Output: A stack stack containing ordered pairs of sequence indices in an alignment
(51, S5) with the minimum score as computed by Algorithm 2.4.

1: t+ A
2: 14N
3)¢ m
 4: whilei > 0and j > 0do
5. if £t = A then
6: if A(4,7) = D(i,7) then
7 t+— D
8: else if A(i,j) = I{i,7) then
9: t 1
10: else // A(i,5) =A@ — 1,7 —1) +~(i,7)
11: push_stack(i, j)
12: 14—1—1
13: J<7—1
14: end if

15 elseif t = D then
16: if D(i,5) = D(i—1,7) +~(,0) then

17: push_stack(i, —1)

18: 1—1-—1

19: else // D(i,7) = A(i — 1,7) + v(%,0) + gap_cost
20: t+— A

21: push_stack(i, —1)

22: 14—1—1

23: end if

24: else //t=1
25 if I(i,5) = I1(,j — 1) + (0, 7) then

26: push_stack(—1, 7)

27: j+<7—-1

28: else // I(i,7) = A(3,7 — 1) +7v(0,J) + gap_cost
29: t+— A

30: push_stack(—1, 7)

31: j—7-—1

32: end if

33: end if

34: end while
35: // This algorithm is too long to fit on one page, we need to break here! To be
continued in Algorithm 2.6 on next page.

26

Algorithm 2.6 Sequence- Traceback-Gap(Sy, Sa, M4 p 1(0..|51];0..|S2|)) Part 2
36: // Continued from Algorithm 2.5 on last page.

37: while 1 > 0 do

38 push._stack(i, —1)

39 1+ 1-—1

40: end while

41: while 7 > 0 do

42: push_stack(—1, j)

43 7+ 73-—1

44: end while

Algorithm 2.7 Sequence-Align-Gap(Sy, Sz, Ma p 1(0..]S1];0..|52))
Input: Two sequences S; and S with n = |S;]| and m = |S,|, and alignment score
matrices Ma p 1(0..]S1];0..|S2]) as computed by Algorithm 2.4.

Output: An optimal alignment Align between S; and Ss.

1: Sequence-Traceback-Gap(Sy, So, M4 p 1(0..|S1];0..|S2)) // Algorithm 2.5 and 2.6

2: while stack is not empty do
(¢,7) + pop_stack
if i >0and j = —1 then

append (S1[i],’—’) to the alignment
else if i = —1 and 7 > 0 then

append ('—’, S3[j]) to the alignment
else //i>0and j >0 |

append (.5;[¢], S2[7]) to the alignment
10: end if
11: end while

27

Chapter 3

A Review of RNA Structural
Alignment

We have discussed alignment at sequence level in Chapter 2. The main theme in this
thesis concerns alignment at the structural level in which we also need to align the
base pairs. In this chapter, we consider the problem of structural alignment between
two RNA structures. More specifically, we focus on alignment between two RNA

tertiary structures.

The problem of aligning structures is similar to the problem of aligning sequences
but much more complicated due to the presence of the base pairs. The presence of

base pairs also makes the computation more resources (time and space) consuming.

In this chapter, we first introduce the RNA alignment model and the hardness
results of the RNA structural alignment problem. Then we discuss Wang and Zhang’s
RNA alignment algorithm and Mohl et al.’s RNA alignment algorithm which serve

as bases of our algorithm in detail.

28

3.1 RNA Alignment Models

An RNA structure is represented by R(P), where R is a sequence of nucleotides with
R[i] representing the i-th nucleotide, and P C {1,2,---,|R|}? is a set of arcs of which
each element (i,7), 7 < 7, represents the bond between the two bases of a base pair
(R[], R[j]) in R. We use R}i, j] to represent the subsequence of R from R[i] to Rl[j],
‘and |R| to represent the length of R. We assume that base pairs in R(P) do not share
participating bases. Formally for any (i1, ;) and (g, j2) in P, j; # 49, 41 # Jj, and
i1 = 1o if and only if j; = j2. The left end ! and right end r of an arc p = (I,r) € P
are denoted by p* and p?, respectively.

Let p and p’ be two arcs in R(P). Their corresponding base pairs are bp =

(R[p*], R[p®]) and bp’ = (R[p'], R[p'"]), respectively. We define the relation between
p and p’ (bp and bp') as follows. We say that p (bp) is before p’ (bp') if p®* < p';
a,lternatively, we say that p’ (bp') is after p (bp) (see Figure 3.1). We say that p (bp)
is inside p’ (bp') if p't < pl < pf < p'B; alternatively, we say that p’ (bp') is outside p
(bp) (see Figure 3.2). We say that p (bp) is crossed by p' (bp') if p* < p'L < pf < p'F
or p’t < p* < p'R < p%; in the first case, p (bp) is right crossed by p’ (bp), in the
second case p (bp) is left crossed by p' (bp') (see Figure 3.3).

/

p p

pr pr

Figure 3.2: p is inside p’; p’ is outside p

29

D D
pL pr pR p;R

Figure 3.3: p is right crossed by p’; p' is left crossed by p

An arc p (a base pair bp) is called crossing if it is crossed by an arc p’ (a base
pair bp'). If p (bp) is right crossed by p’ (bp’), we say that p (bp) is right crossing; if
p (bp) is left crossed by p’ (bp'), we say that p (bp) is left crossing. An arc p (a base
pair bp) is called non-crossing if it is not crossed by any arc p’ (base pair bp’). An

RNA structure R(P) containing crossing arcs (base pairs) is called crossing, otherwise

NON-Crossing.

A set of tertiary arcs of an RNA structure R(P) is a subset of crossing arcs
Pier © P which satisfies the condition that for any two arcs p,p' € P — Py, p and p’
do not cross. We call P,., = P — Py, a set of secondary arcs. The corresponding base

pairs of secondary arcs and tertiary arcs are called secondary base pairs and tertiary

base pairs, respectively.

For an RNA structure R(P), we define p,() as follows.

| j if3j:(3,j)€Por(4,i)€P
p;.-(’&) = (3-1)
1 otherwise

By this definition, p,(i) # ¢ if and only if R[i] is a base in a base pair of R(P), and
pr(%) = ¢ if and only if R[i] is an unpaired base of R(P). If p,.(i) # i, then p,(i) is the
base paired with base i. When there is no confusion, we use R, instead of R(P), to

represent an RNA structure assuming that there is an associated function p,.().

Given two RNA structure R; and R, which are over the four-letter alphabet
¥ = {A,C,G,U}, the alignment of R; and R, is represented by (R}, R,) satisfying

the following conditions:

30

e R is Ry with some new symbol '’ inserted and R is R, with some new symbol

'~' inserted such that |R}| = |RS|.
o Vic {1,...,|R]|}, at least one of R}[i] and R,[i] cannot be '—'.

For an alignment (R}, R;), we use (R}, Ry)[i1, i2; j1, 2] to represent the subalign-
ment which consists of subsequence of R from the ¢;-th non-space character to the
io-th non-space character and subsequence of Rj from the j;-th non-space character
to the jo-th non-space character. |

An arc pair is a pair of arcs a = (p1,p2) € P, X P,. We call a = (p1,p2)
realized by (R}, R5) if and only if p; and p, are matched by (R}, R). The set
OA((RY, Ry)[i1,92; J1,12]) of open arc pairs of a subalignment (R}, Rb)[iy,is; 71, 1o]
in (RY, Ry) is the set of arc pairs (p;,ps) that are realized by (Rj, Ry) and where
pf <iy <pf <iyand pf < ji < pf < jaoriy < pF <iy < pRand ji < pf < jo < Pk
(That means, one ends of the arcs p; and p; are matched inside the subalignment
(R}, R)[i1,19; 71,12], and the other ends of p; and py are matched outside of the sub-
alignment (R, R5){i1,%2; j1,%2].) In the example shown in Figure 3.4, arc pairs (1, I),
(2, II), (3, ITI) and (4, IV) are realized by the alignment. The region enclosed by the
rectangle is one subalignment. According to the previous definition, the set of open

arc pairs of this subalignment is {(1, I), (3, III), (4, IV)}.
1 2 3 4

AAAGU-CUUGC'C AA
i H

II or 1I1v

Figure 3.4: An example of arc pairs

We define the left and right end point of an arc pair (p1, p2) as ™\ (p1,p2) = (pf,p%)

31

and \ (p1,p2) = (p%, p!), respectively. On those points we consider the partial order
~< defined as (z1,41) < (9, 19) iff 21 < 25 and y; < yo. Two arc pairs a and a’ cross,
fNae < Nad < Nja < NdoNd < Na < \yd < \ya In
the example shown in Figure 3.5, arc pairs (1, I) and (2, II) cross; (1, II) and (2, III)
cross; (2, I) and (3, II) cross; (2, II) and (3, III) cross.

] 2 3

278N
NOVERS e

I II III

Figure 3.5: An example of crossing arc pairs

Following the tradition in sequence comparison {14, 18], we define three edit oper-
ations, substitute, delete, and insert, on RNA structures. For a given RNA structure
R, each operation can be applied to either a base pair or an unpaired base. To sub-
stitute a base pair is to replace one base pair with another. This means that at the
sequence level, two bases may be changed at the same time. To delete a base pair is
to remove the base pair. At the sequence level, this means to delete two bases at the
same time. To insert a base pair is to insert a new base pair. At the sequence level,

this means to insert two bases at the same time.

In addition to the edit operations of insertion, deletion, and substitution, we now
consider two more operation: base-pair bond breaking and base-pair altering. Base-
pair bond breaking operation can be applied to a base pair, causing the bond between
the two bases of the pair to break and the base pair to become two unpaired bases.
Base-pair altering operation can be applied to a base pair, causing the bond between
the two bases of the pair to break and one base of the base pair to be deleted, leaving
the other base unpaired. Base-pair bond breaking and base-pair altering can also be

called arc breaking and arc altering, respectively.

Now we give a formal presentation. Let ¥ = {A,C,G,U}, L; = ¥ x X, ¥y =

32

¥ x {A}, and £3 = {A} x &, where X\ is the null label. We represent an edit operation
as a — b, where a and b are either A, or labels from ¥ or ¥; or Y5 or 5.

We call a — b a base substitute operation if a,b € ¥ (if a = b, it is a base match
operation; else it is a base mismatch operation); a base delete operation if a € ¥ and
b= \; and a base insert operation if b € ¥ and a = A.

We say a = (a1, a2) is a base pair if a € ¥q, a; and ay are bases in the same base
'pair. We call a — b a base-pair substitute operation if both a and b are base pairs (if
a = b, it is a base-pair match operation; else it is a base-pair mismatch operation); a
base-pair delete operation if a is a base pair, and b = A; a base-pair insert operation
if b is a base pair, and a = \; a base-pair bond breaking operation if a,b € ¥;, and
one of a and b is a base pair and the other one is not a base pair; a base-pair altering
operation if a is a base pair and b € X5, or a is a base pair and b € X3, or a € ¥ and

b is a base pair, or a € ¥3 and b is a base pair.

Figure 3.6 gives an illustration of RNA structure alignment with edit operations.

o base—pair altering
base—pair mismatch

, base—pair match base—pair deletion
base mismatch

|

CAAAGAUAU-CAACCC-GACGUAU-A

CCGAG-UACAC

|

base match base deletion base insertion base—pair insertion
base—pair bond breaking

Figure 3.6: RNA structure alignment with edit operations

Let I" be a cost function which assigns to each edit operation a — b a nonnegative
real number I'(a — b). We constrain I" to be a distance metric. That is, (1) I'(a —

b) > 0, T(a - a) =0, (2) T(a = b) =T'(b = a), and (3) ['(a = ¢) < I'(a —

33

b) +T'(b — ¢). An item I'(a — b) where a,b € X1, a is a base pair and b is not a base

pair represents the base-pair bond breaking cost of a. b does not affect this cost. To

distinguish this item from I'(a — b) where both a and b are base pairs which represent
the base-pair substitution cost, we use I';(a) to replace this item. Analogously, we
use I'y(b) to denote the base-pair bond breaking cost of the base pair b, replacing

['(a — b) where a,b € X1, a is not a base pair and b is a base pair.

Given an alignment (R}, R;), we define single base substitution SM, single base
deletion SD, single base insertion S1I, base pair substitution PM, base pair deletion
PD, base pair insertion PI, case 1 of base pair bond breaking PB;, case 2 of base
pair bond breaking P By, case 1 of base pair altering PA;, case 2 of base pair altering

P A, case 3 of base pair altering PAjs, and case 4 of base pair altering PA, as follows.

SM = {1 | R}[i] and R5[i] are unpaired bases or bases in the base pairs that have
undergone base-pair bond breakings or base-pair alterings in R; and Ry}.

'SD = {i| Rilt] is an unpaired bases in R; and Ry[i| ='~'}.

SI = {1i| R,[i] is an unpaired bases in R, and R|[i]] ='-'}.

PM ={ (4,7) | (Ri[z], Ri[j]) and (Rj[d], Ry[j]) are base pairs in R; and Ry}.

PD ={(i,7) | (R[9], Ry[j]) is a base pair in R;, and Rs[i]| = R5[j] ='-'}.

PI ={(4,7) | (Ryi], R5[j]) is a base pair in Ry, and R;[i] = Ri[j] ='-"}.

PB; ={ (4,7) | (Ry[¢], Ri[j]) is a base pair in Ry, and R5[i], R5[j] are two (unpaired

(

or paired) bases which do not form a base pair in Ry}.

PB; ={ (i,5) | (Ry[i], Ry[j]) is a base pair in Ry, and R}[i], R;[j] are two (unpaired
or paired) bases which do not form a base pair in R;}.

PA, ={ (i,7) | (Ry]i], Ry[4]) is a base pair in R;, R5[i] is a (unpaired or paired) base
in Ry, and Ry[j] ="-"}.

PA;, ={ (i,7) | (R{[1], Ri[j]) is a base pair in R;, R,[j] is a (unpaired or paired) base
in Ry, and R,[i] ='~"}.

34

PAsz ={(1,7) | (Ry[d], Ry[]) is a base pair in R,, R] is a (unpaired or paired) base
in Ry, and Ri[j] ='-'}.

PAs={(:,7) | (Ryld], Ry[5]) is & base pair in Ry, R, 7] is a (unpaired or paired) base
in Ry, and R} [i| ='~'}.

Under the linear gap penalty model, the cost of an alignment (S7,S5) is defined

as follows.
Ostinear ((S1,53)) = S T(R{[i] — Ryla]
S
+ D T(R{[i] = A
+ %ZSDF()\%RE[@D
+ iM F((R;[z],Ri[j]) — (Ra[i], Ra[]))
+ (\):;D DB, RyljT) —)
n (gj I'(A — (Ry[1], Ry[5]))
: ()Z (B], Bil3)
+ ()z (B3l Ruls)
+ (zi:r(<Ram,R;m> > (Ryfil, V)
S TR R » O, B
. JEAQP((R;M, N = (R, Byl31)
n ijzj::sr((x, Ry[5]) — (Ry[i], Ry[])) (3.2)

Under the affine gap penalty model, we use gap-cost to represent the gap opening

cost, and #gap to represent the number of gaps in (R, R5). The cost of an alignment

35

(R, R,) is defined as follows.

costarrine((S1,55)) = gap_cost X #gap
+ cOStiinear ((S1,55)) (3.3)

The cost of an alignment (R}, R;) can be determined in two steps. In the first
step, we determine the operations performed on base pairs. In the second step, we
determine the operations performed on unpaired bases and bases in the base pairs
that have undergone base-pair bond breakings or base-pair alterings. For example,
suppose that in the alignment, there exist (i1,7;) € P, and (i2,42) € Py, Rilii]
and Ryliy] are each aligned with a space '—’, and R;[j] is aligned with Ry[js] but
R1[j1] # Rz[j2]. Then there are two base-pair altering operations and a base mismatch

operation associated with them.

Given two RNA structure R; and Ry, our goal is to find the alignment with

minimum cost:

Align(Ry, Ry) = min t((Ry, Rs))}- 3.4
ign(B1, Ra) = min {eost((R, B)} (3.4

3.2 Hardness Results

In this section, we consider the problem of alignment between RNA structures where
both structures are tertiary structures. In general, this problem is MAX SNP-hard.
When the edit operations base-pair bond breaking and base-pair altering are not
allowed, there are several results from [21, 12, 19]. When all edit operations discussed
in previous section are allowed, there is a result from [9].
When base-pair bond breaking and base-pair altering are not allowed, and the

gap opening cost is zero, there is a result from [21].

Theorem 3.2.1 The problem of computing the edit distance between two RNA ter-
tiary structures is NP-hard.

Sl i, W et B G B s

36

This means that this problem has no solutions in polynomial time unless P = NP.

And there are two results from [12].

Theorem 3.2.2 The problem of computing the edit distance between two RNA ter-
tiary structures is MAX SNP-hard.

This means that there is no polynomial time approximation scheme (PTAS) for

this problem unless P = NP [15].

A maximization (similarity) version can also be considered, where the goal is to
find a maximal-scoring edit sequence that can change one structure to the other.

For the maximization version, the result is stronger than that for the minimization

version.

Theorem 3.2.3 For any § < 1, the mazximization version of the problem of com-
puting the edit distance between two RNA tértiary structures cannot be approximated

within ratio 21 ™ in, polynomial time unless NP € DTIME[2polvlogn].

When base-pair bond breaking and base-pair altering are not allowed, and the

gap opening cost is greater than zero, there is a result from [19].

Theorem 3.2.4 The problem of alignment between RNA structures with affine gap
penalty where both structures are tertiary structures is MAX SNP-hard.

When base-pair bond breaking and base-pair altering are allowed, and the gap

opening cost is zero, there is a result from [9].

Theorem 3.2.5 The problem of computing the edit distance between a RNA tertiary
structure and a RNA primary structure is MAX SNP-hard.

This result also implies that under this model, the problem of computing the edit
distance between a RNA tertiary structure and a RNA secondary structure, and the
problem of computing the edit distance between two RNA tertiary structures are

MAX SNP-hard. These results can be extended to the model with affine gap penalty.

37

3.3 Wang and Zhang’s Algorithm

In this section, we review Wang and Zhang’s RNA alignment algorithm which serves
as a basis of our algorithm.

Wang and Zhang presented an algorithm to compute the alignment between RNA
structures for the case where aligned base pairs are non-crossing [19]. They treated
‘a base pair as a unit and do not allow it to match to two unpaired bases. That
is, base-pair bond breaking and base-pair altering operations are not allowed. Un-
der this restricted assumption, when at least one of the RNA structures involved
is a secondary structure, their algorithm can compute the optimal alignment in
O(stem(Ry) x stem(Ry) X |R;| x |Rz|) time. One more step, can be added to the
algorithm to align tertiary base pairs. This step can be considered as a constrained
alignment. Now we discuss their algorithm in detail.

Because base-pair bond breaking and bése—pair altering are not allowed, we need

to add two more conditions in defining the structural alignment:

o If R} [i] is an unpaired base in R}, then either R;[i] is an unpaired base in R} or
Ryli] ='—'. If Ry[i] is an unpaired base in Rj, then either R;[i] is an unpaired

base in R} or R|[i] ='~".

o If (R[Z], R{|j]) is a base pair in R}, then either (R,[i], R5[j]) is a base pair in
R, or Ryli) = RL[j] = '~'. If (RL[i], R,]j]) is a base pair in R}, then either
(R1[i], R[j]) is a base pair in R} or R[i] = Ri[j] ='—".

Since aligning crossing base pairs is difficult (recall the hardness results in Sec-

tion 3.2), we add one more condition in defining the structural alignment.
o If (R|[¢], Ri[j]) and (Rylk], R{[l]) are base pairs in R} and (R[], R5[j]) and
(R, [k}, R4[l]) are base pairs in Rj, then (R} [i], R([j]) and (R}[k], R1[!]) are non-
crossing in R and (R5[i], R5[j]) and (RLlk|, R,[l]) are non-crossing in Rj.
Therefore, even though the input RNA structures may have crossing base pairs,

the aligned base pairs are non-crossing.

38

We use a bottom up dynamic programming algorithm to find the optimal align-
ment between R; and R,. We consider the smaller substructures first and eventually

consider the whole structures R; and R,.

3.3.1 Property of Optimal Alignments

Consider two RNA structures R; and Ry, we use I'() to define 7(i, j) for 0 < i < |Ry|

and O Ej < |R2|

If?; = p?‘l(z) and _7 - p'r‘z(j)a

v(3,0) = T(R[i] =) (3.5)
7(0,7) = T'(A — Ralj]) (3.6)
v(%,7) = T(Ru[i] = Ro[j]) (3.7)

Ifi' =p, (i) <iand j = p,,(j) < 7,

(7, 0) =T((Ri[i'], Rafi]) — A)/2 (3.8)
7(4,0) =T((Ra[f'], Ruli]) = A)/2 (3.9)
70,7) =T(A = (R[], Ras]))/2 (3.10)
70,7) =T(A = (R[], Ra[s]))/2 (3.11)
v(0,7) =T((Ba[t'], Rili]) = (Ra[i'], Ralj])) (3.12)

From this definition, if R,[¢] is a single base, then 7(,0) is the cost of deleting this
base and if R;[i] is a base of a base pair, then (7, 0) is half of the cost of deleting this
base pair. Therefore we distribute evenly the deletion cost of a base pair to its two
bases. The meaning of (0, 7) is similar. When ¢ > 0 and j > 0, ¥(7,) is the cost of
aligning base pairs (Ry[i'], R1[¢]) and (Ra[j'], Ralj))-

We now consider the optimal alignment between Riliq, 2] and Rs[j1, jo]. We use

A(iy,19; J1, J2) to represent the optimal alignment cost between R;[i1, i2] and Ra[j1, jal-

39

We use D(iy,192;j1,J2) to represent the optimal alignment cost such that R;[is] is

aligned to '-'.

We use I(iy,140;j1,72) to represent the optimal alignment cost such
that Rs[js| is aligned to '—'.

In computing A(71,%2; j1, J2), D(41,%2; 51, j2) and I(41,19; j1, Jo), for any 41 <4 <4,
if pr,(4) < 4y or iy < pr (%), then R;[i] will be forced to be aligned to '—'; for any
71 <7 < Jo, it pry(J) < 1 or J2 < pry(j), then Ro[j] will be forced to be aligned to
' This is used to deal with two situations: aligning one base pair among crossing

base pairs and deleting a base pair.

We can now consider how to compute the optimal alignment between R;[iy, 7s]
and Rg[jl,jg].

Lemma 3.3.1
A(0;0) =0 (3.13)
D(0;0) = gap_cost (3.14)
I(0;0) = gap_cost (3.15)

Proof: For A(D;0), consider A(i1,%1;71,51). If the optimal alignment results from
aligning R;[i1] to Ra[j1], then we only need to account for the cost for aligning R [i]
to Ry[j1]. Hence we may set A((; @) = 0.

For D(0;0), consider D(i1,41;9) by which Ry[i;] is aligned to '—'. Aligning R, [¢]
to '—' opens a gap, so we need to charge gap opening penalty for it. Hence we may
set D(0;0) = gap_cost.

Similarly, we can set I(0;0) = gap_cost. O

Lemma 3.3.2 Fori > 0,

A(i1,1;0) = D(ir,%0) (3.17)
I(i1,1;9) = D(i1,%;0) + gap-cost (3.18)

40

For 7 > 0,
I(0;51,3) = 1(0;51,5 — 1) +(0,5) (3.19)
A(B; 1, 7) = 1(0; j1,) (3.20)
D(; j1,3) = I(0; 1, j) + gapcost (3.21)

Proof: For D(iy,3;0), by definition R;[i] is aligned to '—’, hence we have the (i, 0)
term, and Ry[i1, 7 — 1] is aligned to . That is, each element in R;[i,7 — 1] is aligned
to '—', by which we know that R;[i — 1] is aligned to '~'. Hence we have D(i1,1;0) =
D(iy,i — 1:0) + (i, 0).

For A(i1,%;0), this is the optimal alignment between Ri[i1,7] and @. Thus each
element in R;[éq,4] is aligned to '—', by which we know that R;[i] is aligned to '—'.

Hence we have A(iq,1;0) = D(iy,1;0).

For I(iy,1;0), consider I(i1,1; j1, 1), the optimal alignment between R;liy,i] and
Ro[j1, 1] that ends with Rs[j;] aligned to '~'. Thus R;[i1, 4] is aligned to §. That is,
each element in R, [i1,4] is aligned to '—', by which we know that R;[i] is aligned to
'—’. Aligning R5[j:] to '—' opens a gap, so we need to charge gap opening penalty for
it. Hence we have I(iy,4;0) = D(iy,%; D) + gap_cost.

Similarly, we can obtain other three formulas. [

Lemma 3.3.3 Fori; <i <1y and j; < j < ja,

4

D(iy, i —1; ji,) + (i, 0)
D(zl,Z,Jl,]) = Min < 1 (322)

A(?:].?i -]-:.71:.7) + ’Y(Z, 0) + ga'p*COSt

\

Proof: We use M(iy,1; j;,7) to represent the optimal alignment cost such that R;[q]

41

* is aligned to Rs[j]. Then

4

D(Zla?').ylaj)
A(Zlazajlaj) = min < I(Zlazajlaj)

M(Zla?ﬂ]la])

\

According to the definition of D(iy,1%;71,7), Ri[é] is aligned to '—’, hence (2, 0).
We consider R;[i — 1] and Rs[j], there are exactly the following cases.

(1) Ry[i — 1] is aligned to '—'. D(iy,4; j1,4) is from D(4y,7—1; j1,5), then aligning
R;1[i] to ’—’ does not open a gap. Therefore there is no gap opening penalty.

(2) Rq[j] is aligned to'—~'. D(i1,4;71,7) is from I(i1,i—1; 51, 7), then aligning R;[¢]
to '—’ opens a gap. Therefore there is a gap opening penalty.

(3) Ry[i—1] is aligned to Ry[j]. D(i1,4; j1,J) is from M (4y,i—1; j1, j), then aligning
R, [i] to '—' opens a gap. Therefore there is a gap opening penalty.

So we have the following recursion.

f

D(i1,% — 1;71,7) + (3, 0)
D(i1,4;71,J) = min § I(iy, i — 1; 41, 5) +(4,0) + gap_cost

(M(ir,7 = 151,) +(4,0) + gap-cost
D(ilai — l:JlaJ) + 7(230) + gap-cost
= min -«

I(%1,%—1;71,7) +v(¢,0) + gapcost

\M(ilai — 1;71,7) +7(¢,0) + gap_cost

. D(3132_17.719])+7(370)
= min «

kA(?"lai —]-7.717.7) + 7(2a0) + gap—COSt

42

Lemma 3.3.4 Fori; <i<iy and j; < j < Jo,

r

L) =min g 05 (3.23)

\A(ilai;jla]‘ — 1) +7(0,7) + gap_cost

Proof: Similar to Lemma 3.3.3. C]

Lemma 3.3.5 Fori; <i <1y and j; £ j < jo, if i = pr,(2) and j = pr,(J), then

D(Zlazajlaj)
A(i1,; 71, 7) = min 4 I(%1,%;71,7) (3.24)

(Al i = 11,5 = 1) + (i, 4)

if 11 < pr, (1) <iand j1 < pry(J) < J, then

¢
D(leznjlaj)

111,471,]

A(l1,; 1, J) = min 4 o had) (3.25)
A(ilaprl(i) - 1;j13pr2(j) - 1)

otherwise,
(
D(zlazajlaj)
A(i1,1;71,7) = min J (3.26)
\I(Zlaza.}hj)

Proof: Consider the optimal alignment between R,[i;,7] and Rs|ji,j]. There are
three cases: 1. i = p, (i) and j = p,,(7), 2. 41 < p;(¢) <7 and j; < pr(f) < J, and
3. all the other cases.

For case 1, since ¢ = p,, (i) and j = p,,(j), both R;[i] and Ry[j] are unpaired
bases. In the optimal alignment, R;[i] may be aligned to '—’, Rs[j] may be aligned

to’'—’, or R;[i] may be aligned to Rs[j]. Therefore we take the minimum of the three

43

cases.

For case 2, since i; < pr, (i) < ¢ and ji < p,(3) < j, both (Ry[pr, (9)], Ri[i])
and (Ra[pr,(j)], Ra[j]) are base pairs. In the optimal alignment, (R;[p,,(3)], R1[i])
may be aligned to ('—')/—'), (Ra[pr,(j)], R2[j]) may be aligned to ('-')~’), or
(Rylpr, ()], Ra]) may be aligned to (Rapr, (5], Ra[j]).

If (Rilpy, (7)], R1[d]) is aligned to ('—~') =), then A(i1,%;51,5) = D(iy,4;71,7). If
(Ralpry(§)], Rali) is aligned to ('~ ') then A(i1,i:1,5) = I(ir,; 1,).

If (Rilpr,(7)], R1[i]) is aligned to (Ra[p,,(j)], Ra[j]), then the optimal alignment
between Ri[i1,i] and Ra[ji, j] is partitioned into three parts: 1. the optimal align-
ment between R, i1, pr, (¢) —1] and Ra[j1, pr,(§)—1], 2. the optimal alignment between
Rilpr, (i) +1,i—1]) and Ry[p,,(j)+1,7 — 1], and 3. the alignment of (R;[p, (¢)], R1[1])
to (Ralpr,(j)], R2[j]). Hence we have A(iy,%;71,5) = A(iy, pr,(8) — 1551, 0 (§) —
1) + Apr, (1) + 1,4 — 1;p,(5) + 1,5 — 1) + (4, 5). Note that any base pair across
(Rilpr,(2)], R1[i]) or (Ralpr,(5)], R2[j]) should be aligned to '—' and the cost of such
an alignment has already been included in part 1 and part 2.

In case 3, we consider all the other possibilities in which we cannot align R;[i] to

Ro[j]. This includes many cases.

e sub-case 1: R[] is a single base and Rs[j] is a base in a base pair. This means

that we have to align R;[i] to '—' or align Rs[j] to '—'.

e sub-case 2: R;[i] is a base in a base pair and Rs[j] is a single base. This is

similar to sub-case 1.

e sub-case 3: R;li] is a base in a base pair and p,,(¢) > 4. This means that

Ri{pr, (4)] is outside the interval [i1,:] and we have to align R;[1] to '—'.

e sub-case 4: Ry[j] is a base in a base pair and p,,(j) > j. This is similar to
sub-case 3. Together with sub-case 3, this implies that when p, (i) > ¢ and

Pro(7) > 7, even if Ry[i] = Ry[j], we cannot align them to each other.

44

e sub-case 5: R,li] is a base in a base pair and p,, (i) < 4;. This is similar to
sub-case 3. Together with sub-case 3, we know that if a base pair is across an

aligned base pair, then it has to be aligned to '—’.

e sub-case 6: Ry[j] is a base in a base pair and p,,(j) < j;. This is similar to

sub-case 5.

3.3.2 Algorithm

From the above lemmas, we can compute Align(Ri,R;) = A(1,|R:|;1,|Rs|) us-
ing a bottom up approach. From Lemma 3.3.5, we only need to compute those
A(ty,19; 71, j2) such that (R;[i; — 1], Ri[i2 + 1]) is a base pair in R; and (Ry[j; —
1], R2[j2 + 1]) is a base pair in Ry.

Given R and Ry, we can first compute sorted base pair lists L; for R; and L, for
Ry. For each pair of base pairs L;[i] = (41, ¢2) and Lo[j] = (41, j2), we use Lemma 3.3.1
through Lemma 3.3.5 to compute A(é; + 1,45 — 1;7; + 1,42 — 1).

Let R; and Ry be the two given RNA structures and P, and P, be the number of
base pairs in R, and R, respectively. The time to compute A(i1, t2; j1, j2) is O((ia —
i1)(Jo —71)) which is bounded by O(|R;| x |Rz|). The time complexity of the algorithm
in worst case is O(P; x P, x |R;| X |R3|). We can improve our algorithm so that the
worst case running time is O(stem(R;) X stem(Ry) X | R1| X | Ro|) where stem(R;) and
stem(Ry) are the number of stems, in R; and R, respectively. The space complexity
of the algorithm is O(|R;| x |Rs|).

Notice that when one of the RNAs is a secondary structure, this algorithm com-
putes the optimal solution of the problem. Also, since the number of tertiary base
pairs is relatively small compared with the number of secondary base pairs, we can
use this algorithm to compute the alignment between RNA tertiary structures. Es-

sentially the algorithm tries to find the best sets of non-crossing base pairs to align

G it gl gt At 8 e o Lt L e R T e e

45

and delete tertiary interactions. Although this is not an optimal solution, in practice

1t would produce a reasonable result by aligning most of the base pairs.

3.3.3 Constrained Alignment

Wang and Zhang also proposed a heuristic method to align tertiary structures in [19].

“The method is as follows.

Given two RNA tertiary structures, we first apply the alignment algorithm pre-
sented in Section 3.3.2 to produce an alignment where aligned base pairs are non-
crossing and then, using these aligned base pairs as the constraints, we align tertiary
base pairs if they are compatible with the base pairs already aligned. The second
step can be considered as a constrained alignment problem where the goal is to find

the optimal alignment using these aligned base pairs as the constraints.

3.4 Mohl et al.’s Algorithm

In this section, we review Mohl et al.’s RNA alignment algorithm which serves as a
basis of our algorithm.

Mohl et al. presented a fixed parameter tractable algorithm to compute the op-
timal alignment between two RNA tertiary structures in [13]. The parameter, which
determines the exponential runtime, depends on how complex the crossing stems are
arranged. They used w,, to denote base mismatch cost, wy; to denote base inser-
tion/deletion cost, w,,, to denote base-pair mismatch cost (it costs w,,/2 if one base
in the base pair is replaced or W, if both bases in the base pair are replaced), w, to
denote base-pair insertion/deletion cost, w, to denote base-pair bond breaking cost,
and w, to denote base-pair altering cost. The algorithm is under the restricted score
schemes w, = (wy + w,)/2. This algorithm is a generalization of the algorithm in [9]

to tertiary structures.

The main idea of the algorithm is partitioning the set of arc pairs Py X P; into a set

46

NC of “non-crossing” arc pairs and a set of “crossing” arc pairs CR = P, x P, - NC
such that the algorithm can apply a polynomial alignment method for the arc pairs

in NC and an exponential alignment method for the arc pairs in CR.

3.4.1 Partition Arc Pairs into Crossing Arc Pairs and Non-

crossing Arc Pairs

Now we discuss how to do the partition of the set of arc pairs.

Mohl et al. give a definition about valid partition of the set of arc pairs P, x P,

into NC and CR in [13].

Definition 3.4.1 A partition of P, x Py into NC and CR is valid if and only if for
all a,a’ € NC it holds that a and o' do not cross.

And they give a partition method according to left crossing arcs.

Lemma 3.4.2 The partition of Py x Py into CR = CRy xCRy = {p, € P, | p; 1s left
crossing} X {ps € Py | po is left crossing} and NC = Py x Py — CR 1is valid.

It is easy to see Lemma 3.4.2 holds, because for two arbitrary crossing arc pairs,
one of them is in C'R. Thus a valid partition can be obtained if CR; and C' R, contain
all left crossing arcs. Analogously, a valid partition can be obtained if CR; and C'R;

contaln all right crossing arcs.

Lemma 3.4.3 The partition of PLx P, into CR = CR{xCRy = {p; € P1 | p1 is right
crossing} X {py € Py | py is right crossing} and NC = P; x P, — CR is valid.

In the example shown in Figure 3.5 in Section 3.1, P, = {1, 2, 3} and P, = {],
I1, I1T}. Applying Lemma 3.4.2 to the example, we can get CR = {2, 3} x {II, III}
= {(2,II), (2, TID), (3, 1), (3, IID)} and NC = {(1, 1), (1, ID), (1, I10), (2, I), (3, D)}.
Applying Lemma 3.4.3 to the example, we can get CR = {1, 2} x {I, II} = {(1, 1),
(1, ID), (2, 1), (2, ID} and NC = {(1, III), (2, IID), (3, 1), (3, I1), (3, IID)}.

47

Because the algorithm applies a polynomial alignment method for the arc pairs in
NC and an exponential alignment method for the arc pairs in CR, i.e. the algorithm
handles arc pairs in NC more efficiently than arc pairs in CR, we want to make the
cardinality of C'R as small as we can. A good partition should be local minimal, i.e.
1t becomes invalid if any element is removed from CR. Unfortunately, the partition
according to Lemma 3.4.2 or Lemma 3.4.3 may not be local minimal (for the example
“shown in Figure 3.5 in Section 3.1, the partition according to Lemma 3.4.2 puts arc
pair (3, III) in CR which actually can be moved to NC,; similar for the partition
according to Lemma 3.4.3). We will propose a method to optimize the partition

result in Section 4.2. The optimized partition will be local minimal.

3.4.2 Precomputation of Stem Pairs

Because the algorithm applies an exponential alignment method for the arc pairs in
CR and that will cost a lot of runtime, we should consider aligning whole crossing
stems in one step. In order to align whole stems in one step, we need to group arc
pairs in C' R into pairs of stems.

Before we discuss how to do the precomputation, we need to introduce some
notions given in {13].

Mohl et al. give a definition of stem which is different from the original one
introduced in Section 1.2. We call the stem defined by the new definition “extended
stem”. In the remaining part of this thesis, we will use this definition. We simply
refer to extended stem as “stem”, and the stem defined by the original definition as

“traditional stem”.

A stem @ in P (for P € {P;, P,}) is defined as a set of arcs {p;,--- ,px} C P with
pr < --- < pk < pf < ... < pf such that no end of arcs in P — @ is in one of the
intervals [pl..pf] or [pf..pF]. Notice that stems do not need to be maximal, and can
include bulges and internal loops (that is, there can be bases between two adjacent

arcs in the same stem) according to this definition. An example of stem is shown in

48

Figure 3.7.

GCUGAAGCGGCCCGCUGAG

Figure 3.7: An example of extend stem

The stem pair of two stems) C 'Pl and) C P, is characterized by the pair
(ao,ar) of arc pairs, where ap = (po,,po,) is the pair of the outermost arcs and
a;r = (pr,,pr1,) is the pair of the innermost arcs of Q; and Q,, i.e. @y consists of
the arcs P N [pg, ..p1.] x [pf..p&] (k = 1,2). The stem pair covers an arc pair a iff
a € Q1 X Q2. A stem pair is realized in an alignment (R}, RY) iff ap and ay are realized
in (R}, R)). According to this definition, we know that only the outermost arcs and
the innermost arcs are required to be matched. Figure 3.8 gives an illustration of a

stem pair (ap,ar) = ((po,, po,), (p1,,Pr1,)) which covers the dotted arc pair (p1, po).

Figure 3.8: An example of stem pair

The set of all stem pairs (ap, a;) where {ap,a;} € CR is denoted as STcgr. A stem
pair (ap,as) is open for a subalignment (R}, B})[i1,12; j1,12] in an alignment (R}, R5)
iff ap,ar are open for (RY, Ry)[i1,12; j1,%2]. The set of mazimal open stem pairs of a

subalignment (R}, Ry)[i1,42; j1,%2] in an alignment (R}, R5) is the smallest set M of

49

open stem pairs of (R}, R5)[i1,%9; j1,12] such that each a € OA((RY, Ry)i1, i2; j1,%2])

1s covered by a stem pair in M.
Now we discuss how to do the precomputation.

We precompute the cost to align each stem pair (ap,a;) € STcg as the value of
an item S(ap,ar). The cost of aligning a stem pair is the cost to align bases in the
stem. Formally, for ap = (po,,po,) and a; = (p1,,p1,), the value of S(ap,ar) is the

cost to align Ry [pg,, pr,] to Ra[p§,, pf.| and simultaneously Ri[pf,p& | to Ra[pf, p& |.

The computation of S items is based on temporary items S'(i,4'; 5, j';ar) that
correspond to S(((¢,7'), (7,5')); ar) if ((i,4'),(4,5')) is an arc pair, but are not limited
to this case. S'(%,%';4,5'; ((is,4)), (Ja, Jo))) is invalid if ¢ > 44, ¢ < 4., 7 > jq or j/ < 7.

The recursion to compute S’ items given in [13] is as follows.

S'(1,757,5" ar) =
i+ 1,157, ar) + 1w + 1) /2 —))
S'(4,757 + 1,55 ar) + wa + P2(5)(wr /2 — wa) (2)
S'(i,1" = 1;7,5" ar) + wa + 1 (') (wr /2 — wa) (3)
S'(4,755,7" — Lar) +wa + ¥2(') (wr/2 — wa) (4)

min < (3.27)

S'(i+ 1,454+ 1,5ar) + x(0, f)wm + (01(3) + Y2(3))ws/2 (5)
S'(4,¢ — 1,7,7 — Liag) + x(¥, ")wm + (¥1(i) + ¥a2(4"))ws/2 (6)

if ((4,4),(J,5')) € CR

\

S'(i+1,7 - Lj+1,5 - Lar) + (x(4,7) + x(@, 7)) wam/2 (7)

50

The functions x and ¥, (k = 1,2) in previous recursion are defined as follows.

1 if Ryfi] # Relj
X(%,5) = § o7 (3.28)

0 otherwise

| 1 if35:(i,5) € Pyor (j,i) € P, (for k=1,2)
Yeli) = « (3.29)

0 otherwise

We consider positions ¢, #’, j and j’, there are exactly the following cases directly
corresponding to the recursion shown in Eq. 3.27.

(1) Ry[d] is aligned to '—'. If R[] is a single base, this is due to a base deletion
with cost wg. Otherwise, the base pair which R;[7] is involved in is either deleted or

altered, with cost w, /2.

(2) Ro[j] is aligned to '—'. This is analogous to case (1).

(3

) R
(4) Rp[j'] is aligned to’—’. This is analogous to case (1).
)

(3

(Rili], Ralj]) is realized. Thus all adjacent arcs are broken, each resulting in cost

1[¢'] is aligned to '—'. This is analogous to case (1).

Ri[i] and Ry[j] are matched by the alignment, but no arc pair involving

wp/2. If Ry[i] and Ry[j] mismatch, this causes an additional cost wyy,.

(6) R1[?'] and Rs[j'] are matched by the alignment, but no arc pair involving
(R1[?'], Ro[j']) is realized. This is analogous to case (5).

(7) ((4,7),(4,7')) € CR and this arc pair is realized. If R;[i] and Ry[j] mismatch,
this causes a cost Wy, /2. If Ri[i’] and Rs[j’| mismatch, this causes an additional cost
Wam /2.

The alignment of the innermost arc pair is computed as
S(i,455,35((6,9),(4,57)) = (x(4,7) + x(1,7))wam/2 and step by step enlarged
with the recursion given in Eq. 3.27, where implicitly cases relying on invalid items
are skipped. By the recursion for S, only the arc pair a; is guaranteed to be realized

in the precomputed optimal stem alignments. But we want to consider only items

-

T L L e B e Y
. R R L O IR UL SR L M)

ol

S(ap,ar) where both a; and ap are realized in the core algorithm discussed in 3.4.4
in order to avoid ambiguity in the recursion. Thus items where ap is not realized

are defined as invalid, and cases referring to these items are skipped in the core

algorithm.

In the original paper [13], it is not clear when the computation of the S’ items will

terminate. We assume that for each S’ item, the computation will terminate when

the outermost arc pair of the maximal stem pair which covers a; is encountered. We
will add a new concept called “local maximal stem pair” in Section 4.1, and show that

we only need to compute the alignment of local maximal stem pairs in Section 4.5.2.

3.4.3 Property of Optimal Alignment

We consider the optimal alignment between R;[i,i'] and Rs[j,j’]. We use
D(i,4'; 4, 7'| M) to represent the optimal alignment cost between R;[7,1'] and Ry7, 7]
where M C ST¢g is its set of maximal open stem pairs. A helpful intuition of M
in the D items is that one end of each stem pair in M is aligned inside the range
(¢,7;7,7') and the other end is required to be aligned outside the range (4,7'; 7, 7).

D(i,i';7,7'IM) is valid if i/ > ¢ -1, j > j — 1, and there is an alignment
(R}, R5) such that M is the set of maximal open stem pairs of the subalignment
(R, Ry)lir, d2; J1,42] in (R, Ry).

We can now consider how to compute the optimal alignment between R;[¢,4'] and
Ry, 5]

Assume an optimal alignment Align with a subalignment Alignli,d';j,j']. We
consider positions 7' and j’, there are exactly the following cases directly corresponding

to the recursion shown in Eq. 3.30. An intuitive illustration is given in Figure 3.9%.

The red dotted arcs in Figure 3.9 represent the set of open stem pairs M.

Image quoted from [13].

o4

alignment Alignli,i’;j,7]. We minimize over all possible maximal open stem pairs
that cover a. Each time we decompose again into the respective subalignment of this
maximal open stem pair and the remaining subalignment, where now the stem pair
is open in this remaining subalignment. In case (6) of Figure 3.9, concrete stem pair
is shown in light green (not in M).

Notice that the cost of the precomputed stem pairs is distributed equally among
the two subalignments. This is correct, because it is guaranteed that each alignment
contains either both subalignments or none of them. When descending in the recur-

sion, open stem pairs are introduced via cases (4) or (6) and are removed again via

case (5).

3.4.4 Algorithms

The main part of the algorithm recursively computes costs of subalignments.

The cost of the global alignment is the value of D(1,|51]; 1,[S2||®). It is computed
following the recursion in Eq. 3.30 with base cases D(¢,i — 1; 4,5 — 1|0) = 0 (for all 4,
7). Implicitly, in each recursive step the cases involving invalid items are skipped.

Now we analyze the time and space complexities of the algorithm.

Let n be max(]Sy],|Sz]), and let s and ¢ be the maximal number of arcs and bases

In a crossing stem, respectively.

For an item S(ap,as), we have O(n?s?) possible instances:
e for ap: we can freely choose among the O(n?) arc pairs in CR;

e for a;: we have O(s?) possible choices (because the arcs of ap and a; must

belong to the same stem).

For the S’ items, it is not clear when the computation of the S’ items will termi-
nate in the original paper [13]. We assume that for each S’ item, the computation
will terminate when the outermost arc pair of the maximal stem pair which covers

ar is encountered. Thus S(i,7';7,7;ar) has O(t*) possible instances of i, 7', j, j’

59

and O(n?) possible instances of a;. So we need O(n?t*) space for the S’ items; the
time complexity coincides with the required space, since each of these items can be
computed in constant time according to the recursion in Eq. 3.27.

D(i,7; 3,7 |M) has O(n*) possible instances of 7, 7', 7, 7'; but only O(n?) of them
need to be maintained permanently. (More precisely, we only need to maintain items
D(i+1,% —1,5+1,j — 1|M) when ((i,7), (j,j)) € NC.)

To measure the number of instances of M, we need the notion of the crossing

number of a position (z, y), defined as

C(z,y) = [{(ao,ar) € STEE™ | N ar < (z,y) < \car}l, (3.31)

where STHAX denotes the subset of ST¢ g that only contains pairs of maximal stems.
The maximal crossing number is denoted as k. Now we give an illustration of this
notion. In the example shown in Figure 3.10, the set of crossing maximal stem pairs
STMAX is {(2,II), (2,III), (3,I1)}2. The position (z,y) is inside the innermost arc pair
of stem pair (2,IT), the innermost arc pair of stem pair (2,II1) and the innermost arc

pair of stem pair (3,II). Thus the fixed parameter & of this example is 3.

1 2 3

X
\Bééjé/
I II III

Figure 3.10: An illustration of the crossing number of a position (x, y)

Now we can measure the number of instances of M. Since each maximal stem

pair has O(s*) fragments, there are at most O((s*)¢GI+CE30) = O(s%) possible

2Similar to the partition of the set of arc pairs, we could partition the set of maximal stems to
get the set of crossing maximal stem pairs and the set of non-crossing maximal stem pairs. We will
discuss this in Chapter 4. |

56

instances of M for fixed i, ¢/, j, 7. Thus we need to compute O(n*s%) D items, and
maintain O(n?s%) of them permanently.
The computation of a D item needs only for the recursive cases (4) and (6) of

Eq. 3.30 more than constant time:

e for case(4): we need to iterate over all possible instances of M; and Mj; since

M, is uniquely determined by M and M, there are O(s%*) of these instances;
e for case (6): we need to iterate over all O(s*) possible instances of a;.

Therefore, the computation of all the O(n*s®) D items requires O(n*s® . %) =
O(n*s'%) time.

So the space complexity of the whole algorithm is O(n?s%), and time complexity
is O(n*s!®),

Unfortunately, this algorithm only works if the fixed parameter k is very small,

for example £ = 1. When the parameter is large, it is not affordable due to too high

usage of space and time.

57

Chapter 4

Improved Algorithms for
Alignment between RNA Tertiary

Structures

We follow the work of Mohl et al. [13] which has been introduced in Section 3.4. The
main idea of their algorithm is partitioning the set of arc pairs P, x P, into a set NC
of “non-crossing” arc pairs and a set of “crossing” arc pairs CR = P, x P, — NC.
Then the algorithm applies a polynomial alignment method for the arc pairs in NC

and an exponential alignment method for the arc pairs in CR.

The results of Mohl et al. [13] show that they can only compute the alignment
between RNA tertiary structures if the fixed parameter k£ of their algorithm is very
small, for example k = 1. Even for very simple tertiary structures, their implemen-
tation still takes too much time and space to compute optimal alignment. When the
parameter is large, that is, for moderate tertiary structures, their algorithm does not

work due to too high usage of space and time.

We have made several optimizations to accelerate their algorithm. For simple
tertiary structures, we can compute the optimal alignment efficiently. For moderate

tertiary structures, we adopt the constrained alignment approach. Although the result

58

produced by constrained alignment is not guaranteed to be an optimal solution, in

practice it would be reasonable.

4.1 Basic Definitions

In this section, we first give some definitions that will be used later. The section
supplements Section 3.1.

Recall that in Section 3.1, we define a set of tertiary arcs of an RNA structure
R(P) as a subset of crossing arcs P, C P which satisfies the condition that for any
two arcs p,p’ € P — P, p and p’ do not cross. Ps.. = P — P, is a set of secondary
arcs. If an arc p € P, then we say that p is a tertiary arc. If an arc p € P, then
we say that p is a secondary arc.

We define the relation between two arc pairs as follows. Let a and a’ be two arc
pairs. We say that a is before o’ if \, a <\ d'; alternatively, we say that o’ is after
a. We say a is inside o' if N\ a’ <N a and \, a < \, a’; alternatively, we say that
a' is outside a. We say that a is right crossed by o' if \ a <N\ a' < \ya <\, ¢;
alternatively, we say that a’ is left crossed by a.

In Section 3.4.2, we introduced a new definition of “stem”! proposed by Mohl et
al. {13]. In this research, we adopt their definition. We also treat a single arc as a
stem. We say that a stem ¢ covers an arc p if p € q. A stem ¢ is characterized by
the pair (po, pr) of arcs, where po is the outermost arc which ¢ covers and p; is the
innermost arc which g covers.

Let ¢ = (po,pr) and ¢ = (pp, p}) be two stems. We define the relation between
q and ¢ as follows. We say that q is before ¢’ if p& < p¥; alternatively, we say that
¢ is after q. We say that q is inside ¢’ if p/* < p§ < pB < p'?; alternatively, we say
that ¢’ is outside q. We say that g is crossed by ¢ if p¥ < piy < pf < pf < p& < pft
or p¥ < pk < pt < pf < pf < pF; in the first case, q is right crossed by ¢, in the

second case q is left crossed by ¢'.

!The definition of stem is on page 47.

99

An stem ¢ is called crossing if it is crossed by a stem ¢'. If ¢ is right crossed by ¢/,
we say that q is right crossing; if q is left crossed by ¢’, we say that ¢q is left crossing.
A stem ¢ is called non-crossing if it is not crossed by any stem ¢'.

A mazimal stem (denoted as m_stem) g, is defined as a stem with maximal number
of arcs {p1, - ,px} C Pwithpl < --. < pf < pf < ... < p¥ such that no end of arcs
in P — q is in one of the intervals [p{..pg] or [pff..pfY]. We denote the set of maximal
stems of an RNA structure R(P) as STMAX,

We define a set of tertiary m.stems of an RNA structure R(P) as a subset of
crossing m._stems STMAX C STMAX which satisfies the condition that for any two
m_stems q,q € STMAX _STMAX ¢ and ¢’ do not cross. STMAX — gTMAX _ gTMAX

ter sec ter

is a set of secondary m_stems. If am_stem q € STMAX then we say that g is a tertiary
m_stem. If a m_stem q € STXAX | then we say that q is a secondary m_stem.

Mohl et al. gave a definition of stem pair in [13] which we have introduced on
page 48.

Recall that we defined the partial order < as (z1,y1) < (22,y2) iff ;1 < x5 and
Y1 < Yo in Section 3.1. We now define another two partial orders. We define < as
(21,91) 2 (22,y) iff 21 < 29 and y; < yo. We define < as (z1,y1) < (22, y0) iff 1 < 29,
or 1 = Iy and y; < .

We define the relation between an arc pair and a stem pair as follows. Let a be
an arc pair and ¢ = (cp, ¢;) be a stem pair. We say that a is before cif \, a <\ co.
We say that a is after c if \, co < N\ a. We say a is inside c if \ ¢; < N a and
N a <\, cr. Wesay ais outside cif N\ a <N co and \,co < \,a. We say that a
is Tight crossed by cif \ a < N ¢co and N\ ¢; < \ya < \, ¢;. We say that a is left
crossed by cift ™\ cf <\ a < \ycrand \yco < \ya.

We define the relation between two stem pairs as follows. Let b = (bp,b;) and
¢ = (cp, cr) be two stem pairs. We say that b is before c if \ bo < "\ co; alternatively,
we say that c is after b. We say that b is inside c if '\ ¢y <\ bo and \ bp < \(¢;
alternatively, we say that c is outside b. We say that b is right crossed by c if \ by <
N Co, N\ e <\ by and \ bp < \, ¢; alternatively, we say that c is left crossed by

60

Mohl et al. gave a definition that a stem pair covers an arc pair in [13] which
we have introduced on page 48. We say that a stem pair (ap,,a;,) is covered by
another stem pair (ao,, ar,) if its outermost arc pair ap, and innermost arc pair ay,
are covered by (agp,,ar,).

| Similar to the partition method of arc pairs P, x P, into NC and CR, we can

partition the set of m_stem pairs STM4X x STMAX into a set of crossing m_stem
pairs and a set of non-crossing m_stem pairs. We denote the set of crossing m_stem
pairs as ST, and the set of non-crossing m_stem pairs as ST,

We use STE to denote the set of all crossing stem pairs (ap,a;) covered by
crossing m.stem pairs in STHLX.

A stem pair (ap,ar) € STE is open for a subalignment (R}, Ry)[i1,12; j1,12] in an
alignment (R}, Ry) iff ap and a; are open for (R}, R5)[i1,12; j1, 12).

The set of proper open stem pairs of a subalignment (R}, Ry)[i1,i2; J1,12] in an
alignment (R}, R,) is a set M of open stem pairs of (R}, Ry)[i1,9; J1,%2] such that
no two stem pairs in M are covered by the same m_stem pair. The reason for this
definition is that for two open stem pairs b = (bp,b;) and ¢ = (cp, ¢;) which are
covered by the same m_stem pair s, we can actually substitute b and ¢ with another
stem pair d that is covered by s (d = (bp,cy) if b is outside ¢; d = (co,by) if ¢ is
outside b).

We call the stem pair (ap, ar) local mazimal if it is maximal among all stem pairs
of which innermost arc pair is a; or it is maximal among all stem pairs of which
outermost arc pair is ap; in the first case, (ap,as) is called inner local mazximal, in
the second case (ap, ay) is called outer local maximal.

We say that an arc pair a is compatible with an arc pair a’ if a is inside a’, or a
1s outside a’, or a is before a’, or a is after a', or a is left crossed by a’, or a is right
crossed by a’.

We say that an arc pair a is compatible with an arc pairs set A" if and only if

Va' € A, a is compatible with o/. Notice that if A’ = (), we also say that a is

61

compatible with A’

We say that an arc pairs set A is compatible with an arc pairs set A" if and only if
Va € A,a’ € A', a is compatible with a’. Notice that if A = @ or A’ = 0, we also say
that A is compatible with A’.

We say that an arc pair a is compatible with a stem pair c if a is inside ¢, or a is
outside ¢, or a is before ¢, or a is after ¢, or a is left crossed by ¢, or a is right crossed
by c.

We say that an arc pair a is compatible with a stem pairs set C if and only if
Ve € C, a is compatible with ¢. Notice that if C =), we also say that a is compatible
with C.

We say that a crossing stem pair b € ST is compatible with a crossing stem
pair ¢ € STEL if b is inside ¢, and b, ¢ are not covered by the same crossing m_stem
pair; or b is outside ¢, and b, ¢ are not covered by the same crossing m_stem pair; or
b is before c; or b is after ¢; or b is left crossed by ¢; or b is right crossed by ¢. The
condition that b, ¢ are not covered by the same crossing m_stem pair in first two cases
are required by the property of proper open stem pairs set.

We say that a crossing stem pair b € ST is compatible with a crossing stem pairs
set C C ST if and only if Ve € C, b is compatible with c¢. Notice that if C =), we
also say that b is compatible with C.

We say that a crossing stem pairs set B C STE is compatible with a crossing
stem pairs set C C ST if and only if Vb € B,c € C, b is compatible with ¢. Notice
that if B =0 or C = @, we also say that B is compatible with C.

4.2 Partition Arc Pairs into Crossing Arc Pairs

and Non-crossing Arc Pairs

In Section 3.4.1, we introduced two partition methods of arc pairs set given in {13]. In

this section, We propose a new partition approach (two partition methods) according

62

to tertiary arcs and crossing arcs, and adopt the greedy strategy to make further
optimization.
The first partition method is according to tertiary arcs of the first RNA and

crossing arcs of the second RNA.

Lemma 4.2.1 The partition of P, x P, into CR = CRy X CRy = {p, € P, | p; is
tertiary} x {pe € Py | pa ts crossing} and NC = P; x Py — CR is valid.

Proof: We have

NC=P x P —-CR
=(CR;U(P, — CR;)) x (CRyU(Py — CRy)) — CR; x CRy
= ((P, — CR;) x CRy)
= ((PL — CR;) x CRy)

(CRl X (Pg -— CRQ)) U ((Pl — CRl) X (.P2 — CRQ))
(P; x (P, — CRy))

C C

where P, — CR, is the set of secondary arcs of the first RNA and P, — C'Rs is the set
of non-crossing arcs of the second RNA.

From the definition of crossing arc pairs in Section 3.1, we know that two arc pair
a = (ay,aq) and b = (by, by) cross if and only if the arc a, is left crossed by the arc b,
and the arc ay is left crossed by the arc by, or the arc a; is right crossed by the arc b;
and the arc aq is right crossed by the arc b,.

No arc pair in P; X P, cross arc pairs in P; X (P, — CRy), since arcs in P, — CR;
are non-crossing.

For an arc pair ¢ = (p;,p2) € (P, — CR;) x CRy, we have the following cases.

e p; is non-crossing. Thus no arc pair in P, X P crosses c.

e p; is crossing. For this case, we have three subcases. (1) No arc left crosses
p; (i.e. all arcs crossing p; right cross p;) and no arc right crosses py (i.e. all
arcs crossing ps left cross ps), thus no arc pair in P, x P, crosses c. (2) No arc

right crosses p; and no arc left crosses p,. Similar to subcase (1), no arc pair in

63

P; x P, crosses c. (3) All other cases. There must be some arc pair crossing c.
Since all arcs that cross p; must be in CR; and all arcs that cross p, must be

in C'Ry, all arc pairs that cross ¢ = (py, p2) must be in CR; x CRy, that is CR.

Therefore, for all ¢, ¢’ € NC' it holds that ¢ and ¢ do not cross. Hence the lemma
holds. L]
Thus a valid partition can be obtained if C'R; contains all tertiary arcs of the first
RNA and CRj contains all crossing arcs of the second RNA. Analogously, a valid
partition can be obtained if C'R; contains all crossing arcs of the first RNA and CR;

contains all tertiary arcs of the second RNA.

Lemma 4.2.2 The partition of P, X P, into CR = CRy X CRy = {p1 € P, | py is
crossingt X {ps € P | py is tertiary} and NC = P, x Py — CR is valid.

Proof: Similar to Lemma 4.2.1. L]

In the example shown in Figure 3.5 in Section 3.1, P, = {1, 2, 3} and P, = {I,
II, IIT}. Applying Lemma 4.2.1 to the example, we can get CR = {2} x {1, II, III}
= {(2, 1), (2, 1), (2, 1I1)} and NC = {(1, 1), (1, IT), (1, IID), (3, 1), (3, II), (3, II[)}.
Applying Lemma 4.2.2 to the example, we can get CR = {1, 2, 3} x {II} = {(1, II),
(2, IT), (3, II)} and NC = {(1, 1), (2, 1), (3, I), (1, III), (2, III), (3, III)}.

The partition according to Lemma 4.2.1 or Lemma 4.2.2 sometimes is not local
minimal.

We can use the following method to make further optimization.

For each partition method we have discussed (Lemma 3.4.2, Lemma 3.4.3, Lemma
4.2.1 and Lemma 4.2.2), we use the result of the method as a starting point. We check
each element of C'R against all elements of NC’ if it does not cross any arc pair in
current /NC,then we move it to NC. We continue to do this step until all elements
of CR have been checked. Then we get a local minimal partition.

For the example shown in Figure 3.5 in Section 3.1, the partition according to

Lemma 3.4.2 is CR = {(2, II), (2, III), (3, II), (3, III)} and NC = {(1, 1), (1, II),

64

(1, III), (2, I), (3, I)}. Applying the optimization method to the result, we can move
(3, III) from CR to NC and get the final result CR = {(2, II), (2, III), (3, II)} and
NC = {(1,1), (1, 1D, (1, III), (2, I), (3, I), (3, III)}.

We select the best partition, i.e. the partition which has the smallest |C'R|, from

optimized results produced by the four partition methods for later use.

4.3 A General Score Scheme

We now describe a general score scheme for computing alignment scores.

In this research, we will not consider an explicit base-pair altering operation in-
troduced in Section 3.1 since that operation is replaced by a base-pair bond breaking

operation and then an unpaired base deletion operation. We adopt the linear gap

penalty model.

Consider two RNA structures R; and R,, we use I'() introduced in Section 3.1
to define y(i,j) for 0 < ¢ < |Ry| and 0 < j < |Ry|, and §((¢,4),(4',7)) where
(R1[7'], R1[i]) and (Rs[j'], Ro[j]) are base pairs in R; and Ry, respectively. We dis-
tribute evenly the deletion/insertion/bond breaking cost of a base pair to its two

bases.

If i = p,, (i) and j = p,,(5),

v(%,0) = L(Ry[i} — A) (4.1)
7(0,7) = T(A — Re[j]) (4.2)
v(i,J) = D(Ra[i] = Ralj]) (4.3)
If i = p, (i) < i,
v(i',0) = T((R1['], R1li]) — A)/2 (4.4)

7(6,0) =T((Rufe'], Rali]) = A)/2 (4.5)

65

If.]’ :p‘rg(]) <.7:

7(0,5") = T(A = (R[5}, Ra[j])) /2 (4.6)
7(0,5) =T(A = (Rao[j'], Rel]))/2 (4.7)

If i = p,, () and §' = p,, () < 7,

1(i,5') = To((Rals'], Ralj]))/2 + T(Rili] = Ralj]) (4.8)
16, 5) = To((Rels'], Ralj]))/2 + T(Rili] = Ralj]) (4.9)

If i/ =p, (i) <iand j = p,,(j),

Y@, 7) = De((Ba '], Rali]))/2 + T(R1[i"] = Ralj]) (4.10)
v(i,7) = To((R1[i'], Ri[d]))/2 + T(Ryili] — Relj]) (4.11)

If i’ = p, (i) < i and ' = p,.(j) < J,

v(@',§") = To((Rali'], Ra[i]))/2 + To((Ra[4'], Rald]))/2

+ T(R.[7'] = Ra[j']) (4.12)
Y@, 7) = Ty((Ra[¢'], Rili]))/2 + To((Re[s'), Rald]))/2
+ T(Ry[¢'] = Rolj)) (4.13)
(2, 5") = To((Ba[i'], Ruld]))/2 + To((Rel5'], Rals]))/2
+ I'(R:1[i] = Rolj']) (4.14)
(3, 7) = To((Ra[i'], Rali]))/2 + To((Reli'], Rals]))/2
+ (R[] — Ro[j]) (4.15)
6((',4),(5", 7)) = D((Ra[i'], Rat]) — (Ra[j'], Ral])) (4.16)

From this definition, if R;[i] is a single base, then (7, 0) is the cost of deleting this

66

base and if R;[i] is a base of a base pair, then +(z,0) is half of the cost of deleting
this base pair. The meaning of ¥(0,) is similar. If both R,[i] and Rs[j] are single
bases, then (i, 7) is the cost of aligning bases R;[i] and R,[j]. If Ry[i] is a single base
and Rs(7] is a base of a base pair, then (7, j) is half of the bond breaking cost of the
base pair involving Ry[j] plus the cost of aligning bases Ri[i] and Ry[j]. If Ry[i] is a
base of a base pair and Ry[j] is a single base, then (4, j) is half of the bond breaking
cost of the base pair involving R;[i] plus the cost of aligning bases R;[i] and Ra[j]. If
both R;[i] and Rs[j] are bases of base pairs, then (3, j) is half of the bond breaking
cost of the base pair involving R;[i] plus half of the bond breaking cost of the base
pair involving Rp[j] plus the cost of aligning bases R;[i] and Ry[j]. This is used to
deal with the cases where the two base pairs involving R, [i] and R,[j] are not aligned.
6((7',7),(4’, 7)) is the cost of aligning base pairs (Ry[i’], R1[i]) and (Rz[j'], Ra[j]).
Obviously, our score scheme is an extension of the score scheme of Wang and
Zhang’s algorithm introduced on page 38. It is more general than the score scheme

of Mohl et al.’s algorithm introduced on page 45.

4.4 Property of Optimal Alignments

In this section, we consider the property of optimal alignment between two RNA
tertiary structures.

We consider the optimal alignment between R;[i;,is] and Rs[ji,j2]. We use
A(i1,1; j1, 7| V) to represent the optimal alignment cost between R;[i1,i] and Ra[j1, j]
where N C CR is the set of open arc pairs® of the optimal alignment.

We can now consider how to compute the optimal alignment between R, [iy, is]

and RZ[jlsz]-

Lemma 4.4.1

A(0;0|0) =0 (4.17)

2The definition of open arc pairs set is on page 30.

67

Proof: Consider A(iy,141;71,71|0) where R;[iy] and Ry[j;] are single bases. If the
optimal alignment results from aligning R;[i1] to Ry[j1], then we only need to account

for the cost for aligning R;[#;] to Ra[ji]. Hence we may set A(0;d|0) = 0. N

Lemma 4.4.2 For i, <1 < i,
For .jl < .7 ..<.. j?;

Proof: For A(iq,1;0|0), it is obvious that each element in R;[i,7] is aligned to '—’.
That is, R;[¢] is aligned to '—’, each element in R;[i;,7 — 1] is aligned to '—' and the

open arc pair set is still }. Hence we have A(i1,%;0]0) = A(i1,1 — 1;0]0) + (3, 0).

Similarly, we can obtain the other formula. L]

Lemma 4.4.3 For i1 <1 <1y and j; < j < Jo,

68

A(?’la?’ajla.?lN) —

min ¢

(

\

skip (1) if there exists some arc pair a € N with '\ a = (i,5") or \ya = (1,7)
where j; < j' < j
A1, 1 — 1551, JIN) + (3, 0)
skip (2) if there exists some arc pair a € N with '\ a = (7,J) or \ya = (i, j)
where 11 < ¢ < g
A(i1,% 71,7 — 1IN) + (0,)
skip (3) if there exists some arc pair a € N with’_ a = (1,7') or \ya = (i,7)
where j; < 7' <7, orNa= (i,7) or\ya= (¢,7) wherei; <7 <3¢
A(dy, i = 1551, 7 = 1UN) + (3, J)
if (i1,31) 2 (Pry (0), Pra(5)) < (3,5) and (s ()5, (Pral5),) € NC,

and ((pr,(2),1), (pr,(7), 7)) is compatible with N

y

Ny, Ny C CR, where

A(ilap?‘l(i) - 1;j13pr2(j)"]-INI) Nshare:Nl mN27
(&?ij&lﬁ{ +A(pr1(’l:)+]_,?:— 1;pr2(j)+1aj_]-|N2) N = (NIUN2)_Nshare
+6((pr, (9), 1), (Pry (4), 7)) and Ngpare

compatible with N

\

if there exists some arc pair a € N with\ a = (i, 7)
A(in,1 = 11,7 — UN = {a}) + 6(2, (pr, (1)), (4, Pra(5))) /2
if there exists some arc pair a € N with \,a = (i,)
Alir, i — 151, — 1IN — {a}) + 0((pr, (2),9), (Pra(4), 7)) /2
if there exists some arc pair a € C'R with
Na = (i,7) and (i1,71) 2\ a = (pr(1),p,(])), and a is compatible with N

A(ir, e — L 51,7 — N U {a}) + 6((pr, (2),9), (Pry(5), 7)) /2
(4.20)

(1)

(2)

(3)

(4)

(5.a)

(5.b)

(6)

69

Proof: Consider R;[i] and Rs[j]. There are exactly the following cases.

(1) Rq[i] is aligned to '—'. Thus R;[i;,7 — 1] is aligned to Rs[j1,J] and the open
arc pairs set is still N. Hence the A(i1,7 — 1;71,7|N) + 7(¢,0) item. Notice that if
there exists some arc pair a € N with _a = (4, §') or \y a = (¢, j') where j; < 5/ < 4,
then R;[i] must be aligned to R3[j'] since a is an open arc pair and realized in the
alignment. Thus for these situations, we need to skip case (1).

 (2) Re[j'] is aligned to '—'. Similar to case (1). Notice that if there exists some
arc pair a € N with N a = (7, 7) or \ 0= (', 7) where i; < ¢’ <1, then R,[j] must
be aligned to R;[i’] since a is an open arc pair and realized in the alignment. Thus
for these situations, we need to skip case (2).

(3) Ry[d] is aligned to Rs[j], but no arc pair involving (R;[i], Ra[4]) is realized.
Thus R,iy, i~ 1] is aligned to Ry[j;, 7 — 1] and the open arc pairs set is still N. Hence
the A(iy,i — 1;71,7 — 1|N) + (4, 7) item. Notice that if there exists some arc pair
a € N with '\ a = (¢,5') or \y a = (¢,5') where j; < j* < 7, then R;[i] must be
aligned to Ry[j'] and a must be realized in the alignment since a is an open arc pair; if
there exists some arc pair a € N with ' a = (7, j) or \,a = (7, j) where i; <1 <1,
then Ry[j] must be aligned to R;[/'] and a must be realized in the alignment since a
is an open arc pair. Thus for these situations, we need to skip case (3).

(4) R,l1] is aligned to Rs[j], and the arc pair ((p-,(7), %), (pr,(7), 7)) is realized. This
requires that ((p,,(¢),%), (pr,(7), 7)) is compatible with N. Then the optimal alignment
between R, [i1, 4] and Rs[j1, j] is partitioned into three parts: 1. the optimal alignment
between R;l[ii,p, (1) — 1] and Rs{j1,pr(7) — 1], 2. the optimal alignment between
Rilpr, (i) +1,i—1] and Rsp.,(j)+ 1,7 —1], and 3. the alignment of (R1[p,, (i)], R1[])
to (Re|pr,(7)], Ro[j]). For part 1 and part 2, we denote their.corresponding open arc
pairs sets by N} and N, respectively. Hence the.A('zll,]:),,‘1 (0) — 1;j1,pre (J) — 1| Ny) +
A(pr (1) +1,0 = 1;pry (5) + 1,5 — 1{N2) +6((pr, (9), %), (Pr(5), §)) item. Ny and N, may
contain open arc pairs which are not contained in N. We use Ngpqre to denote the
set of arc pairs that are shared between part 1 and part 2, i.e. Ngpgre = N1 N No.

N, N1, No, Ngpare satisfy that N = (N; U Ny) — Nypare and Ngpgre is compatible with

70

N. We need to minimize over all possible alternatives.

(5) We have two subcases. (a) An arc pair a € N has left end in (4, 7). Then the
optimal alignment between R;[iy,4] and Rs[j1, j] is partitioned into two parts: 1. the
optimal alignment between R;[i;,i — 1] and Rs[j1,j — 1], 2. the alignment of R;[i]
and Rs[j]. For part 1, a is no more open, thus its open arc pairs set is N — {a}, and
the alignment cost is A(7;,7 — 1;71,7 — 1N — {a}). For part 2, the cost is half of the
cost of aligning base pair (R;[i], Ri[(pr,(¢)]) to base pair (Ra[j], Rol(pry(j)]). (b) An
arc pair a € N has right end in (¢, 7). It is similar to subcase (a).

(6) An arc pair ¢ in C'R has right end in (¢, j), a is compatible with N, and a is not
open for the alignment between R,[i,i] and Rs[j;,j]. Then the optimal alignment
between R;|i1,i] and Rylji1, j] is partitioned into two parts: 1. the optimal alignment
between R;[i1,7 — 1] and Rylj;,7 — 1], 2. the alignment of R,[i| and R,[j]. For part
1, a is now open, thus its open arc pairs set is N U {a}, and the alignment cost is
A(iy,i~ 1, 51,7 — 1|N U {a}). For part 2, the cost is half of the cost of aligning base
pair (Ri[(pr, (4)], B1li]) to base pair (Rz[(pr,(5)], Rals])-

Therefore we take the minimum of all the cases and get the above recursion. [

4.5 Algorithms

From Lemma 4.4.1 to 4.4.3, we can compute optimal alignment cost
A(1,|Ry];1,|R2||0) between R; and R, using a bottom-up approach. However, the
complexity of the algorithm will be too high if we directly use these lemmas, since
we need to enumerate all the combinations of crossing arc pairs. We need to con-
sider some methods to accelerate computation. We will show that we can preprocess

crossing stem pairs in STE% to accelerate computation in Section 4.5.2.

Before we discuss the preprocessing of crossing stem pairs in ST&%, we need to

show how to compute the set STMAX of crossing m_stem pairs and the set STHA*

of non-crossing m_stem pairs that will be used later.

71

4.5.1 Partition m_stem Pairs into Crossing m_stem Pairs and

Non-crossing m_stem Pairs

Similar to the partition method of arc pairs P; x P, into NC' and CR, we can partition
the set of m_stem pairs STMAX x STMAX into a set STALAX of crossing m_stem pairs
and a set STM4X of non-crossing m_stem pairs.

We extend Definition 3.4.1 to m_stem pairs, and the four partition methods of arc
pairs to m._stem pairs. Lemma 4.5.2 to 4.5.5 can be easily proved by similar technique

used in the proofs of lemmas for partition of arc pairs.

Definition 4.5.1 A partition of STMAX x STMAX into STYAX and STXAX is valid
if and only if for all b, € ST¥4X it holds that b and b’ do not cross.

Lemma 4.5.2 The partition of STMAX x STMAX into STMAX = {a; €
STMAX | ay is left crossing} x {ay € STMAX | ay is left crossing} and STMAX =

STMAX x STMAX _ STMAX s yalid.

Lemma 4.5.3 The partition of STMAX x STMAX into STHLX = {a; €
STMAX | a; is right crossing} x {as € STHMAX | ay is Tight crossing} and STHLX =

STMAX 5 STMAX _ STMAX s yalid

Lemma 4.5.4 The partition of STMAX x STMAX into STHAX = {a; € STMAX | a,
is tertiary} X {ay € STYMAX | ay is crossing} and STHAX = STMAX x STMAX —

STM AX 45 valid.

Lemma 4.5.5 The partition of STMAX x STMAX into STMAX = {a, € STMAX | p,

is crossing} x {ay € STMAX | ay is tertiary} and STMAX = STMAX x STMAX —
STMAX is valid.

We can also make further optimization as we do in Section 4.2. For each partition

method (Lemma 4.5.2, Lemma 4.5.3, Lemma 4.5.4 and Lemma 4.5.5), we use the

TM AX

result of the method as a starting point. We check each element of S against

72

all elements of STHAX; if it does not cross any m_stem pair in current STH4X then
we move it to STHA%. We continue to do this step until all elements of STMAX have

been checked. Then we get a local minimal partition.

Assume that we already have sorted (by &' end) list of m_stems and sorted (by &’
end) lists of tertiary m_stems of two RNA structures R; and Ry®. We first compute
a sorted (by 5 ends) list of m_stem pairs, sorted (by 5 end) lists of left crossing
m_stems of two RNAs, sorted (by 5 end) lists of right crossing m_stems of two

RNAs and sorted (by 5 end) lists of crossing m_stems of two RNAs.

Then we can partition the list of m_stem pairs into a list of crossing m_stem
pairs and a list of non-crossing m_stem pairs according to Lemma 4.5.2 to 4.5.5,
respectively. For the four partition results, we use the method we discussed previously
to make further optimization. Thus we will get four local minimal partitions. We need
to select the best partition from these four results. As we will see in Section 4.5.3, the
number of crossing stem pairs, that is | STZ%|, highly influences the complexity. Thus

we want to choose the partition which will produce the least crossing stem pairs.

Actually, we can precompute the cardinality of ST&% without generating STZ%.
For each stem b, we can save the number of arcs that it covers along with it and
denote this number as b.size. Then we can easily evaluate the cardinality of STZ% via
ST . We can do this as follows. For each crossing m_stem pair (by, bo) € STHAX
where by is a m_stem from the first RNA and b, is a m_stem from the second RNA?,
we can generate two types of crossing stem pairs: (1) we can select one arc from b,
and select one arc by such that these two arcs form a crossing arc pair which can
be considered as a crossing stem pair; (2) we can select two arcs from b; and select
two arcs by such that these arcs form a crossing stem pair. The number of arc pairs

of the first type is b;.size - by.size, and the number of arc pairs of the second type

3As we will see in Chapter 5, the input file contains primary, secondary and tertiary structures
information of two input RNAs. From that information, we can easily obtain these lists.

AThis is different from the original representation of stem pairs where we use the outermost
arc pair and the innermost arc pair. We only use this notation in this section to explain how to
precompute the cardinality of STZ} and generate NC.

73

is (75%) - (**%%¢). Thus for each crossing m_stem pair (b;,by), we can generate

bi.s1z€ - by.s12€ + (bl's’ize) : (52-8'&'26

; 2*¢) crossing stem pairs. Therefore from STHAX, we
can generate » ., STMAX (by.size - by.size + (bl.;’ize) , (bz.;ize)) crossing stem pairs in
total. For each partition result, we compute the number of crossing stem pairs that

1t can generate. Then we select the partition which will produce the least crossing

stem pairs.

In the final partition, we have a sorted list STE5:**® of crossing m_stem pairs and a
sorted list STH* of non-crossing m_stem pairs. These two lists are sorted by 5’ ends
of two RNAs. More precisely, for stem pairs (ap,ar) € ST or (ap,ar) € STHAX,
(@p,ar) is already sorted by the left end of the outermost arc pair N\ ap = (3,5)

according to the partial order < defined in Section 4.1.

However, as we will see in Section 4.5.3, we need a sorted list of non-crossing
m_stem pairs which is sorted by 3’ ends. Thus we need to sort the list STAX by
3" ends. For stem pairs (ap,ar) € STHAY, we sort (ap,ar) by the right end of the

outermost arc pair \, ap = (4, j) according to the partial order <.

As as we will see in Section 4.5.3, we also need a sorted list NC of non-crossing
arc pairs which is sorted by 3’ ends. It can be easily generated from STw4X. For

TY4X where by is a m_stem in the first

each non-crossing m_stem pair (by,by) € S
RNA and b, is a m_stem in the second RNA, we can select one arc from b; and select
one arc by, then these two arcs will form a non-crossing arc pair. We enumerate all
possible alternatives, then get NC. Then we sort NC by 3’ ends of two RNAs. For
arc pairs a € NC', we sort a by the right end N\, a = (4, 7) according to the partial

order <.

SWhen there is no confusion, we use the same notation to denote a set and its corresponding
sorted list in the remaining part of this thesis. This is just for simplicity.

74

4.5.2 Accelerating Computation by Preprocessing Crossing

Stem Pairs

in this section, we consider how to accelerate computation by preprocessing of crossing
stem pairs in STZ%. This section is based on Section 3.4.2. We propose some new
methods. We present a method to filter out unnecessary “crossing stem pairs” to
accelerate the computation of optimal alignment. We gave a definition of local m_stem
pasr (including inner local m_stem pair and outer local m_stem pair) in Section 4.1.

In this section, we will show that we only need to compute the alignment of crossing

local m_stem pairs. Alignment costs of other crossing stem pairs would be byproducts.

Recall that a stem pair is denoted by (ap,ar), where ap is its outermost arc
pair and a; is its innermost arc pair. The cost of aligning a crossing stem pair
(ap,ar) € STEYL is the cost to align bases in the stem, and is denoted as S(ap, ar).
Recall that a stem pair (ap,a;y) is realized in an alignment (R}, R5) if and only if
both ap and a; are realized in (R}, R;). Realized crossing stem pairs serve as open
stem pairs for some subalignments in the core algorithm. So we want to consider only

crossing stem pairs which are realized.

Mohl et al. proposed a approach to compute S(ap,a;) in [13], which we have
described in Section 3.4.2. They let a; be realized and computed S(ap, ar) following
the recursion given in Eq. 3.27. By this approach, only the arc pair a; is guaranteed
to be realized in the precomputed optimal stem pair alignments. So they defined the
S items where ao is not realized as invalid, and skipped cases referring to these items
in the core algorithm discussed in 3.4.4 in order to avoid ambiguity. However, they
did not give a proof that the optimal global alignment score would not be affected
by doing this. Actually, we can compute S (ao,- ar) in a more intuitive way: we let
both ap and a; be realized and compute S(ap,ay) following the recursion given in

Eq. 3.27, then use the results in the core algorithm discussed in 3.4.4.

We call the approach where only ay is required to be realized Approach,, and the

approach where only both ap and a; are required to be realized Approachs. We will

79

prove the following lemma.

Lemma 4.5.6 For a crossing stem pair (ap,a;) € STZL, if its outermost arc pair
ao 18 not realized in the optimal stem pair alignment computed by Approachy, then
we can safely remove (ap,a;) from STEL to avoid unnecessary computation in the

core algorithm computing global alignment. This will not affect the optimal global

alignment score.

Proof: For a crossing stem pair (ap,a;) € STEL, we use S(ao, ar) approach; t0 denote
its optimal stem pair alignment cost computed by Approach;, and S(ao, ar) Approachs,
to denote its optimal stem pair alignment cost computed by Approachs.

We use globalCost((ap,ar)) to represent the optimal global alignment
cost with the constraint that the stem pair (ap,a;) is realized. @ We use
subCost(Ry[i1,i2], Ra[j1, j2]) to represent the optimal alignment cost between sub-
sequences Ryli1, 9] and Ry[jy, jal.

Suppose there is a crossing stem pair ((4, a), (B, b)) € STZL whose outermost arc
pair (A, a) is not realized in the optimal stem pair alignment computed by Approach; .

It is obvious that S((A4,a), (B, b)) approach; < S((A,a),(B,b)) approachy- The reason
is as follows. The computation of the two items only differs in (A4, a). In the computa-
tion of S((A4,a), (B,b)) Approach,, When (A, a) is encountered, we take the minimum of
all seven cases of the recursion given in Eq. 3.27. Since (A, a) is not realized in the op-
timal stem pair alignment computed by Approach;, the seventh case realizing (A, a)
is not minimal. While in the computation of S((A4,a), (B, b)) approachs, When ((4, a)
is encountered, we simply let (A,a) be realized. Thus S((A,a), (B,b))approach; <
S((A, a), (B, b)) approachs-

In the optimal stem pair alignment of ((A4,a), (B, b)) produced by Approach;, we
suppose that the outermost realized arc pair is (C,c) (see Figure 4.1; this includes
these subcases: 1. C =Aandc#a,2. C#Aandc=a, 3. C# A and c# a).

It is easy to see that S((A,a),(B,b)approach, = subCost(Ri[AX,Ct —

76

Figure 4.1: Illustration of the proof of Lemma 4.5.6

1], Rolat, = 1])+S((C, ¢), (B, b)) approach, +subCost(R [CE+1, AR], Ry[cf+1, af)8.
It is obvious that S((C,¢), (B, b)) approach; = S((C, ¢), (B, b)) Approachs-

i

We have

globalCost(((C,c), (B,b)))
= subCost(Ry[1,C* — 1], Ry[1,c* — 1))
+5((C, ¢), (B, b)) approach,
+ subCost(Ry[BY + 1, BR — 1], Ry[pX + 1,07 — 1))
+ subCost(Ry[C* + 1, | Ry, Re[c® + 1, | Ry|])

Since subCost(R;[1, CE —1], Ro[1, ¢ —1]) < subCost(Ry[1, AL —1], Ry[1,al —1]) +
subCost(R [AL, CF — 1], Ry[a®, ¢ —1]) and subCost(R,[CE+1,|R:|], Re[c® +1, | Ry|])
< subCost(R[CE+1, AR], Ry[cB+1, aF])+subCost(R [AR+1, |Ry|], Ro[aB+1, |Ra|]),

SRecall that the left end of an arc p is denoted as p“, and the right end is denoted as p®. If
C = A and ¢ # a, then subCost(Ri[AY,C* — 1], Re[a”, c* — 1]) will be the cost of insertion of
subsequence Rp[al, ¢l — 1] and subCost(R,[CF + 1, AR], Ry{cf + 1, a®]) will be the cost of insertion
of subsequence Ry[c®+1,a%]; if C # A and ¢ = a, then subCost(R;[AL, CY —1], Ra[a®, ¢k —1]) will
be the cost of deletion of subsequence R;i[AY, CL — 1] and subCost(R,[C® + 1, A%], Ra[c? + 1,a%))
will be the cost of deletion of subsequence R;[CF + 1, AR].

7

then

globalCost(((C,c), (B, b)))
< subCost(Ry[1, AY — 1], Ry[1,a* — 1)) + subCost(R,[A*, C* — 1], Ry[a®, c* — 1))
+ 5((C, ¢), (B, b)) approach,
+ subCost(Ry[BY + 1, BY — 1], Ry[b" + 1,b6% — 1))
. + subCost(R,[C® + 1, A%], Ry[cf + 1,aF]) + subCost(Ry[A" +1,|Ry]], Rz[aR"l’ 1,|Ra])

Since S((A,a),(B,b))App,,.oachl = subC’ost(Rl[AL,CL -].],RQ[CLL,CL -
1]) + S((C,¢),(B,b)) approach, + subCost(Ri[CE + 1,AE], Ry|c® + 1,a%]) and
S((C,¢),(B,b)) approach; = S((C, c), (B, b)) approach,, then

globalCost(((C,c), (B,b)))
< subCost(Ri[1, AY — 1], Ry[1,a” — 1))
+ 5((A, a), (B, b)) approach,
+ subCost(Ry[BY + 1, BE — 1], Ry[b! + 1,7 — 1))
+ subCost(Ri[A" 4+ 1,|Ry|], Ro[a®™ + 1,|Rs|])

Since S((A, a), (B,b)) approach; < S((A,a),(B,b))approachs, then

globalCost(((C,c),(B,b)))
< subCost(Ry[1, A¥ — 1], Ry[1,a" — 1))
+5((4, a), (B, b)) Approachs
+ subCost(Ry[BY + 1, BR — 1], Ry[bl + 1,b% — 1))
+ subCost(Ri[AR + 1, |Ry|], Ro[a® + 1, | Ry]])

The right part of the above inequality is exactly the same as

73

globalCost(((A,a),(B,b))), thus we obtain that

globalCost(((C,c),(B,b))) < globalCost({(A,a),(B,b)))

Therefore, the optimal constrained global alignment realizing ((C,c), (B, b)) has
less cost than the optimal constrained global alignment realizing ((4, a), (B,b)). Thus
realizing the stem pair ((A4,a), (B,b)) will not lead to an optimal global alignment.
So we can safely remove ((A, a), (B, b)) from STZ4% to avoid unnecessary computation
in the core algorithm computing global alignment. This will not affect the optimal

global alignment score.

Without loss of generality, for a crossing stem pair (ap,a;) € STE, if its out-
ermost arc pair ap is not realized in the optimal stem pair alignment computed by
Approach;, then we can safely remove (ap, ar) from STE% to avoid unnecessary com-
putation in the core algorithm computing global alignment. This will not affect the

optimal global alignment score. [

By Lemma 4.5.6, we can compute the alignment cost of crossing stem pairs by
Approach;. After the precomputation of all crossing stem pairs is done, we can filter
out stem pairs which are not realized. Then we use the filtered crossing stem pairs
set which is a subset of ST in the core algorithm computing global alignment. This
approach is more efficient than Mohl et al.’s approach in which the .S items where ao is
not realized are defined as invalid, and cases referring to these items are skipped in the
core algorithm. Since large crossing stem pairs set will cause huge space consumption
and long runtime (as we will see in Section 4.5.3). Using our approach, we can avoid
unnecessary computation and checking in the core algorithm. Although this will not
improve the space and time complexities of the algorithm, space and time usage will

be significantly improved in practice.

79

4.5.2.1 Preprocess Crossing Stem Pairs

We now discuss how to preprocess crossing stem pairs. We will show that we only
need to compute the alignment of crossing local m_stem pairs. Alignment costs of
other crossing stem pairs would be byproducts.

We first consider how to compute the optimal alignment cost S(ap, ar) of a cross-
ing stem pair (ap,a;) € ST, using Approach;. The computation of S(ap,a;) is
based on temporary items S'(¢,7;4,7;ar). Let apo = ((io,pr,(10)), (Go,Pr.(jo))),
ar = ((i1,0~ (1)), (J1,0r,(J1))) € CR. Then S'(,7;7,5j'; a;) represents the cost of
aligning Ry [i,%7] to Relj, ji] and Rilpr, (i1), 7] to Ralpr, (Jr), 5] S(((i,4), (4,5)); ar)
1s exactly the same as S'(3,4'; 7, 5'; ay) if ((¢,7'),(7,7')) is an arc pair in C'R.

We compute S'(3,7;7,55a1) (io <@ < i, jo < J < jr, pry(ir) £ 7' < pry(io),
Pr.(Ur) < J° < pry(Jo)) using Lemma 4.5.7 and Lemma 4.5.8. The computation
starts from a; and ends when ap is encountered (see Figure 4.2). The recursion in
Lemma 4.5.8 is a modified version of the recursion shown in Eq. 3.27 and allows a
more general score scheme. The condition of case (7) of the recursion in Lemma 4.5.8
is a little different from the condition of case (7) of the recursion shown in Eq. 3.27.
Both conditions are used to check whether ((¢,7'), (4,7')) is a crossing arc pair which
is in CR. Since an arc pair which is covered by a crossing stem pair must be in CR,
we only need to check whether ((i,7'), (4,4')) is an arc pair. The condition of case (7)

of the recursion in Lemma 4.5.8 cost less checking time.

Lemma 4.5.7

S,(i.{)p'!‘l (if);jfapr:z(jf); a'f) = 5((?’-“ Pr, (Z[)), (jfaprz(jf))) (421)

Proof: The arc pair a; = ((i7, pr, (31)), (91, 0r, (1)) is realized, that is, the base pair
(Ri[if], Ri[pr, (i7)]) is aligned to the base pair (Ry[jf], Ra[pr(j1)]). Thus we have

S’(ibpn(if);anprz(jI);a’I) = 5((?:131)?‘1(?:1))7(jfapm(jl)))' | O

80

Figure 4.2: A simple illustration of computing the S’ item

Lemma 4.5.8 Forip < i < iy, jo < 7 < j1, pr(ir) < ' < pr(io0), pr, (1) < §'

I\

p'f‘:z(jo): and (iajali’,:j’) 7é (ifajIJpT‘l (if)aprz(jf))T)

"That is, at least one of the following inequalities ¢ # i1, 7 # jr, ¢’ # pr, (31), §* # Pr, (1) holds.

81

S’(iai,;j:j’;af) —

(ifi # i
S'(t+ 1,75 4,5"5ar) + (4, 0) (1)
if J# I
S'(4,7', 5+ 1,5 ar) +(0,) (2)
if i # pr,(ir) |
S'(4,4" ~ 14,5 ar) + (7', 0) (3)
. if 3’ # pry(J1) (4.22)
S'(i,7'4,5" — L ar) + (0, ') (4)
if i #ir and § # ji
S't+ 1,957+ 1,5 ar) +7v(4,7) (5)
K v # pry(i1) and §' # pry(J1)
S'(¢,3" — 1;5,5" — Lar) + (3,) (6)
if it = pr,(¢') and j = pr,(J')
S't+1,7 ~1Lji+1,5 - Lar)+6((4,4),0,3)) (7)

\

Proof: Consider R;[i], Ra[j], R1]i'] and Rs[j’]. There are exactly the following cases.

(1) Ry[i] is aligned to'—'. Thus R;[i+1,14;] is aligned to Rs|j, j;] and Ry [p,, (i1),7']
is aligned to Rs[pr,(jr),7’]. Hence the S'(i + 1,454, 4'; a;) + ¥(¢,0) item. Notice that
if ¢ = 47, ¢ + 1 will be out of the interval [ip..i;] and the item S'(i + 1,7;7,7';a5) is
invalid. Thus for this situation, we need to skip case (1). So we add the condition
i # 15 to case (1).

(2) Rylj] is aligned to '—'. Similar to case (1). We need to add the condition
j # jr to case (2).

(3) Ryl¢'] is aligned to ‘—’. Similar to case (1). We need to add the condition

82

i # pr (i1) to case (3).

(4) Rs|j’] is aligned to '~’. Similar to case (1). We need to add the condition
J' # pry(J1) to case (4).

(5) Ry7] is aligned to Rs[j], but no arc pair involving (R[], Ry[7]) is realized. Thus
Rili + 1,14;] is aligned to Rp[j + 1,7;] and Ry[pr(i7),7] is aligned to Ra[pn,(j7), 7]
Hence the S'(i +1,¢;j+1,75;a;) + v(4,j) item. Similar to the reason in case (1), we
add the condition 7 # i; and j # jr to case (5).

(6) Ry[i'] is aligned to Ry[j’], but no arc pair involving (R;[i'], Ra[j']) is realized.
Similar to case (5). We need to add the condition i’ # p,,(i;) and j' # pn,(jr) to case
(6).

(7) Ryl is aligned to R»[j], and ((4,7),(j,7')) is a crossing arc pair and it is
realized. Then the optimal alignment is partitioned into two parts: 1. the alignment
of the base pair (R;[p,,(?)], R1[i]) to the base pair (Rs[pr,(7)], Ra[j]), and 2. the
remaining part. Hence the S'(i + 1,7 — ;7 + 1,7 — Lya;) + 6((pr, (3),7), (Pry(4), 7))
1tem.

Therefore we take the minimum of all the cases and get the above recursion. [J

By the meaning of the S, S’ items, and Lemma 4.5.6 and Lemma 4.5.8, we only
need to compﬁte the alignment of crossing inner local m_stem pairs. Alignment costs
of other crossing stem pairs would be byproducts. The details are as follows. During
the computation of S'(i,7’; 7,7";a;) for a crossing inner local m_stem pair (ap, ar),
when current, position (4,4’; j,j') corresponds to an arc pair ((4,7'),(4,7)) € CR and
this arc pair is realized (i.e. case(7) of Eq. 4.22 is the minimum at this position), we
keep a record of the stem pair (((4,), (4,7")); a;) with current alignment score as its
alignment cost®. Thus when the computation is done, we will have all realized stem

pairs which have the same innermost arc pair as (ap, a;) with associated alignment

costs.

For each crossing inner local m_stem pair (ap,a;) where ap =

SWe also record the stem pair (a;;ay) which is actually an arc pair aj, since we also consider a
single arc as a stem and (ay;ay) is obviously realized.

83

(G0, pr (0)), (30, Pr;(J0))) and a;r = ((¢1,pr (41)), (41, Pr,(J1))), We can compute
its alignment cost S(ap,a;) = S'(io, pr,(%0); Jo, Pr(jo); ar) using Lemma 4.5.7 and

Lemma 4.5.8. Algorithm 4.1 shows how to compute S’ (i, pr, (i0); Jo, Pry(Jo); a1).

Algorithm 4.1 Inner-Local-Max-Stem-Pair-Align((ap, ar))

Input: Inner local m_stem pair (ap,a;) where ap = ((io, pr,(i0)), (o, pr,(jo))) and

ar = ((ifa Dry (?’I))a (jfﬁp’s"z (JI)))

Output: Alignment score matrix T'(ip..i1; jo--J1; Pry (81)--Pr, (20); Pro (J1)--Pre (JO)), list
L of crossing stem pairs, and array scoreL containing the corresponding alignment
costs of these stem pairs.

1: compute S'(¢1, pr, (41); 1, Pr,(J1); a1) as in Lemmas 4.5.7, append the stem pair

(a'f; a’f) to L and append S’(?:], p'm (?:I); I, Pro (.jI); aI) to scorelL

for : « i; downto ip do

for 7 «+ j5; downto jp do
for 7' « pn(il) to Pry (ZO) do
for j, < Dry (]I) to p'rz(jO) do |
if (iaja Z‘,aj’) 7& (?:I, jI7pT1 (Z.I)ap?‘z (.71)) then
compute S'(i,1';7,7;a;) as in Lemma 4.5.8, when the condition of
case (7) of the recursion is satisfied and case (7) is the minimum among all seven
cases, append the stem pair (((7,7'), (4,5'));ar) to L and append S'(4,4; 4,5'; a;)
to scorelL
8: end if
9: end for

10: end for

11: end for

12: end for

13: return (L, scorelL)

Crossing inner local m_stem pairs can be easily generated from STXAX., We
generate crossing inner local m_stem pairs in the following way.

For a crossing m.stem pair (Ao, .xs@lyax)s Where ao, .« = (po,,pPo,) and
AL ax = (D1, Pr2), we first select an arc pair ay = (py1, p2) covered by (@0, 4x» Claax)
If p1 = po, or p2 = po,, then the stem pair (a;,a;) = ((p1,p2), (p1,p2)) is inner lo-
cal maximal® (see cases (1) and (2) of Figure 4.3); else the stem pair (ap,,,5,ar) =

((po,,Po,), (p1,p2)) is inner local maximal (see case (3) of Figure 4.3). We iterate

%(ar;ar) is actually an arc pair a;. Since we also consider a single arc as a stem, (ar;ar) can be
considered as a stem pair.

84

over all possible alternatives of a;, then can get all crossing inner local m_stem pairs
covered by the m_stem pair (ap,, 4,14) FOr each m_stem pair, we do the above

step. Then we can get the set of crossing inner local m_stem pairs.

2

P1
pIz pIQ
p
PO;

3

2N

POy
D1

Pr
P2

POs

Figure 4.3: A simple illustration of inner local m_stem pair

P2 = PO,

i

By Algorithm 4.1, we do not need to generate ST&% from STXX directly. After
the precomputation of all crossing inner local m_stem pairs is done, we will get a set
of filtered crossing stem pairs which are realized. Many crossing stem pairs in ST3%
will not be realized in practice, thus this filtered set is usually much smaller than

the original STZ%. In the remaining part of this thesis, we will simply use ST¢g to

85

denote this filtered crossing stem pairs set which is a subset of ST3%. We use this set
in the core algorithm computing global alignment to avoid unnecessary computation.

For the set STog of crossing stem pairs produced by the above method, we com-
pute a sorted list of STog by 5 ends of two RNAs. For stem pairs (ap, a;) € STer,
we sort (ap,ar) by the left end of the outermost arc pair _ap = (3, j) according to

the partial order <.

Algorithm 4.2 shows the whole method to preprocess the crossing stem pairs.

Algorithm 4.2 Preprocess-Crossing-Stem-Pairs(STHAX)

Input: Sorted (by 5 ends) list STYAX of crossing m_stem pairs.
Output: Sorted (by 5 ends) list STg g of crossing stem pairs which has been filtered,

and array scoreST¢cg containing the corresponding alignment costs of these stem
pairs.
1: for k + 1 to |STX£X| do

2 let ST%AX [k] = ((p013p02)3 (pI17pI2))

3: for i« pg, topf do

4: if ¢ # p,, (i) then

5: for j < p§, to pk do

6: if j # pr, (.7) then

7: if ¢ = p&, or j = p§, then

8: ar (4, pr,(3)), (J, Pra(4)))

9: (L, scoreL) < Inner-Local-Maz-Stem-Pair-Align{{(ay,ar)) // Algo-

rithm 4.1

10: append L to STeg

11: append scoreL to scoreSTcr
12: else

13: ar ((%,pr,(2)), (7, Pr2(5)))
14: aop (pol7po2)

15: (L, scoreL) + Inner-Local-Maz-Stem-Pair-Align{{(ao, ar))
16: append L to ST¢cgr

17: append scoreL to scoreSTcgr
18: end if

19: end if
20: end for

21: end if

22: end for
23: end for

24: sort STcgr by 5 ends of two RNAs; the order of elements of scoreSTcg also
changes with ST¢r such that scoreSTgr[i] is the alignment score of STcr]i]

86

Similar to Algorithm 4.1 and Algorithm 4.2, we can generate all crossing outer
local m_stem pairs and compute their alignment. We will get another filtered crossing
stem pairs set ST, and its sorted list.

We can compute the intersection of ST¢g produced by crossing inner local m_stem
pairs and ST/ produced by crossing outer local m_stem pairs, and use this inter-
section as the set of crossing stem pairs in the core algorithm. By doing this, we can

filter out more crossing stem pairs and the core algorithm will be faster.

4.5.3 Formula for Computing Optimal Alignment

We use a bottom up dynamic programming algorithm to find the optimal alignment
between R, and Ry;. We consider the smaller substructures first and eventually con-
sider the whole structures R; and R,.

We first consider how to compute the optimal alignment between Rj[i1,4s] and
Ra (71, Ja].

With the techniques discussed in the previous section, we can determine the align-
ment score of all crossing stem pairs in preprocessing. We update Lemma 4.4.1 to
Lemma 4.4.3 to the stem pair version. We use A(i1,4;j1,7|M) to represent the op-
timal alignment cost between R;[iy,7] and Rs[j1,j] where M C ST¢g is a set of its
proper open stem pairs'®. Lemma 4.5.9 to Lemma 4.5.11 correspond to Lemma 4.4.1
to Lemma 4.4.3, respectively. The recursion in Lemma 4.5.11 is a modified version of

the recursion shown in Eq. 3.30 and allows a more general score scheme.

Lemma 4.5.9
A(0;0|0) =0 (4.23)

Proof: Similar to Lemma 4.4.1.]

10The definition of proper open stem pairs set is in Section 4.1.

87

Lemma 4.5.10 Fori; < i<y,

A(t1,%0|0) = A(4, 1 — 1;0]0) +~(4,0) (4.24)
FOT jl S .7 S j2:
Proof: Similar to Lemma 4.4.2. |

Lemma 4.5.11 Fori; <i<iy and j; < j < Jo,

83

A(Zla?’ajlale) -~

"

skip (1) if there exists some stem pair (ap,ar) € M with
N ar = (i,5) or \yao = (i,j") where j; < j < j
A(iy, i — 1,71, 51M) + (3, 0)

skip (2) if there exists some stem pair (ap,ar) € M with
Nar={,7) or \yapo=(7,7) wherei, <i <1
A, 85 51,5 — M) + (0, 5)

skip (3) if there exists some stem pair (ap,a;) € M with
Nar=(1,75) or \(ao = (i,5") where j; <j < j, or
Nar=(1,7) or \yao = (¢,7) wherei; <’ <1
Alini— L = 1UM) +90.5)

if (i1, 51) 2 (r, (1), 2o (7)) < (4, 5) and ((pr,(3),9), (pr,(5),5)) € NC,

and ((pr,(2),%), (pr,(7), 7)) s compatible with M

min < M, M, C STeg, where
A(ty, pry (1) = 1; 1, P (J) — 1| M) Mshare = My 0 My,
(ﬁiﬂx}gj ¢ +AP@n@) +1,i=Lp,() + 1,5 — M) | M= (M UMs) — Mshare
+0({pr (9), %), (Pr(4), 7)) and Mihare 5
\ compatible with M

if there exists some stem pair (ap,a;) € M with
Nao = (,7) AN ar=(i,7) or Nvar=(7,5') A \vao = (i,5)
A(ir, 7" = 11,0 — 1M — {(ao, ar)}) + S(ao, ar)/2

¢ b
(ap,ar) € STor, where

\l ap = (?’a]) and
) A(ilaif‘" 1;j17j’“1;MU{(a'OaaI)})
min 4 Near= (7,7, and >
1 4 S(ap,ar)/2

(ap,ar) is compatible

with M

(4.26)"

89

Proof: Consider R;[i} and R,[j]. There are exactly the following cases.

(1) Ryli] is aligned to '—'. Thus R;[i;,4 — 1] is aligned to Ry[ji,j] and the proper
open stem pairs set is still M. Hence the A{(i;,7 — 1; 1, 5|M) + ¥(¢,0) item. Notice
that if there exists some stem pair (ap,ar) € M with N\ a; = (7, ') where j; < j' < 7,
then R, [i] must be aligned to Ry[j'] since ay is the innermost arc pair of an open stem
pair and realized in the alignment; if there exists some stem pair (ap,a;) € M with
\(ao = (i,j') where j; < j' < j, then R,[i] must be aligned to Ry[j'] for similar
reason. Thus for these situations, we need to skip case (1).

(2) Rylj'] is aligned to '—’. Similar to case (1). Notice that if there exists some
stem pair (ap,ar) € M with N a; = (¢/,j) or \y ap = (¢,J) where 1; < ¢ < i, we
need to skip case (2) due to similar reason in case (1).

(3) Rili] is aligned to Ry[j], but no arc pair involving (Ry[i], Ro[j]) is realized.
Thus R,[i1,7 — 1] is aligned to Ry[j1,j — 1] and the proper open stem pairs set is still
M. Hence the A(i1,7 — 1;51,7 — 1|M) + (%, j) item. Notice that if there exists some
stem pair (ap,a;) € M with N\ a; = (4,7) or Ny ap = (i,7') where j; < 7/ < j, or
N ar = (7,7) or \y ap = (7', 7) where 47 < ' < i, we need to skip case (3) due to
similar reason in case (1).

(4) Ryl7] is aligned to Rs[j], and the arc pair ((pr (2),7), (pr,(j),7)) is realized.
This requires that ((p,(%),%), (pry(j),J)) is compatible with M. Then the optimal
alignment between Ri[iy,i] and Rj[j;,j] is partitioned into three parts: 1. the
optimal alignment between R;[i1,p, (¢) — 1] and Rs[j1,pr(j) — 1], 2. the optimal
alignment between Ri[p., (i) + 1,4 — 1] and Rs[p-,(j) + 1,7 — 1], and 3. the align-
ment of (Ri[p, (7)], R1[i]) to (Ral[pr,(j)], Ra|j]). For part 1 and part 2, we denote
their corresponding proper open stem pairs sets by M; and M,, respectively. Hence
the A(i1,pr,(4) — 1,41, 0r,(4) — UML) + AP (9) + 1, = L;p,(5) + 1,5 — 1{Ma) +
6((pr, (1),1), (pro(7), 7)) item. M; and M; may contain open stem pairs which are
not contained in M. We use M, to denote the set of stem pairs that are shared
between part 1 and part 2, i.e. Mpgre = M1 N My, M, My, My, Mgpare satisfy that
M = (M; U M;) — Mypare and Mg, is compatible with M. We need to minimize

90

over all possible alternatives.

(5) We have two subcases. (a) The innermost arc pair of a proper open stem pair
(ap,ar) € M has left end in (3, 7). (ap,a;) is uniquely determined. Assume the left
end of the outermost arc pair ap of (ap,ay) is (', j'). Then the optimal alignment
between R [i1,4] and Rs[jy, j] is partitioned into two parts: 1. the optimal alignment
between R, [i1,7 — 1] and Ry[j1,j’ — 1], 2. the left part of the alignment of stem pair
(ao, ay). For part 1, (ap,ar) is no more open, thus its proper open stem pairs set is
M —{(ao,ar)}, and the alignment cost is A(iy,¢ — 1;71,5 — 1|M — {(ap,a;)}). For
part 2, the cost is half of the cost of aligning stem pair (ap, ar), that is S(ap,a;)/2.
(b) The outermost arc pair of a stem pair (ap,a;) € M has right end in (4, 7). It is
similar to subcase (a).

(6) The outermost arc pair of a stem pair (ap,ar) € STcg has right end in (i, j),
(@o,ar) is compatible with M, and (ap,ar) is not open for the alignment between
Rqli1,1] and Rslj1,7]. Assume the right end of the innermost arc pair a; of (ap, ay)
is (¢',5'). Then the optimal alignment between R;[iy,7] and Rs[j1, 7] is partitioned
into two parts: 1. the optimal alignment between R;[i1,7 — 1] and Rslji, 5’ — 1],
2. the right part of the alignment of stem pair (ap,ar). For part 1, (ap,ar) is now
open, thus its proper open stem pairs set is M U {(ap, as)}, and the alignment cost is
A(iy, 7' =151, —1{M U{(ap,ar)}). For part 2, the cost is half of the cost of aligning
stem pair (ap,ay), that is S(ap,a;)/2. Notice that a; may have multiple instances.
We need to minimize over all possible alternatives.

Therefore we take the minimum of all the cases and get the above recursion. [

From case (4) of Lemma 4.5.11, during the computation of alignment between
Rq[iy,i9] and Rs[j1,j2], when the position of (i,) corresponds to the right end of
a non-crossing arc pair ({(pr,(2),1), (pr,(7),J)) € NC, we need to use the optimal
subalignment score A(p,,(3) + 1,7 — 1;p.,(j) + 1,7 — 1|Ms) of the segment (pr, (7) +
1,7 — 1;p.,(j) + 1,7 — 1) enclosed by the arc pair ((pr,(¢),%), (pr,(j),7)). Thus we
need to compute A(p,, (1) +1,7i—1;p.,(j) + 1,7 — 1| M;) before we compute alignment
between R, [iy, o] and Ry[j;, jo]. Obviously, for A(p,,(¢)+1,i—1;p,,(5)+1,j—1|Ma),

N1

there may be multiple instances of M,;. We need to know all possible alternatives and
enumerate them. Thus we need to precompute a list of all possible proper open stem
pairs sets for the segment (p,, (i) +1,7i—1;p.,(j)+ 1,7 —1). Assume this list is M;;.
Then we need to compute all possible A(p,, (7)) + 1,7 — 1;p.,(j) + 1,5 — 1|M,) where
My € My;s:. We can save these subalignment scores in an array for later use (for case
(4) of Lemma 4.5.11).

Here we distinguish two kinds of subalignments of the segment (p,, (i) + 1,7 —
L;pr,(j) + 1,7 — 1): one has no open stem pairs, i.e. My = §; and the other one has
open stem pairs, i.e. My # 0. The computation of these two kinds of subalignments is
a little different. We will discuss methods to compute these two kinds of subalignments

in Section 4.5.5 and Section 4.5.6 separately.

We first consider how to precompute all possible proper open stem pairs sets for

all segments enclosed by non-crossing arc pairs in NC.

4.5.4 Computing All Possible Proper Open Stem Pairs Sets

We now consider how to generate all possible proper open stem pairs sets for segments
enclosed by non-crossing arc pairs in NC.

For a segment (i1, 12; j1, j2) enclosed by an arc pair a € NC which is covered by the
non-crossing m_stem pair ((po,, Po,), (P1,,P1,)) € STHAX | the list of possible proper
open stem pairs sets of the segment (iy,149; 1, j2) is exactly the same as the list of
possible proper open stem pairs sets of the segment (p7 + 1,pf — 1;p7, + 1, pf — 1).
So we only need to compute lists of possible proper open stem pairs sets for segments
enclosed by the innermost arc pairs of non-crossing m_stem pairs in STHZYX. These

lists can be easily generated from the crossing stem pairs set ST¢g.

Now we can discuss how to generate a list of all possible proper open stem pairs

sets for the segment (i1, 12; j1,j2) which is enclosed by the innermost arc pair of a

TM AX

non-crossing m_stem pair in STy~ . First, we put each stem pair in STcg which

has one end inside (i1, 49; j1, jo) and the other end outside (i1, i2; J1, J2) into a set M,

92

(see Figure 4.4). Formally, if a stem pair (ap, aj) € STy satisfies that ~_a; < (i1, 1)
< N\¢ ar and \ ap =X (i2,72), or (i1,J1) 2 N ao and N\ a; = (ig,J2) < \y aj, we
put it into M,.;. Then we generate all subsets of M, such that in each set, the stem
pairs are compatible with each other. The list of these subsets is exactly what we

want. Notice that @ is also included in the list.

Figure 4.4: A simple illustration of open stém pairs of a segment (i1, %2; j1, Jo)

The algorithm for generating lists of all possible proper open stem pairs sets for
segments enclosed by the innermost arc pairs of non-crossing m_stem pairs in ST 44X
is shown in Algorithm 4.3, We save the results according to non-crossing m_stem
pairs for convenient reference. We can precompute an array which maps each non-
crossing arc pair a € NC to the non-crossing m._stem pair in ST which covers a.
Then when we compute the alignment of (i1, 2; j1, jo) enclosed by a non-crossing arc

pair a € NC, we can easily find which non-crossing m_stem pair covers a and obtain

the corresponding list of all possible proper open stem pairs sets.

4.5.5 Algorithm for Computing Optimal Subalignment with-

out Open Stem pairs

In this section, we discuss how to compute optimal alignment between R;[i;, 2] and

R5[71, jo] without open stem pairs, i.e. A(q,1s;j1, j2|0). We will show that we need

11The procedure Append-Stem-Pair(b, C) in Algorithm 4.3 gets a stem pair b and a list C' of stem
pairs as input, and returns a list D of stem pairs containing all elements of C and b. b is at the end
of D. It is not central to the thesis, thus we do not include the details of this procedure.

93

Algorithm 4.3 Gen-OSP-for-NC-Seg(ST¥4%, STcr)

Input: Sorted (by 3 ends) list STH4X of non-crossing m_stem pairs, and sorted (by
5" ends) list STog of crossing stem pairs.

Output: Jagged array OSP|][| where OSPIk] is list of all possible proper open
stem pairs lists of the segment enclosed by the innermost arc pair of STM4X (k]
and OSP[k|[i] is the i-th proper open stem pairs list in OSPk].

1: for k « 1 to |STY4%| do
2: let STII\}/[éqX[k] = ((p013p02)? (phapm))a &Ild. 1 = pﬁ"']-a lg = pﬁ =1, 51 = p%g-l_l)

Jo=pp, — 1
3: fori« 1to|ST¢g| do
4: if STcgrli] has one end inside (i1,149;71,J2) and the other end outside

(21,1251, j2) then

5: append STcgr[i] to My

6: end if

7. end for -

8: append § to OSP[k]

9: fori« 1to |OSPIk]| do

10 for j « 1 to |M,| do

11: if Mej] is compatible with OSP[k|[:] then

12: append Append-Stem-Pair(M [7], OSP[k][i]) to OSP[k]
13: end if

14: end for

15: end for
16: end for

94

to maintain multiple matrices to hold alignment scores. These matrices are generated
as needed and are indexed by the generated order. Each matrix has a corresponding
proper open stem pairs set. These matrices may have different size. We will discuss
how to determine the size of these matrices. At a given position (¢,7), only some
matrices exist. Thus we need to know which matrices exist at (7, 7). We will address

these problems in the remaining part of this section.

4.5.5.1 Modifying Conditions of Lemma 4.5.11

Since we require that the optimal subalignment has no open stem pairs, crossing stem
pairs which have one end inside (i, s; j1, j2) and the other end outside (i1, is; j1, j2)
will not be realized. Thus we need to modify Lemma 4.5.11 a little to compute
A(i1,19; J1,72|0). The changes are as follows.

(a) We change the condition in case (1) from:

o skip (1) if there exists some stem pair (ap,a;) € M with_ a; = (i, ') or \y ao
= (i,J') where j; <j <

to:

o skip (1) if there exists some stem pair (ap,ar) € M with (i1,71) X N\ ao <
Nao =X (i2,52) and N a; = (i,5') where j; < j' <.

The reason is as follows. As we have said, crossing stem pairs which have one end
inside (i1,1%2; j1, j2) and the other end outside (i1, i2; 71, j2) Will not be realized in the
optimal subalignment of (1, i2; j1, j2). Thus they cannot be in the set of proper open
stems M. The stem pairs (ap,a;) € M must satisfy that (i1,71) XN ao < \{ @0
< (i,J2). If there exists some stem pair (ap,a;) € M with a; = (4,5") where
71 < j' < j, then R;[i] must be aligned to Ry[j’] since a; is the innermost arc pair of
an open stem pair and realized in the alignment, thus we need to skip case (1).

(b) We change the condition in case (2) from:

95

o skip (2) if there exists some stem pair (ap,a;) € M with™ a; = (i',7) or\, ao

= (i, 7) wherei; < <34
to:

o skip (2) if there exists some stem pair (ap,a;) € M with (i1,51) = N ao <

N @0 X (f2,72) and N\ a; = (7', 7) where iy <4 <.

The reason is similar to the reason for changing the condition in case (1).

(c) We change the condition in case (3) from:

o skip (3) if there exists some stem pair (ap,ar) € M with_a; = (i,5') or \y ao
= (i, ') where j1 < §' < j, or N ar = (i",§) or \sao = (i',]) where iy < i’ < i

to:

o skip (3) if there exists some stem pair (ap,a;) € M with (i1,51) < N ao <

N ao = (i2,72), and ™\ ar = (i,5') where j; < j' < j or\ a; = (¥, 7) where
i1 < <j.

The reason is similar to the reason for changing the condition in case (1).

(d) We change the condition in case (5) from:

e if there exists some stem pair (ap,a;) € M with\ ao = (¢,j') AN\ a7 = (4,7)
or \ar = (,7) AN \vao = (i,])

to:

o if there exists some stem pair (ap,a;) € M with (i1,71) X\ ap < \y ao =
(i2,52) and \ ao = (7, j') A\ ar = (4,]).

The reason is similar to the reason for changing the condition in case (1).

96

4.5.5.2 Organizing Values

We now consider how to compute optimal alignment between R;[i1, 2] and Ra[j1, jo
without open stem pairs, i.e. A(i1,19; 71, 72|0).

We can create a table S of size (is —i; +1)(jo —j1 +1). Each cell S(¢,j) (i;—1 <
1 <42, 51 — 1 < j < jo) of the table contains A(iy,4; j1,j|M). It is obvious that M
may have multiple instances. So at each cell S(i, j) of the table, we need to maintain
multiple values, and each value corresponds to an instance of the item A(iy,¢; j1, 7| M).
We can use Lemma 4.5.9 to Lemma 4.5.11 to fill the table cell by cell, starting at the
upper-lett cell and scan the table from left to right, row by row as we are filling it. At

each cell, we fill all possible values one by one. The alignment cost between R;[i;, i3]

and Rj[j1, j2] would be in the lower-right cell.

An intuitive way to implement this a,pproac:h is as follows. For all values at each
position (4,7) (i, — 1 < i < iy, j1 — 1 < j < j3), we store them in an array. Thus
for the alignment between Ry[i1,7s] and Rslj1, jo], we need (io — 4y + 1)(j2 — j1 + 1)
arrays. However, this approach is not easy to implement, since it is hard to index

multiple values of a position.

We can consider another way of organizing these values. Take a closer look at
the item A(iy,14;71,7|M). Actually, we can organize values according to the set of
proper open stem pairs M. For values of different cells which correspond to the
same M, we put them into a matrix; then there is only one value at each cell of the
matrix. Thus for each instance of M, we have a matrix holding those values of which
the set of proper open stem pairs is M. We need to maintain multiple matrices.
Actually, during the bottom up approach computation, when a new instance of M
appears (new instance of M are created by case (5) of Lemma 4.5.11), we create a
corresponding matrix. For each matrix Ty (k > 1), we save its proper open stem pairs
set Ti. M, start position (Tk.ZTstart, Tk -Ystart) and end position (Tx.Zend, Tk-Yend) along
with it. The entry T[i][j] of the matrix Ty whose proper open stem pairs set is M
corresponds to the item A(iy,1%; j1, j|M).

97

Consider the plane whose dimensions correspond to the two RNA sequences.
At the beginning of the computation, we create a matrix 77 with start position
(T -Zstarts 11-Ystart) = (31 — 1,71 — 1), end position (T7.Zend, Ti-Yend) = (12, j2), and
proper open stem pairs set T7.M =). We use Lemma 4.5.9 and Lemma 4.5.10 to
initialize the first row and first column of 77, i.e. compute boundary conditions. Then
at each position (¢,7) (i; < 7 < 49, j1 < J < Jjo), we compute all matrix entries at
(i,- 7) by Lemma 4.5.11. The computation is from left to right and row by row.

Notice that during the computation, new matrices are produced by case (5) of

Lemma 4.5.11. We now discuss how to generate a new matrix.

4.5.5.3 Generate New Matrices

Matrices are generated as needed and are indexed by the generated order.

We use indezr to record the number of matrices that have been created. Assume
that we are currently computing the entry (7, j) of the matrix 7. If the modified
condition of case (5) of Lemma 4.5.11 is satisfied, that is, if (¢, j) corresponds to the
left end of the innermost arc pair of a crossing stem pair (ap,a;) which is inside
(41, 19; J1, J2), we check whether (ap, a;) is compatible with current proper open stem
pairs set 7. M. If (ap, ay) is compatible with T;. M, we increase index by 1 and cre-
ate a new matrix Tipge. of which the proper open stem pairs set is Tx. M U{(ao,a1) }-

We need to determine the size of this new matrix Tingdez, -

We give definitions of the open area of a crossing stem pair and the open area of
a crossing stem pairs set M as follows. These definitions are useful to determine the

size of the matrices.

Consider a plane whose dimensions correspond to the two RNA sequences. We

define the open area of a crossing stem pair (ap,a;) where ap = (ap,,a0,) and

ar = (ar,ar,)" as the area enclosed by the rectangle with the upper-left corner

(af,,a%) and the lower-right corner (aff — 1,a7 — 1) (see Figure 4.5). The open area

1200, and aj, are arcs from the first RNA, and ap, and ay, are arcs from the second RNA.

98

of a crossing stem pairs set M is the area shared by open areas of all stem pairs in

M (see Figure 4.6).

L L R R

0,02 (.112 aIz G,OL
L
CLO1
L L
af’l (af,,af,)
7
/ - open arca
7
R R R
a’Il (afl _]"»‘a‘Ig _ 1)
R
aol

Figure 4.5: An illustration of open area of a crossing stem pair

We now consider how to determine the size of the new matrix Tinger .

Obviously, the new matrix Tjnge,,. corresponds to the open area of Tp.M U
{(ao,ar)}. The start position of Tingerr is the upper-left corner of the open area
of Tx.M U {(ap,a;)} which is current position (4,j), and the end position is the
lower-right corner of the open area of T.M U {(ap,a;)}. We need to determine the
lower-right corner of the open area of Ty,.M U {(ap,as)}. It can be easily obtained in
the following way.

We know that the open area of Ty. MU{(ap, a;)} is the overlapped area of the open
area of all stem pairs in Tx.M U {(ap,a;)}. Thus the open area of Ty.M U {(aop, ar)}
must be the overlapped area of the open area of T;.M and the open area of (ap, as).
The lower-right corner of the open area of Tj. M is the end position (Tk.Tend, Tk-Yend) Of
Tk, and the lower-right corner of the open area of (ap, ay) is (pr () — 1, pr, (j) = 2.

Thus if (Tx-Zend, Tk-Yend) < (0r, (1) — 1,0(3) = 1), (Tk-Zend, Tk-Yena) wWould be the

13 Assume that a; = (ay,,ar,), then \, a5 = (aﬁ,aﬁ) = (pr, (2
1

the lower-right corner of the open area of (ap,ay) is (pr, (7) — 1,

), Pry(j)) since N a; = (2,7). Thus
Prqy (J) — 1)'

99

z’ Ji J2 Js Ja Js Je Jr Js
i1
(22, J2)
1
13 open area
i (2.47]'4) /
a 233
s (is— 1,5 1)
16
b7 (?‘7 — laj'? o 1)
I8
Two open stem pairs:

(((%1,%6), (41, J6)), ((Z2,5), (jzaj5gg

)
(((43,48), (J3,78)), (4, 77), (Js, J7)))

Figure 4.6: An illustration of open area of a crossing stem pairs set

lower-right corner of the open area of Ty.M U {(ap,ar)}, that is the end position of
Tindexy; Otherwise, (p, (1) — 1, pr(j) — 1) would be the lower-right corner of the open
area of T,.M U {(ap, ar)}, that is the end position of T;gezr.

After creating a new matrix Tj,ge., We initialize the first row and first col-
umn of Tinger.. The upper-left entry Tingezr[¢][7]] can be filled by case (5) of
Lemma 4.5.11. The first row except the upper-left entry of T} can be filled by case
(1) of Lemma 4.5.11 and the first column except the upper-left entry can be filled by
case (2) of Lemma, 4.5.11 directly.

Notice that there may be more than one crossing stem pair of which the left end
of the innermost arc pair is (z,7). We need to iterate over all possible alternatives,

thus there may be multiple matrices created at (¢, 7).

We can always generate new matrices in this way.

100
4.5.5.4 Maintain livel and activelL

At each position (z,7) (i1 < i < iy, j1 < 7 < Jg), we compute all matrix entries at
(¢,7) by Lemma 4.5.11. At (4,7), only some matrices exist. Thus we need to know
which matrices exist at (¢,5). We can maintain several lists of matrices indices to

avoid unnecessary check. We say that a matrix is active at (¢, j) if it exists at (¢, 7).

“We use two lists ltvel and activel. Assume that the computation is currently at
position (i, 7). Then liveL stores the indices of matrices of which the end positions
the computation has not arrived at. Formally, liveL contains all k(k > 1) which
satisfy that ¢ < Ty.Zeng, Or 2 = Ty Teng a0d § < T Yeng- activel stores the indices of
matrices which exist at (7, 7) (if i is the first row or j is the first column of a matrix
T, we do not add s to activel, since the first row and first column of a matrix are
initialized when the matrix is created). Formally, activeL contains all k(k > 1) which
satisfy that (Ti.Tstare, Tk-Ustart) < (4,7) 2 (Tk-Zend, Tk-Yena)-

When the computation moves into the matrices in liveL (except the first column
and first row of the matrices), these matrices will become “active”. Thus we can use

livel to generate activel.. We need a temporary list tmpL to generate activel from
livelL.

We can maintain these lists as follows.

When a matrix T is created, we append its index k£ to the livel list. When
the computation arrives the end position of Tj, after computing all values of current

position, we search livel to find T}’s index k, then delete k from livelL.

Before computing each row, we copy liveL to tmpL, and append 1 to activeL since
we begin computing each row i from the position (¢, j;) where T} is already “active”.
When the first column of a matrix 7} is encountered, after computing all values of
current position, we search tmpL to find T}’s index, then append it to activel and
delete it from tmpL. By doing this, we can skip the first column of matrix T}, which
is already initialized (except T} whose first row and first column are already skipped).

Notice that if Ti.Ystar: = Tk-Yend, that is, the matrix Ty is just a single column, we do

101

not append k to activeL. When a matrix T} is created, we do not append its index
k to activeL either since the first column of matrix 7} is already initialized. When
the last column of a matrix T} is encountered, after computing all values of current

position, we search activelL to find T}’s index, then delete it from activel.

These lists can be implemented in linked list for fast insertion and deletion.

4.5.5.5 Computation of Lemma 4.5.11

At each position (¢, j), for each matrix whose index is in activeL, we compute their
values at (7, j) by Lemma 4.5.11. The first three cases of Lemma 4.5.11 are trivial.
And we have already discussed case (5) which is used for generating new matrices in

Section 4.5.5.3. Now we discuss how to compute cases (4) and (6).

Assume that we are currently computing the entry (,7) of the matrix T. We
first consider how to compute case (4) of Lemma 4.5.11.

If (¢,7) is the right end of a non-crossing arc pair in NC inside (i1, i2; j1, J2), We
need to consider aligning this arc pair using case (4) of Lemma 4.5.11 if this arc pair
1s compatible with current proper open stem pairs set Tx. M. Assume that this arc
pair is a € NC with \, a = (4, 7), and it is compatible with current proper open stem
pairs set Tp.M.

First, we need to determine M; and M, in case (4) of Lemma 4.5.11. We can
partition current proper open stem pairs set Tp.M into two subsets: M’ contains
each stem pair whose left end is before the position (p,, (7), pr,(j)); M" contains each
stem pair whose left end is after the position (p,, (i), pr(7)). It is easy to see that
M, = M'U Mg, and M2'= M" U Mgpgre. M' and M" are uniquely determined.
Thus we only need to compute Mspare. Obviously, M. may have multiple instances.
We need to enumerate all possible alternatives of Mpqre. Actually, all instances of
Mhare are in the list of all possible proper open stem pairs sets of the segment
(pr, (1) +1,2—1;pr,(j) + 1,7 — 1) which we have precomputed in Algorithm 4.3. Thus

we can search Mg, in this list. After we get Mgp.re, We can easily obtain M; and

102

M.

After we obtain M; and M, we need to find the score A(i1,p,, (%) — 1; 71, Pry () —
1{M;) and the subalignment score A(p,, (i) + 1,71 — L;p(j) + 1,5 — 1|M;). For
A(iy, pr (1) — 15 91, pry (§) — 1] M7), we need to find the matrix which contains the score
A(i1, pr (1) — 1551, pr,(7) — 1{M7). Therefore, we can search the index of the matrix
whose proper open stem pairs set is M;. For A(p,, (1)+1,i1—1;p.,(j)+1,5—1|Ms), we
need to search it in the alignment scores of the segment (p, (1)+1,7—1; py, (j)+1,7—1)
which are computed and saved before computing the subalignment between R;[iy, o]
and Rs[j1, jo]. Therefore, we can search the index of the precomputed subalignment
score whose corresponding subalignment’s proper open stem pairs set is M5 in the
saved alignment score array of the segment (p,, (1) + 1,7 — L;p,(j) + 1,5 — 1).

Notice that for non-crossing arc pairs covered by the same non-crossing m._stem
pair, the instances of M; and M, do not change. Thus we can only compute all
possible corresponding indices for M; and M, when the innermost arc pair of a non-
crossing m_stem pair is encountered, and save them for later use. When other arc
pairs which are not innermost arc pair of a non-crossing m_stem pair is encountered,
we can get those indices that we need directly.

We now consider how to compute case (6) of Lemma 4.5.11.

If (7, 7) is the right end of the outermost arc pair of a crossing stem pair in ST¢og
inside (iy,192; j1, j2), we need to consider computing case (6) of Lemma 4.5.11 if this
stem pair is compatible with current proper open stem pairs set Ty.M. Assume that
this stem pair is (ap, a;) € STeg with \ ap = (i, j), and it is compatible with current
proper open stem pairs set 1. M.

We need to find the score A(iy,i' —1; 71,7 — 1|M U{(ap, as)} in case (6). Thus we
need to find the matrix which contains the score A(iy,7 —1;75;,7 — 1l|M U {(aop, a;)}.
Therefore, we can search the index of the matrix whose proper open stem pairs set is
M U {(aop,ar)}.

In fact, case (6) is used to merge ending score of the matrix with proper open stem

pairs set M U {(ap,a;)} to its corresponding matrix with proper open stem pairs set

103

M.

Notice that there may be more than one crossing stem pair in STecgr of which
the right end of the outermost arc pair is (7, 7). We need to iterate over all possible

alternatives, and take the minimum of all these alternatives.

4.5.6 Algorithm for Computing Optimal Subalignment with
Open Stem pairs

In this section, we discuss how to compute optimal alignment between R;[i,4s] and
Rolj1, j2] with open stem pairs, i.e. A(iy,49; J1,J2|Mo) (My # 0). The computa-
tion of A(iy,d9; 1,72/ My) (My #) is more complicated than the computation of
A(iq,19; 71, 72|0), but is similar. It can be considered as a constrained alignment prob-
lem where our goal is to find the optimal subalin.gment using stem pairs in Mj as the
constraints.

The (left or right) ends of the outermost arc pairs or innermost arc pairs of stem
pairs in My will partition the plane whose dimensions correspond to the two RNA
sequences into several parts. Figure 4.7 gives a simple illustration. We only need to
compute the shaded region in this figure.

Now we discuss how to compute A(%y,19; j1, Jo|Mo) (Mo # 0).

We first compute two sorted lists of partition points formed by the ends (left or
right) of the outermost arc pairs or innermost arc pairs of stem pairs in M. These
lists are par Points; and par Pointsy. Points in these two lists are sorted by the partial
order “<” which is defined in Section 4.1.

The first list par Points; consists of the right ends of the innermost arc pairs of
the stem pairs in M, whose right ends are inside (i1, 72; j1, j2) and the left ends of the
outermost arc pairs of the stem pairs in M, whose left ends are inside (i1, i2; 71, J2)-

The second list par Points, consists of the right ends of the outermost arc pairs of
the stem pairs in M, whose right ends are inside (41, i2; j1, j2) and the left ends of the

innermost arc pairs of the stem pairs in M, whose left ends are inside (i1, 92; j1, J2)-

104

& the region we need to compute

// precomputed open stem pair alignment

Figure 4.7: An illustration of computing A(iy,i2; j1, j2| Mo) (Mo # 0)

105

We can also add the point (i1 — 1, j; — 1) to parPointsy and (is, j2) to par Points,
to make the algorithm easy to be implemented.

Assume that |parPoints,| = |parPointsy| = numy,. Then for each k €
{1, - ,numyp,,}, we need to compute the area enclosed by the rectangle with the
upper-left corner par Pointss[k] and the lower-right corner par Pointsi[k]. The align-
ment scores at parPointsslk] (1 < k < numye) can be computed by case (5) of
Lemma 4.5.11. Notice that we do not create new matrices for the stem pairs in M,
since they are required to be realized.

The computation of A(iy,49; 1, jo| M) (Mo # 0) is similar to the computation of
A(i1,192; J1,72/0). We can extend the algorithm for computing A(41, 9; j1, j2|0) here.
In the following text, we will point out the differences.

For the computation of case (4) of Lemma, 4.5.11 in computing A(1,%2; J1, J2| Mo),
we need to check whether the arc pair ((pr, (¢),1), (pr,(7),J)) is compatible with M,
first. When generating M.re, We also need to check whether Mgp,re iS compat-
ible with M,. Other computation is the same as the computation of case (4) of
Lemma 4.5.11 in computing A(4y, i9; 71, 72|0).

For computation of cases (5) and (6) of Lemma 4.5.11 in computing
A(iy1,19; 71, J2| Myp), we need to check whether the stem pair (ap,a;) is compatible
with My first. Other computation is the same as the computation of cases (5) and
(6) of Lemma 4.5.11 in computing A(%y, 92; j1, jo|0).

The method to maintain lists activel, and tmpL also changes a little. Before
computing each row, for each index k' in liveL, we do the following step: if the first
column of the matrix T} is not before the first column that we need to compute (see
Figure 4.7; the first column of the shaded region), then we append &’ to tmpL; if the
first column of the matrix 7T}/ is before the first column that we need to compute and
the last column of T} is not before the first column that we need to compute, then
we append k' to activeL. After computing each row, we clear lists activel and tmpL.
Other operations to maintain those lists remain the same.

Actually, we can use this algorithm to compute A(i1,12; 71, j2|0). It is a general-

106

ization of the algorithm for computing A(%y, i9; J1, j2|0).

4.5.7 Algorithm for Computing Optimal Global Alignment

The cost of the global alignment is the value of Align(R;, Ry) = A(1,|Ry;1, |R2||0).
We can compute A(1, |R;|;1,|Ry||@) using a bottom-up approach.

- Given two RNA structures R; and R,, we can first partition the set of m_stem
pairs STMA* x STMAX into the set of non-crossing m_stem pairs STH4X and the
set of crossing m_stem pairs STEE**. Then we generate NC from STYAX,

Then we preprocess crossing stem pairs by methods discussed in Section 4.5.2 and
get the filtered crossing stem pairs set ST¢pg.

Then we use Algorithm 4.3 to generate lists of all possible proper open stem pairs
sets for segments enclosed by the innermost arc pairs of non-crossing m_stem pairs
in STMAX.

From case (4) of Lemma 4.5.11, we only need to compute alignment of segment
(¢1,1%2; 71, J2) such that (i; — 1,75+ 1;5; — 1,2 + 1) is a non-crossing arc pair in NC.

For each arc pair ((¢1, 12), (j1,72)) € NC, we can obtain a list of all possible proper
open stem pairs sets M;;q; of its corresponding segment (i; + 1,40 — 1;j1 + 1,72 — 1)
from the output of Algorithm 4.3. Then we compute all possible A(i; +1,1i3 —1;51 +
1, jo — 1| My) (Mo € Myigt).

Finally, we compute A(1,|Ry|; 1, |Ry||0).

4.5.8 Trace Back to Produce Optimal Alignment

In biological applications, in addition to the optimal alignment score between two
RNA structures, it is often required to produce an alignment corresponding to the
optimal score. The method employed to produce an alignment corresponding to the
optimal score is called traceback. We have introduced the traceback method for se-
quence alignment in Chapter 2. We start from the cell position holding the optimal

score in the alignment score matrices which is also the end position in the alignment,

107

then tracing back to the start position of the alignment to produce the whole align-
ment. Generally, there are two approacihes for traceback: (1) saving pointers while
computing alignment scores; (2) recomputation. In this thesis, we use the second
approach to save space. Starting from the matrix cell holding the optimal score,
we repeat the recurrence formulae and check to see which direction results in the
given score. When there are more than one directions could result the given score,
we select one direction to trace back. In this thesis, we set a preference order, from
the highest to the lowest, is: insertion (c‘ase (1) of Lemma 4.5.11) > deletion (case
(2) of Lemma 4.5.11) > base substitution (case (3) of Lemma 4.5.11) > base pair
substitution (cases (4), (5) and (6) of Lemma 4.5.11).

We can do the traceback by a top-down approach. Starting from the position
(|R1|, | R2|), we first do a top-layer traceback without going down further into the sub-
layers. We use four stacks to keep the information that we need to produce optimal
global alignment. Assume that the optimal alignment is Align. stack, contains
sequence indices in the resulting alignment and a sign number (1, 2, 3 or 4) which
indicates the next traceback operation. stacks contains proper open stem pairs lists of
subalignments which need to be unraveled next. stacks contains the indices of crossing
stem pairs In STop whose left parts need to be unraveled next. stacks contains the
indices of crossing stem pairs in STcr whose right parts need to be unraveled next.

When we encounter a situation where R;[i| is deleted, we push (i, —1, 1) to stack;.
When we encounter a situation where Ry[j] is inserted, we push (-1, 7, 1) to stack;.
When we encounter a situation where R, (7] is aligned to Rp{j] but no arc pair involving
(R1[7], Ralj]) is realized, we push (4, 7, 1) to stack;. The first two numbers in each entry
of stack; denote sequence indices in an alignment. The third number “1” indicates
that these indices can be converted to corresponding characters and appended to the
alignment.

When we encounter a situation where (7,) is the right end of a non-crossing arc
pair and this arc pair is realized, we push (4,4,2) to stack;, and push the proper

open stem pairs list of the subalignment enclosed by this arc pair to stacks. The

108

third number “2” in the entry of stack; indicates that there is a subalignment
Align|p, (1) + 1,7 — 1;p.,(5) + 1,7 — 1] which need to be unraveled next. stacks
contains its corresponding proper open stem pairs list.

When we encounter a situation where (i, j) is the right end of the outermost arc
pair of a crossing stem pair and this stem pair is realized, we push (i, 7,4) to stack,
and push the index of this stem pair in the sorted (by 5 ends) list ST¢g of crossing
stem pairs to stacks. The third number “4” in the entry of stack; indicates that there
is a stem pair alignment whose right part’need to be unraveled next.

When we encounter a situation where (i, j) is the left end of the innermost arc
pair of a crossing stem pair and this stem pair is realized, we push (i, 7, 3) to stack;,
and push the index of this stem pair in the sorted (by & ends) list ST¢r of crossing
stem pairs to stacks. The third number “3” in the entry of stack; indicates that there
is a stem pair alignment whose left part need to. be unraveled next.

After this top-layer traceback, we pop the stack entries from stack;. Assume the
first two numbers are ¢ and j.

If the sign number, that is the third number of the entry is 1, we convert the first
two numbers i and j to corresponding characters and appended to the alignment.

If the sign number of the entry is 2, then there is a pair of substructures R; [p,, (7)+
1,7 — 1] and Rslp,(j) + 1,7 — 1] that need to be unraveled. We push (3,7,1) to
stack;. Then we pop stack entry from stacks to get the proper open stem pairs list
for this segment. Then we recompute alignment between Rj[p. (i) + 1,7 — 1] and
Ralpr,(7) + 1,7 — 1], and perform a next layer traceback for Ry[p,(¢) + 1,7 — 1] and
Rs[p-,(j)+1, j—1] as what we do in the top-layer traceback. When traceback returns,
we have unraveled the alignment in the next layer. Then the next item popped from
stack; would be the one we pushed back to stack; immediately before we performed
the previous traceback. Since we changed its sign number to 1, it can be output
directly now.

If the sign number of the entry is 3, then there is a crossing stem pair alignment

whose left part need to be unraveled. We pop stack entry from stacks to get the

109

index of this stem pair. Then we recompute alignment of this stem pair, and perform
a next layer traceback for this stem pair. When traceback returns, we will get the
alignment of this stem pair. We append the left part of this stem pair alignment to
the global alignment, and save the right part of this stem pair alignment for later use.

If the sign number of the entry is 4, then there is a crossing stem pair alignment
whose right part need to be unraveled. We pop stack entry from stacks to get the
indexx of this stem pair. Then we can append the right part of this stem pair alignment
which we have saved previously to the global alignment.

This procedure repeats until stack; is empty. Then we have the resulting align-

ment.

4.5.9 Complexity

Let n be max(|R;|, |R2|), and let s and ¢ be the maximal number of arcs and bases in

a stem, respectively. Recall that we use STMAX and STMAX to denote the m_stems
sets of R; and R,, respectively; we use P, and P, to denote the arcs sets of R; and
R,, respectively.

The first step of the algorithm is the partition of m_stem pairs using methods
discussed in Section 4.5.1. For each partition method, we need at most O(n?) time,
and at most O(n?) time to optimize the preliminary partition result. The space we
need is at most O(n?). We also generate NC from ST 4% in this step. This takes
at most O(n?) time and space. Therefore, in the first step, we need at most O(n?)
time and O(n?) space.

Next we preprocess crossing stem pairs using Algorithm 4.2. For each crossing
inner local m_stem pair (ap, a;), there are O(n?) possible instances of a7, and ao is
uniquely determined by a;. Thus we have O(n?) crossing inner local m_stem pairs
to compute. For each crossing inner local m_stem pair, we compute its alignment
by Algorithm 4.1. Computation of each crossing inner local m_stem pair will need

O(t*) time and space. Recall we also record realized stem pairs. Obviously, in the

110

computation of each crossing inner local m_stem pair, there are at most s stem pairs
which are realized at the same time. Notice that we compute each crossing inner
local m_stem pair one by one such that we only need at most O(t* + n?s) space.
Thus we need at most O(n%t*) time and O(t* + n?s) space in this step. We can
also compute alignment of all crossing outer local m_stem pairs. This also takes at
most O(n?t*) time and O(t* + n?s) space. These two approaches will produce two
sorted filtered crossing stem pairs lists, each of which has at most O(n?s) stem pairs.
We compute the intersection of these two lists. This takes at most O(n?s - log(n?s))
time. Therefore, in the step of preprocessing crossing stem pairs, we need at most
O(n®t* + n?s - log(n?s)) time and O(t* + n?s) space.

Then we use Algorithm 4.3 to generate lists of all possible proper open stem
pairs sets for segments enclosed by the innermost arc pairs of non-crossing m_stem
pairs in STH4X. We adopt the notion of the crossing number of a position (z, y)
proposed by Mohl et al. which is introduced on page 55 in Section 3.4.4 to measure
the number of proper open stem pairs. The maximal crossing number is denoted
as k. Consider a non-crossing m_stem pair ((po,,po,), (Pr,pr2)). Let iy = pr, + 1,
g = pﬁ -1, n= pf‘z + 1 and jp = pg — 1. For each crossing m_.stem pair b which is
open for the segment (i1, 2; j1, j2), there are O(s-s+ () - (3)) = O(s*) crossing stem
pairs that are covered by b. These crossing stem pairs can be realized and serve as
proper open stem pairs for the alignment of segment (i1,1i9; j1, 7o). Therefore, there
are at most O((s4)¢li1a1) . (g4)Cl2.52)) = O(s8) possible proper open stem pairs for
the segment (%1, %9; j1, J2). Therefore, for each non-crossing m_stem pair ¢, we will use
O(s%*) time and space to compute and save all possible proper open stem pairs lists
of segments enclosed by non-crossing arc pairs that are covered by c. Totally, we will
use O(|STHAX %) = O(n?s%) time and space in this step.

For each non-crossing arc pair ((i1,42), (ji,J2)) € NC, we compute all possible
Ay + 1,19 — 1,51 + 1,70 — 1| My) (Mo € My;s) where My is the list of all possible
proper open stem pairs sets of the segment (i; + 1,42 — 1,51 + 1,72 — 1). Mg is

precomputed in last step and it has at most O(s®) elements. Thus for each segment

111

enclosed by a non-crossing arc pair, we need to compute O(s%) subalignments. Since
there are O(n?) non-crossing arc pairs, we need to compute O(n?s%) subalignments.

Now we consider the time and space complexities to compute a subalignment
A(i1,19; J1, J2| M) where M, is the proper open stem pairs set of the segment
(21,125 71,72) and is fixed here. We need to compute all A(iy, ;51,7 M) (31 =1 <
1 < 49,71 — 1 < j < jo) where M is the proper open stem pairs set at position
(1,]) We need to measure the number of instances of M. Since Mj is fixed, we only
need to consider stem pairs that are inside (i1, 42;j1,J2) and cross the position (i, 5).
Thus there are at most O((s*)¢®9)) = O(s*) instances of M. That means there are
at most O(s%) values that we need to compute at each position. At each position
(i,7), for each copy of A(iy,1;j1, 7| M), we compute its value by Lemma 4.5.11. The
first three cases needs constant time. For case (4), we need to compute all possible
instances of M; and M,. Since M; and M, are uniquely determined by Mugre, We
only need to consider the number of instances of Mpare. Obviously, there are at most
O((s*)“C7)) = O(s*) instances of Mypare. Thus there are at most O(s*) instances
of M; and M,. Hence in case (4), we need O(s*) time. When the left end of the
innermost arc pair of a crossing stem pair is encountered, new instances of M are
created. We need to iterate over all possible O(s?) alternatives of the outermost arc
pair of this stem pair. For each new instance M, we need constant time according
to case (5) of Lemma 4.5.11. Hence we need at most O(s?) time in this situation.
Similarly, when the right end of the outermost arc pair of a crossing stem pair is
encountered, we need to compute case (6). This also requires at most O(s?) time.
Therefore, we need at most O(n? - s* - s*) = O(n%s%) time for O(n? - s**) values
of O(n?) positions. We need O(n?s*) space to hold these values. Notice that we
save all possible proper open stem pairs lists of segments enclosed by non-crossing
arc pairs computed as by Algorithm 4.3 and we will use the saved result in this step.
This takes O(n?s®) space. Thus we need at most O(n?s%) time and O(n?s®*) space
in total.

Finally, we compute A(1,|R;|; 1, |R5||0). This also requires at most O(n?s%) time

and O(n?s%) space.

So the time complexity of the whole algorithm for computing optimal alignment
score between two RNA tertiary structures is O(n?s% - n2s8%) = O(ns!%*), and the
space complexity is O(n?s%).

Now we consider the traceback part.

We trace back from position (|R:|, |Rs]) to (0,0). At each position, we repeat the
recurrence formulae and check to see which direction results in the given score. There
are only three directions to go: upper, left, or upper-left. Thus we only need to go
through at most O(2n) = O(n) positions. At each position that is not inside the
region enclosed by left ends or right ends of a realized crossing stem pair, we need
at most O(s% - s%) = O(s%) time (there are at most O(s*) values at each position,
and each value needs at most O(s*) time). At each position that is inside the region
enclosed by left ends or right ends of a realized crossing stem pair, we only need
constant time. Thus we need at most O(ns®) time for traceback. Since we save all
possible proper open stem pairs lists of segments enclosed by non-crossing arc pairs

computed as by Algorithm 4.3 and this takes O(n?s®*) space, we still need O(n?s%)

space.

Therefore, the time complexity of the whole algorithm for computing optimal
alignment between two RNA tertiary structures is O(n*s®*), and the space complex-
ity is O(n?s%").

Even though the worst case time and space complexities of our algorithm are
the same as Mohl et al.’s, we will show that because of our improvement, our algo-

rithm could use much less resources (time and space) in practice to compute optimal

alignment between two RNA tertiary structures in next chapter.

4.5.10 Possible Further Optimization

For the segment (i1, 10; 71, jo) that satisfies {(i; — 1,32+ 1),(j1 — 1,72+ 1)) € NC, we

compute all possible instances of A(1,19; j1, jo| Mo).

113

For each instance of A(i1,149; 71, jo|Mo) (My # 0), we denote the partition point
we encounter first as (i, jo). We found that there were redundant computations for
positions from (i;—1, j;—1) to (49, jo) compared to the computation of A(iy, is; j1, j2|0)

(see Figure 4.8).
We can do as follows to avoid redundant computation.

During the computation of A{i1,1s; 71, j2|0), when we encounter the first partition
point of each instance of A(i1,42; 71, j2| M), we record all scores of current position.
When we compute A(iy,1is;j1, 72| Mo), we start computation from its first partition

point, and get initial scores from the corresponding scores we record previously.

Unfortunately, this optimization technique is not easy to implement. Our current

implementation does not include it.

(%0, Jo)

& the region we need to compute
FFER

redundant compuation

Figure 4.8: An illustration of redundant computation

114

4.6 Constrained Alignment

For simple RNA tertiary structures, we can compute the optimal alignment efficiently
by algorithms discussed in Section 4.5. For moderate and complicated RNA tertiary
structures, we need to consider other approaches to compute the alignment since

using algorithms in Section 4.5 will cause high usage of space.

Like Wang and Zhang’s RNA alignment algorithm that we have discussed in

Section 3.3, we can adopt the constrained alignment approach. The method is as

follows.

We select two crossing m_stems ¢q; and gp which are very likely to be matched
from two RNAs, respectively. These two stems form a stem pair. We impose the
constraint, ¢; can only match to ¢ and ¢, can only match to ¢, on the alignment.

We call the stem pair formed by ¢, and ¢, constrained stem pair.

In the first step, we align the constrained stem pair. Then we compute the align-

ment of the two RNAs.

We can align the constrained stem pair by Lemma 4.5.7 and Lemma 4.5.8 with
a little modification. For the constrained stem pair, we do not requiré its innermost
arc pair and outermost arc pair to be realized. Assume the constrained stem pair
is (ao,ar) with ao = ({io, pr,(10)), (Jo, Pr,(Jo))) and ar = ((ir, Pr, (1)), (41, Pry (UJ1)))-
Then we start computation from the position (iy + 1,p,,(¢7) — 1;jr + 1, pry (J1) — 1).
Since we only have one constrained stem pair, we do not need a; in S’ item. Thus in

Lemma 4.5.7, we need to change Eq. 4.21 to the following equation.
S'(i; +1,p,,(i1) = 1,51 +1,p,,(j1) — 1) = 0 (4.27)

In Lemma 4.5.8, we only need to change the condition to “For ip < 7 < i1 + 1,
jo <3 <jr+1, pr (i) =1 <7 < ppy(i0), pro(J1) =1 £ 5 < pry(Jo), and (¢, 5,7, 5) #
(¢ + 1,71 + 1,pr,(i7) — 1,00 (j1) — 1)”, and discard a; in the S’ items in Eq. 4.22.

Using the modified equations, we can align the constrained stem pair easily within

115

O(t*) time and space where ¢ is the maximal number of bases in a stem.

Then we compute the alignment of the two RNAs using algorithms for computing
optimal alignment discussed in the previous sections. Notice that after partitioning
the set STMAX x STMAX of m_stem pairs, we need to filter out stem pairs in ST 4% x
STMAX = STMAX and STY4X which are not compatible with the constrained stem
pair. Then we use the filtered stem pairs sets in later steps of the algorithm.

‘The most part of the algorithm for computing constrained alignment is the same
as the algorithm for computing optimal ali‘gnment. There is a difference that we need
to discuss here. When we compute a subalignment A(iq,i2; 71, j2|Moy) where My is
the proper open stem pairs set of the segment (i1, 1s; j1, j2) and is fixed. We need to
add the ends which are inside (i1, 42; J1, j2) of the constrained stem pair (ap, ay) into
the partition points lists of the segment (i1, %9; j1, 72). Thus we need to determine the
relation between the constrained stem pair (ap,a;) and a segment (iy, is; J1, jg).‘

We can divide the relation between the constrained stem pair (ap,a;) and a seg-
ment (41, 12; j1, j2) into four types as follows.

(1) (ap,ay) is before (i1, 12; j1, J2), or (ap, ar) is after (i1, i9; 71, J2), or the left part
of (ap,ay) is before (iy,12; J1, J2) and the right part of (ap,ay) is after (i,%2; 71, Jo)-
Then the computation of A(ii,is; 71, J2|Mo) is exactly the same as what we do in
computing optimal alignment.

(2) Both the left and right parts of (ap,a;) are inside (i1,%2;7j1,52). Then we
need to add the left end of ap and the right end of a; to the partition points list
par Points;, and add the left end of a; and the right end of ap to the partition points
list parPoints,. Then we compute A(iy,19;71,72|Mp). This can be easily done by
modifying the algorithm for computing optimal subalignment with open stem pairs
a little.

(3) The left part of (ap,ar) is inside (i1,12; j1, jo) and the right part of (ap,ar) is
after (i1,12; 71, j2). Then we need to add the left end of ap to the partition points list
par Points;, and add the left end of a; to the partition points list par Points,. Then

we compute A(iy, ix; ji, jo| Mo).

116

(4) The left part of (ap, ay) is before (iy,19; 71, j2) and the right part of (ap,ay) is
inside (i1,42;j1,72). Then we need to add the right end of a; to the partition points
list par Points,, and add the right end of ap to the partition points list par Pointss.
Then we compute A(iy,1s; j1, J2| Mo).

For the traceback part, we can also modify the traceback algorithm for producing
optimal alignment a little.

'Although the result produced by constrained alignment is not guaranteed to be

an optimal solution, in practice it would be reasonable.

117

Chapter 5

Implementation and Experiment

Results

5.1 Implementation

A software package has been written to compute global alignment between two RNA

structures. This package implements algorithms discussed in Chapter 4 and is written

in ANSI C.

Two alignment options are provided: optimal alignment and constrained align-
ment discussed in Section 4.6. User can select one of them. For the constrained
alignment option, the program will ask user to select two crossing maximal stems
which seem very likely to be matched from two input RNAs, respectively, and input

the start (first 5') base’s positions of the two selected stems.
Three input files are needed.

The first input file specifies score scheme -for single bases. Table 5.1 show an
example of this file. The first column is the alphabet used to align unpaired base
in R;, while the first row is the alphabet used to align bases in R;. We use D to
represent space symbol '—' in the input file. We treat the first column and the first

row as indices of the table formed by numeric values in the file. The value of entry

118

(a,d) of the table (a,b € {A,C,G,U, D}) is the cost of substituting a with b if a # D
and b # D; or the cost of deleting a if a # D and b = D; or the cost of inserting b
if a =D and b # D. (Notice that the entry (D, D) has no meaning since we cannot

align '—' to '-'.)

ST

— ek o
—— = O = O
— O e Q)
— O e
=N

Table 5.1: An example of score scheme for single bases

The second input file specifies score scheme for base pairs. Table 5.2 show an ex-
ample of this file. The first column is the alphabet used to align base pairs in R;, while
the first row is the alphabet used to align base pairs in Ry. We use DD to represent
('='7 —'} in the input file. We treat the first column and the first row as indices of the
table formed by numeric values in the file. The value of entry (a, b) of the table (a,b €
{AA, AC, AG,AU,CA,CC,CG,CU,GA,GC,GG,GU,UA,UC,UG,UU, DD, BB})
is the cost of substituting a with b if a #2 DD, a # BB, b # DD and b # BB; or
the cost of deleting a if a # DD, a # BB and b = DD; or the cost of inserting b if
a=DD,bs DD and b #* BB, or the cost of breaking the bond of a if a # DD,
a # BB and b = BB; or the cost of breaking the bond of b if a = BB, b # DD and
b # BB. (Notice that the entries (DD, DD), (DD, BB), (BB,DD) and (BB, BB)
have no meaning.)

The third input file is the RNA data file which contains the primary, secondary
and tertiary structures information of two RNAs. We use the modified region table
format where the energy column of secondary structure is removed.

Each RNA in the file contains three sections: first, the name of the RNA and
the primary structure of the RNA, followed by the secondary structure of the RNA|
followed by the tertiary structure of the RNA. Each section is separated by the ">’

character alone on a line. If there is no tertiary structure, then after the ‘>’ that ends

AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU DD BB

1

2

2 2

2

2 2 1

2

1 1 1 2 2 2 1

1
0

0
1

1
1
1
2
2
2

AA
AC
AG
AU
CA

1
2
1
2
2

2
1

cC

CG

CcU

1
2
2

GA

GC

GG
GU

2

2
1
2

1
2

UA

UC
UG
uu .
DD
BB

2
2
1

2
1

Table 5.2: An example of score scheme for base pairs

119

120

secondary structure section, there should be another >’ in the next line.

The secondary and tertiary structures of the RNA are specified as follows:

(<stem number>) <start base> <end base> <stem size>

Figure 5.1 shows an example of an RNA input file which consists of the RNA
Alcaligenes eutrophus and the RNA Streptomyces bikiniensis. We will use this data
later.

Notice that we use traditional stems (i.e. stacked base pairs of maximal length) in
the RNA input file as input, while we use maximal extended stems as input in algo-
rithms discussed in Chapter 4. Our package has a procedure that groups traditional

stems into maximal extended stems.

5.2 Experiment Results

In this section, we give experiment results of RNA tertiary structure alignment by the
algorithms presented in Chapter 4. We performed extensive experiments of our align-
ment algorithm on real RNA structures. Experimental tests show that our algorithm
can be used to compute alignment between RNA tertiary structures in practical ap-
plications. We also compare our results to Mohl et al.’s results and Wang and Zhang’s

results.

5.2.1 Results of Filtering Crossing Stem Pairs

We first give the results of filtering crossing stem pairs in the preprocessing crossing
stem pairs step discussed in Section 4.5.2.

The RNA structures which we use are several tmRNAs that were used in Mohl
et al’s experiments [13]. These RNAs are selected from the tmRNA database [22].
They are the longest sequence (Mycobacteriophage Bxz1, MB), the shortest sequence

(Cyanidium caldarium, CC) and the sequence that contains the largest crossing stems

Alcaligenes-eutrophus-pb-b

e T T an T A R N T T T N T T ¥

(

(
>

1
51
101
151
201
251
301

1)
2)
3)
4)
5
6)
7
8)
9)
10)
11)
12)
13)
i4)
15)
16)
17)
18)
19)
20)

1)
2)
3)

AAAGCAGGCC
AGUCCGGACU
GUGCGGAAUA
GGAAGGGUGA
GCGAUGAAGC
UAACAGCCGG
GGCGGGGCGC

i
11
12
20
23
59
71
77
91
92

106
111
127
132
187
197
206
242
281
284

50
54
66

AGGCAACCGC UGCCUGCACC GCAAGGUGCA GGGGGAGGAA
CCACAGGGCA GGGUGUUGGC UAACAGCCAU CCACGGCAAC
GGGCCACAGA GACGAGUCUU GCCGCCGGGU UCGCCCGGCG
AACGCGGUAA CCUCCACCUG GAGCAAUCCC AAAUAGGCAG
GGCCCGCUGA GUCUGCGGGU AGGGAGCUGG AGCCGGCUGG
CCUAGAGGAA UGGUUGUCAC GCACCGUUUG CCGCAAGGCG
ACAGAAUCCG GCUUAUCGGC CUGCUUUGCU U

337 1
326
278
45
42
183
179
89
105
103
174
172
156
151
236
226
220
261
308
305

N OO EDNN AR BOEON N O

324
321
216

= oW

Streptomyces-bikiniensis-gph-h

P N B A T . T R R N s T T T o W S T A O s T T e T T e B e Y

1
51
101
151
201
261
301
351

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)

1)
2)
3)

CGAGCCGGGC
UCCGGGCUCC
GCGGGACAGU
AGGGUGAAAC
GGCUAGGUAA
CCCUGCGCGG
ACGAGGCCGG
ACCGCGAGGU

1
11
12
20
23
57
69
74
89
80

104
109
126
128
161
182
227
235
257
267
306
343
350

48
52
64

153

GGGCGGCCGC GUGGGGGUCU UCGGACCUCC CCGAGGAACG
ACAGAGCAGG GUGGUGGCUA ACGGCCACCC GGGGUGACCC
GCCACAGAAA ACAGACCGCC GGGGACCUCG GUCCUCGGUA
GGUGGUGUAA GAGACCACCA GCGCCUGAGG CGACUCAGGC
ACCCCACUCG GAGCAAGGUC AAGAGGGGAC ACCCCGGUGU
AUGUUCGAGG GCUGCUCGCC CGAGUCCGCG GGUAGACCGC
CGGCAACGCC GGCCCUAGAU GGAUGGCCGU CGCCCCGACG
CCCGGGGACA GAACCCGGCG UACAGCCCGA CUCGUCUG

394 1
as3
341
43
40
223
219
g8
103
101
214
212

149
179
201
208
254
289
283
324
367
361

BN OOD0E 0O ORNN RO NN SN=RD

asi
378
277

oW

121

Figure 5.1: RNA input file of Alcaligenes eutrophus and Streptomyces bikiniensts

122

(Ureaplasma parvum, UP). The region table representations for these RNA structures
are shown in Figure 5.2 to 5.4, respectively.

Mycobacteriophage Bxzl pre-tmRNA

1 GGGCCUGACA AGGUUUCGAC UGGUCGAUGG ACAACUGAAC AGCGGGCGAG
51 UGUUGGCCGC ACUUCUACUC UGAGUGAACG CGGCAACUGA UAAACGCAAC
101 CGACACGGAU GCAACGGUGA CCGACGCCGA GAUCGAGGCC UUCUUUGCUG
151 AAGAGGCUGC CGCUCUCGUC UGAAGGAACC AGCCUGGCUC AGCGUGCUGC
201 UGUGCAGCGG CCAGGCUUCA UCUCUAACAG CAGCGAACGG ACAUGAGGGA
251 GCGCAAACCC UCGUCCCAAA CAUCAUGAAU GCGUCGCACG GGCUCCAGCG
301 UCAGGGGCCA GAGGUGGGAA ACGGUGUGAA ACUCCUGUCC UGGGGAUCAC
361 CGACCGAUAC GCCAAACCAG GACUACGCCC GUAGAACGCA GUGAGAAAGA

401 CACCAGGACA GGGGUUCGAG UCCCCUCAGG UCCACgu

(1 1 433 7
{ 2) 20 406 5
(3) 34 ag2 4
(4) 43 as1 5
(5) 56 84 5
(6) 63 78 3
() 148 194 6
(8) 154 186 6
(9) 322 356 4
{ 10) 326 350 4
(1) 333 346 3
(12) 410 426 5
>
(1) 48 70 4
(2) 337 373 7

Figure 5.2: Region table representation for MB

Cyanidium caldarium plastid pre-tmRNA
1 GGGGCUGAAA GGAUAUUCGA CAUAUUAAUU UCGUGCGCUA UGAUGCAAGC
51 CGAGAAUGCU UAUCUCGUAA AAAAGCAGAC AAAGAAAUAA AUGCAAACAA
101 UAUUAUUGAA AUUAGCAAUA UUAGAAAACC AGCUCUAGUA GUCUAGCCUG
151 AUUCAGUUAU UUCUAAAUUA UUUAUGUUAU GUUAUUUAAG CUUGUAGUAA
201 CUAUCUAGUG UACAAUUUCU AUGGACGUGG GUUCAAUUCC CACCAGCUCC

251 ACaa
>
(1) 1 250 7
(2) 21 223 4
(3) 27 217 4
(4) 33 213 8
(5) 42 2056 4
(6) 46 194 5
(7) 51 &7 5
(8) 227 243 5
>
(1) a7 77 5

Figure 5.3: Region table representation for CC

The results are shown in Table 5.3. The second column shows the original number
of crossing stem pairs in ST&%. The third column shows the number of crossing stem
pairs in SI¢g after the first filter (preprocessing crossing inner local m_stem pairs).
The fourth column shows the number of crossing stem pairs in ST¢g after the second
filter (preprocessing crossing outer local m_stem pairs). The last column shows the

total size reduction factor.

Ureaplasma parvum tmBRNA

1 GGGGAUGUCA CGGUUUCGAC GUGACACAUU AAUUUUUAAU UGCAGUGGGG
51 UUAGCCCCUU AUCGCUUUCG AGGCAUUUUA AAUGCAGAAA AUAAAAAAUC
101 UUCUGAAGUA GAAUUAAACC CAGCGUUUAU GGCUUCAGCU ACUAAUGCAA
1561 ACUACGCUUU UGCGUACUAA UUAGUUAUUA GUAGAAACGU UCAUUAACAU

v

v

P R R N o T N T T T e B . T W ¥

P T W o W ¥

201

251

301

351

401 CUCAUCUCCA CCA
1) 1 409
2) 20 382
3) 31 372
4) 37 366
5) 43 357
6) 47 59
7) 158 186
8) 189 225
9) 196 218
10) 200 215
11) 241 278
12) 296 332
13) 308 324
14) 386 402
1) 53 66
2) 205 240
3) 287 294
4) 313 350

ol CO M B WA DR P RO~

~

Figure 5.4: Region table representation for UP

AAUUACUAUU GGUUGGUUUU UGGGCUUAUU UUACAAUAGU UUUAAAUUUA
AAAUUCUUAU UUGUUGUUUA AAUUUAAAUA GAUUUAACAA AUAGUUAGUU
AAUUUUAAAU UUGUUUUAUU AGUUAUUAAC UACACUAUUU UUAAUAAAAC
UAAACUGUAG AUAUUAUUAA UUVAUGUGUUG CGGAAAGGGG UUCGACUCCC

123

Aligned RNAs | [ST&%| | |STcr| after 1st filter | |STcg| after 2nd filter | total size reduction
UP / UP 10193 3433 | 2345 7%
UP / MB 3617 1315 894 75%
UP / CC 1110 452 336 70%
MB / MB 1560 633 394 75%
MB / CC 325 164 114 65%
CC / CC 125 69 49 61%

Table 5.3: The results of filtering crossing stem pairs

124

From the above results, we can see that many crossing stem pairs in STZ} will
not be realized in practice. The filtered crossing stem pairs set ST¢g is usually much

smaller than the original STZ%.

5.2.2 Comparison to Mohl et al.’s results

In this section, we compare our experiment results of the optimal alignment algorithm
presented in Section 4.5 to M&hl et al.’s results [13].

The RNA structures which we use are MB, CC and UP introduced in the previous
section, and a nested version (UPnest) of UP where all left crossing arcs are removed.

The region table representation for UPnest is shown in Figure 5.5.

Ureaplasma parvum tmRNA - nested version

1 GGGGAUGUCA CGGUUUCGAC GUGACACAUU AAUUUUUAAU UGCAGUGGGG
51 UUAGCCCCUU AUCGCUUUCG AGGCAUUUUA AAUGCAGAAA AUAAAAAAUC
101 UUCUGAAGUA GAAUUAAACC CAGCGUUUAU GGCUUCAGCU ACUAAUGCAA
151 ACUACGCUUU UGCGUACUAA UUAGUUAUUA GUAGAAACGU UCAUUAACAU
201 AAUUACUAUU GGUUGGUUUU UGGGCUUAUU UUACAAUAGU UUUAAAUUUA
251 AAAUUCUUAU UUGUUGUUUA AAUUUAAAUA GAUUUAACAA AUAGUUAGUU
301 AAUUUUAAAU UUGUUUUAUU AGUUAUUAAC UACACUAUUU UUAAUAAAAC
351 UAAACUGUAG AUAUUAUUAA UUAUGUGUUG CGGAAAGGGG UUCGACUCCC

401 CUCAUCUCCA CCA

(1) 1 409 7
(2) 20 382 10
(3) 31 372 4
(4) 37 366 4
(5) 43 367 4
(6) 47 59 4
(7) 168 186 6
(8) 189 226 5
(9) 196 218 3
¢ 10 200 215 4
(11 241 278 12
(12) 296 332 8
(13 308 324 4
(14 386 402 5

Figure 5.5: Region table representation for UPnest

Comparing our experiment results with Mohl et al.’s results [13], we can find out
that our implementation is much faster and uses less space. The results are shown
in Table 5.4 (n = sequence length, s = maximal number of arcs in crossing stem,
pk = number of pseudoknots, fixed parameter k£ = number of crossing maximal stem
matches that overlap in a common point). Notice that we ran experiments on an Intel
P8600 processor with 2.4 GHz, and Mohl et al. ran experiments on an Intel Xeon

5160 processor with 3.0 GHz. So our machine is slower. Our package is implemented

125

in C and Mohl et al.’s program is implemented in C++. Thus the difference between

two program’s runtime should be due to algorithms.

Mohl et al.’s results [13] Our results

Aligned RNAs n s k| pk | runtime memory runtime | memory
UP / UP 413/413 | 10/10 | 1 | 4/4 | 726m 525 | < 2 GB 207s | 17,520 KB
UP / MB 413/437 | 10/7 | 1 | 4/2 | 172m 53s | <10B 51s | 10,756 KB
UP / CC 413/254 | 10/5 |1 |4/1] 1lm5ls | <1GB 51s | 5,404 KB
UP / UPnest 413/413 | 10/0 { 0 | 4/0 | 4m 43s <1GB 11s 7,392 KB
MB / MB 437/437 | 7/7 | 11| 2/2 | 43m 20s <1GB 20s 9,100 KB
MB / CC 437/254 | 7/5 | 1[2/1| 3ma6s | <1GB 8s 5,056 KB
MB / UPnest | 437/413 | 7/0 | 0] 2/0 | 3m27s | <1GB 8s 7,728 KB
CC/ CC 254/254 | 5/5 | 1] 1/1] 1mils | <1GB 55 3,028 KB
CC / UPnest | 254/413 | 5/0 | 0| 1/0 | 2m 6s <1GB 6s | 4,712 KB
UPnest / UPnest | 413/413 | 0/0 | 0 | 0/0 | 4m 21s <1GB 10s 7,296 KB

Table 5.4: Comparisons of our results to Mohl et al.’s results [13]

Notice that all alignments produced here are optimal alignments.

M&hl et al. did not present concrete optimal alignments in [13]. We show several
representative alignments produced by our package in Figure 5.6 to 5.11, respectively.
In the alignment produced by our package, paired bases which belong to secondary
structure are indicated by round brackets at corresponding positions above (for the
first RNA) or below (for the second RNA) them. Paired bases which belong to tertiary
structure are indicated by round brackets at corresponding positions above (for the
first RNA) or below (for the second RNA) them. A left bracket indicates a 5’ end
and a right bracket indicates a 3’ end.

Table 5.4 shows that even though the worst case time and space complexities
of our algorithm are the same as Mohl et al.’s, our algorithm could use much less
resources (time and space) in practice to compute optimal alignment between two

simple RNA tertiary structures.

5.2.3 Comparison to Wang and Zhang’s results

We compare our experiment results of the constrained alignment algorithm presented

in Section 4.6 to Wang and Zhang’s constrained alignment results.

sequence 1: Ureaplasma parvum tmRNA
sequence 2: Mycobacteriophage Bxzl pre—tmRNA

The optimal alignment score is 314.000
The optimal alignment is:

81
81

161
161

241
241

321
321

401
401

481
481

CCCCC(((== (=00 CCCC (0 (0 (== ——=E[[-)===-~ My - -
GGGGAUGUCACGGUUUCGAC--GU-GAC-~ACAUVAAUUUUUAAUUGC-AGUGGG~GUU---AGC-C---—- CCUU-A-U
GGGCCUGACAAGGUUUCGACUGGUCGAUGGACA ~~-ACUG---AACAGCGGGCGAGUGUUGGCCGCACUUCUACUCUGAGU

CCOC((((C((== ((((-=- CCCCCELLE (¢ (CC 1111

--- 111 S - - -

~=~CGCUUUCGAGGCAUUUUAAAUGCA--~GAAA-—-AUAAAAAA-UCUUCUGAAGUAGA-AUUAAACCCAGCGUU--U-
GAACGCGG~CAA--C-UGAUAAACGCAACCGACACGGAUGCAACGGUGACC-GACGCCGAGAUCGAGGCCUUCUUUGCUG
2)) NN - - - (CC((

- - - == - - (¢ === =) (=«

AUG-G-CUUCAGCUACUAAU~-GCA~-AACUA-C-~GCUUUUGCGU-A-C-UAAUUAGUUAUU-AGUAGAAACG-UUCAU

AAGAGGCUGCCGCU-CUCGUCUGAAGGAACCAGCCUG-~~~~ GC-UCAGCGUGCU--GCUGUGCAGCGGCCAGGCUUCAU
¢ e« - 2N e =33)))) --

= (CC CCCC L-LOLITE-0 -3 NN 113---1137 (==« Cl---TLC
~UAACAUAAUUA-CUAUUG-GUU-GGUUUUUG-GGCUUAUUUUACAA~ ~~UAGUUUUAAAUUUAA--AAUUCUU~~-AUU
CU--C~UAA-CAGC-A--GCGAACGGACAU-GAGG-G-AGCGCA-AACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACG

—— - - - - - - —

CLCCEX23033303)) -~-- 3111111117 (CC(-CC(((=-CCC LOCOCLEDYIIDI))-=-))))
UGUUGUUUAAAUUUAAAU----AGAUUUAACAAAUAGUUAGU -UAAUUUUAA-AUUUGUUUUAUUAGUUAUUA ---ACUA
=G--GCUCCAGCGUCAGGGGCCAGACGGUGGGAAA -~~~CGGUGUCGA ----AACUCCUGUCCUGG~GGA - ~UCACCGACCG

- mmn (=== (CC LLLLLL-IN==)))) MM

1-1131111)5 23 NN-NIN-OINN--) (| NDRMY
CACUAUUUUUA-AUAAAACUAAACU-GUAGAUAUUAUUAAUU-AUGU--GUUGC~-GGAAAGGGGUUCGACUCCCCUCAY
~A-UACGCCAAACCAGGACUACGCCCGUAGA-A---CGCAGUGA-GAAAGACACCAGGACAGGGGUUCGAGUCCCCUCAG
- - 1111111 O9ON - ===) - 310 (((13

3N
CUCCAGCA
GUCCACgu
1))

Figure 5.6: Optimal alignment between UP and MB

sequence 1: Ureaplasma parvum tmRNA
sequence 2; Cyanidium caldarium plastid pre-tmRNA

The optimal alignment score is 266.000
The optimal alignment is:

81
81

161
161

241
241

321
321

401
401

CCCCCC(C - - OO . (= (== LD 11]
GGGGAUGUCACGG-U-UUCGACGUGACACAUVUAAUUYUVAAUU-GC-A-GUGGGGUUAGCCCCUUAUCGCUUUCGAGGCA
GGGGCUGAAA~GGAUVAUUCGAC-~~AUA--UUAAUUUC--GUGCGCUAUGA~~~~U~~GC AAGC CGAGA-A

(e - (===~ (= ((mmm= (== (=== ((((e (-

UU-UUAAAUGCAGAAAAUAAAAAAUC-UUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUACUAAUGCAAACU
UGCUUAUCU-C-G-~~-UAAAAAAGCAGACA-AAG-A~AAU-AAAUGCAA--—-- A-~==-CA--A--UAUUAUUG-AAATU
[LEL0))-))==== 111} =~ == = mmmee oeo - - -

(CC((NP CCCC CCC CCCC TOTOTEDINMDY N
ACGCUUUUGCGUACUAAUVAGUUAUUAGUAGAAACGUUCAUUAACAUAAUUACU AUUGGUUGGUUUUUGGGCUUAUUTUA
A-GC-=~~=-A-A-UA-UUAG-~A--A-—A-—-AC-~-CAG--~C~~=== U-CUA~-~G-UAG=~~U=-==~ CU~AGCCU-

- ———— . w wm - L R e Ll —— o ————— = - - - —— - -

11331 CCCCCCCCCCLLC CCOCCCCECDIINNNY 1111113117 CCCQaC(((((C
CAAUAGUUUUAAAUUUAAAAUUCUUAUUUGUUGUUUAAAUUUAAAUAGAUUUAACAAAUAGUUAGUUAAUUUUAAAUTUG
----- G mmmmmm === AYUC= =A== =G~ ==~ mw e mo == YA~ = UUU--CUAA-A-UUA - - - ---UUUA----UG

s i i} o o it - s P ot P - e - e e e

CLCCCEDINMNNY) = = TIIIIIT N DY NDHIONN (-
UUUUAUUAGUUAUUAACUACA -CUAU-UUUTVAAUAAAACUAAACU~-GUAGAUAUUAUUAAUUAUGUGUUGCGGAAAG-GG
UU-=AU~-GUUAUU---UA-AGCU-UGUAGUAA ~—-—- CUA-UCUAGU-G-UAC----AAUU-UCUAU---GGAC-GUGG

— - el Y L B N=NINNDHIN====NN= I)-==) =L«

(NN
GUUCGACUCCC-CUCAUCUCCACCA
GUUCAAUUCCCAC-CAGCUCCACaa
(IDDRRIDDDDDDD

Figure 5.7: Optimal alignment between UP and CC

126

sequence 1: Ureaplasma parvum tmRNA
sequence 2: Ureaplasma parvum tmRNA - nested version

The optimal alignment score is 28.000
The optimal alignment is:

81
a1

161
i61

241
241

321
321

401
401

CCCCC((CCCCCCCCCC (OO Qe LTI 111
GGGGAUGUCACGGUUUCGACGUGACACAUUAAUUUUUAAUUGCAGUGGGGUUAGCCCCUUAUCGCUTUCGAGGCAUUUUA
GGGGAUGUCACGGUUUCGACGUGACACAUTAAUUUUVAAUUGCAGUGGGGUUAGCCCCUUAUCGCUUUCGAGGCAUUUTA
(| (OO (0 (0 N

(((
AAUGCAGAAAAUAAAAAAUCUUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUACUAAUGCAAACUACGCUUY

AAUGCAGAAAAUAAAAAAUCUUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUACUAAUGCAAACUACGCUUY
(((

((INNY CEC CCC CCCC TICLTTDIINDY 1) 1111111
UGCGUACUAAUUAGUUAUUAGUAGAAACGUUCAUUAACAUAAUUACUAUUGGUUGGUUUUUGGGCUUAUUUUACAAUAGU
UGCGUACUAAUUAGUUAUUAGUAGAAACGUUCAUUAACAUAAUUACUAUUGGUUGGUUUUUGGGCUUAUUUUACAAUAGU

((« 331 (O QL0 (| 2311 MY

(OO COCCCCECED)NNI))00)) 1111111111 (CCCCC(((¢(C CTLCLECE
UUUAAAUUUAAAAUUCUUAUUUGUUGUUUAAAUUUAAAUAGAUUVAACAAAUAGUUAGUUAAUUUTAAAUUUGUUUUAUY
UUUAAAUUUAAAAUUCUUAUUUGUUGUUUARAUUUAAAUAGAUTUAACAAAUAGUUAGUUAAUUUUAAAUUUGUUUUATGU
(OO DNINIINN CCCCC(C(C (C((

312333000030 11111111 O 233 ODNNNNNY M
AGUUAUUAACUACACUAUUUUUAAUAAAACUAAACUGUAGAUAUUAUUVAAUUAUGUGUUGCGGAAAGGGGUUCGACUCCC
AGUUAUUAACUACACUAUUTUUAAUAAAACUAAACUGUAGAUAUUAUUAAUVAUGUGUUGCGGAAAGGGGUUCGACUCCC
MNP 33)) N NN K)

233233
CUCAUCUCCACCA
CUCAUCUCCACCA
33333330

Figure 5.8: Optimal alignment between UP and UPnest

sequence 1: Mycobacteriophage Bxzi pre-tmRNA
sequence 2: Cyanidium caldarium plastid pre-tmRNA

The optimal alignment score is 282.000
The optimal alignment is:

81
81

161
161

241
241

321
321

401
401

(O - - - - == (((-=((CCCC-TELC (CCCC ¢ 1111
GGGCCUGACAAGG-U-UUCGAC-UGGUCGA --U-G-GACAACU--GAACAGCGGGC-GAGUGUUGGCCGCACUUCUACUC
GGGGCUGA-AAGGAUAUUCGACAU-AUUVAAUUUCGUG-C-GCUAUGAU--GCAAGCCGAGAAU---—- GC--UU-AUCUC
OO - (-0 0 Q0 Tl [£E--C0- ON

- 23N (((
~UGAGUGAACGCCGCAACUGAUAAACGCAACCGACACGGAUGCAACGEUGACCGACGCCCAGAUCGAGGCCUUCULUGCY
GUAAAA-AA-GC--~A~--GACAAA-GAAAU--A-A---AUGCAA---—- AC--A-----A--U-~A~---UUAUU-G-~
) =11-13-=-]--- - e e e m e mem -

(¢ CCCC((3 0N
GAAGAGGCUGCCGCUCUCGUCUGAAGGAACCAGCCUGECUCAGCGUGCUGCUGUGCAGCCGCCAGGCUUCAUCUCUAACA
~AA-A=~==co-—U-UAG-C--AAU-A-—-——~==mmmmemmm O AG A ~A-----AAC-

GCAGCGAACGGACAUGAGGGAGCGCAAACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACGGGCUCCAGCGUCAGGGGCC

-CAGCU--C~=~-~U-AGU-AG—-- UC-U---AG-C--C-UGA-U---UC--A~GU--U--AUU-UC-v=w~e~
(CCCCCCC CCC COECOEDX) Y NN 1111311)y -

RGAGGUGGGAAACGGUGUGAAACUCCUGUCCUGGGGAUCACCGACCGAUACGCCAAACCAGGACUACGCCCGUAG-AACG
----- U-=-ARA-—-U-U~cA~=Ur~P-lUmerwns= AU wweGenv=PUATGUUAUY - -~ —-—-UAAGCUUGUAGUAACU
-------- e e i D DD D D)
=-=)=))) - NN (= 2=
==C-AGUG-AGAAAGACACCA-GGACAG-GGGUUCGAGUCCC~CUCAGGUCCACZu
AUCUAGUGUACAAUUUC~U~AUGGAC~GUGGGUUCAAUUCCCAC~CAGCUCCACaa

INNNNPNY N - 23333-3030)0)

Figure 5.9: Optimal alignment between MB and CC

127

sequence 1: Mycobacteriophage Bxzl pre-tmRNA
sequence 2: Ureaplasma parvum tmRNA - nested version

The optimal alignment score is 304.500
The optimal alignment is:

a1
81

161
161

241
241

321
321

401
401

(O | ==((((--- CCCCCLELC (CCCC (€ 1331- -
GGGCCUGACAAGGUUUCGACUGGUCGAUGGACA ~-ACUG~~-AACAGCGGGCGAGUGUUGGCCGCACUUCUACUC-U~-GA
GGGGAUGUCACGGUUUCGAC--GU-GAC-~ACAUVAAUUUUUAATUGC-AGU-GGGGUUAGC~~~~C~~~~CCUUAUCGC
(OO (== (= (=000 CCOC (00 (== ====)====)))

1Y INN - (CQ((
GUGAACGCGGCAACUGAUAAACGCAACCGACACGGAUGCAACGGUGACC-GACGCCGAGAUCGAGGCCUUCUUUGCUGAA
UUU--CGAGGCAUUU-~UARAUGCA---GAAA---AUAAAAAA-UCUUCUGAAGUAGA-AUUAAACCCAGCGUU-~U~-AU

— —— - — - - -

144444 - - 33)y====3) = M) --
GAGGCUGCCGCU-CUCGU~CUGAAGGAACCAGC----CUG-GCUCAGCGUGCU--GCUGUGCAGCGGCCAGGCUUCAUCY
G~G-CUUCAGCUACUAAUGCA-AACUA-C--GCUUUU~~GCG-U~-A-C-UAAUUAGUUAUU-AGUAGAAACG-UUCAU-U

-~ - = == ({{=~((=== =00 (- -

==C-UAA-CAGC-AGCGAACGGACAUGAGGG-AGCGCAAACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACGG-GCUCC
AACAUAAUUA-CUAUUGGUUGGUUUUU-GGGCUVAUUUUACAAUAGUUUUAAAUUUAA -~ AAUUCUVADUU~-GUUGUUUA

(CC (¢ - 231)= OO~ ¢ - NN

(-0 === (CC LTTLLED-32===-202) 3)=-9 -
AGCGUCAGGGGCCAGAGGUGGGAAACGG-U-GUGAA~~--ACUCCUGUCCUGG-GGA---UCACCGAC-CGAUACGCCA-

AAUUUAAAU----AGAUUUAACAAAUAGUUAGUUAAUUUUAA AUUUGUUUVAUUAGUUAUUAACU-ACACUAUUUUUAAU
INNN) ==-- (CCCC((C 1444 233333300035

13111113 OO0 ===)N - MM (| DNNONN
AACCAGGACUACGCCCGUAGA~A~-~-CGCAGUGA-GAAAGACACCAGGACAGGGGUUCGAGUCCCCUCAGGUCCACgU

AA--A--ACUAAACU-GUAGAUAUUAUUAAUU-AUGU--GUUGC--GGAAAGGGGUUCGACUCCCCUCAUCUCCACCA
- -- 3)=) 233 03)3-30)--0)30) =) ((((1NN

Figure 5.10: Optimal alignment between MB and UPnest

sequence 1: Cyanidium caldarium plastid pre-~tmRNA
sequence 2: Ureaplasma parvum tmRNA - nested version

The optimal alignment score is 260.500
The optimal aligmnment is:

81
81

161
161

241
241

321
321

401
401

(e - (=== (=~ (== (G (o (== (= (== (OO
GGGGCUGAAA-GGAUAUUCGAC-~~AUA--UUAAUUUC-~GUGCGCUAUGA ~~—~U~~GC~~-~AA~~-GC--~CGAGA-A

GGGGAUGUCACGG-U-UUCGACGUGACACAUUAAUUUUUAAUU-GC~A-GUGGGGUUAGCCCCUVAUCGCUUUCGAGGCA
CCCC((- - CCOCCOCCCC (0 0 = (= (=(CC((33

LLLLLIN-)=)-=-= TIMT = ==~ = mmeee oo -
UGCUUAUCU-C-G~~~-UAAAAAAGCAGACA-AAG-A-AAU-AAAUGCAA-——-- A---CA~-A--UAUUAUUG-AAAUU
UU-UUAAAUGCAGAAAAUAAAAAATC-UUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUACUAAUGCAAACY

- i w m - e apam e —— -~ - ——— ——— ——— ———— —— —" A

A-GC-----~A-A-UA-UUAG--A--A--A---AC-—-CAG---C-----U-CUAGUAG----~- U--mm- CU-AGC---
ACGCUUUUGCGUACUAAUBAGUUAUUAGUAGAAACGUUCAUUAACAUAAUUACUAUUGGUUGGUUUUUGGGCUUAUUUTA
1444441 1)) (¢ (C((332103 D))

i ————— —— — - - —— —————— — . —— —— - - — e - ——

C--Y-Grmmmmmmmmaman AUUC-~A===GUl=wmm e mmmmem A=~UUU~-CUAA-A-UUA-----~- UUUA=~=--UG
CAAUACUUUUAAAUUUAAAAUUCUUAUUUGUUGUUUAAAUUUAAAUAGAUUUAACAAAUAGUUAGUUAAUUUUAAAUUTG
OO NN 1€€€Cq44 ((((

- -- mme =)))-)) - ==)=)====)N)= IN--=) = ((((
UU--AU~-GUUAUU-=-=UA~AGCU-UGU--AGUAA~~CUA-UCUAGU~G~UAC~=~~AAUU-UCUAU---GGAC-GUGGG
UUUUAUUVAGUUAUUAACUACA-CUAUVUUUAAUAAAACUAAACU-GUAGAUAUVAUVAAUUAUGUGUUGCGGAAAG-GGG

IDNIMNNY - 2= 1) OIMMIMNNM) ((=(

XDINHDIDHN
UUCAAUUCCCAC-CAGCUCCACaa
UUCGACUCCC-CUCAUCUCCACCA

33)=3)13000)

Figure 5.11: Optimal alignment between CC and UPnest

128

129

The first group of RNAs which we use are the same as the RNAs used in previous
section. We only perform experiments on UP, MB and CC. The results are shown
in Table 5.5 (n = sequence length, s = maximal number of arcs in crossing stem,
pk = number of pseudoknots, fixed parameter k = number of crossing maximal stem
matches that overlap in a common point, (i,j) = the start bases’s positions of the

two selected maximal stems in our constrained alignment algorithm).

Wang and Zhang’s results Our results
Aligned RNAs n $ k | pk | runtime memory (2,7) runtime memory
UpP / UP 413/413 | 10/10 | 1 | 4/4 8s 3,764 KB (296, 296) 82s 11,416 KB
UP / MB 413/437 | 10/7 [1 | 4/2 7s 4,020 KB (296, 322) 10s 7,696 KB
UP / CC 413/254 | 10/5 | 1 | 4/1 4s 2,752 KB (47,51) 4ds 4,568 KB
MB / MB 437/437 7/7 1] 2/2 5 4,180 KB (322, 322) 3s 7,140 KB
MB / CC 437/254 7/5 11 2/1 3s 2,492 KB (48, 51) 2s 4,908 KB
CC/ CC 254/254 5/5 11 1/1 3s 1,796 KB (57,57) is 2,832 KB

Table 5.5: First comparison of our results to Wang and Zhang’s constrained alignment
results

The concrete alignments produced by our algorithm and Wang and Zhang’s al-
gorithm are shown in Figure 5.12 to 5.14, respectively'. Notice that our constrained
alignment algorithm is based on our optimal alignment algorithm which is exponen-
tial, and Wang and Zhang’s constrained alignment dlgorithm is based on their optimal
alignment algorithm which is polynomial. Thus it is reasonable that our program uses
more time and space.

All alignments produced in this section are constrained alignments. They are not
guaranteed to be optimal. For example, comparing Figure 5.13 to Figure 5.7, we can
find that the constrained alignments between UP and CC produced by Wang and
Zhang’s algorithm and our algorithm are not optimal. But these two constrained
alignments are near-optimal. Comparing Figure 5.12 to Figure 5.6, we can find that
the constrained alignments between UP and MB produced by Wang and Zharig’s

algorithm and our algorithm are optimal. Similar for the constrained alignments

between MB and CC.

1Notice that we do not include the alignment between UP and itself, the alignment between MB
and itself and the alignment between CC and itself, since it is obvious that there are matches at all
positions of these alignments.

Al T T S A T DA g il T W T T . L e i S g Vg A o R T] L ol Al L L i o e o R s . R T

by Wang and Zhang’s algorithm:

Ureaplasma-parvum-tmRNA
Mycobacteriophage-Bxz1l-pre-tmRNA

scora = 314.000000

81
81

161
161

241
241

321
321

401
401

481
481

—

CCCOC(((OO =C(==CCC (O (== ===T[=)=-0))= = = ==
GGGGAUGUCACGGUUUCGACGUGACACAUU-A--AUDUVUAAUUGCAGU--GGGGUU~~~AGC~C~~=~CCU-U~-A-U--
GGGCCUGACAAGGUUUCGACUGGUCG-AUGGACAACU--GAACAGCGGGCGAGUGUUGGCCGCACUUCUACUCUGAGUGA

(CCCC(((¢ - (== (CCCCLLLt (e (11 >)

- 11 - - - - - -

~CGCUUUCGAGGCAUUUUAAAUGCA--~GAAA~---AUAAAAAA~UCUUCUGAAGUAGA-AUUAAACCCAGCGUU--U-~AU
ACGCGG-CAA--C-UGAUAAACGCAACCGACACGGAUGCAACGGUGACC-GACGCCGAGAUCGAGGCCUUCUUUGCUGAA
) NNy - - - 1£4444¢

- - S =M (=L -

G-G~CUUCAGCUACUAAU~-GCA--AACUA-C--GCUUUUGCGU~A~C-UAAUUAGUUAUU-AGUAGAAACG-UUCAU-U

GAGGCUGCCGCU-CUCGUCUGAAGGAACCAGCCUG-~—~=-GC-UCAGCGUGCU--GCUGUGCAGCGGCCAGGCUUCAUCY
e - 1)) =-mne M - |

(CC CCCC T=-LL0LEC=223-0 »n-» 113 ~=-111F (O~ (E---{LLL0
AACAUAAUUA-CUAUUG-GUU-GGUUUUUG -GGCUUAUUUUACAA ~~-UAGUUUUAAAUUUAA -~ AAUUCUU-~- AUUUG
-=C-UAA-CAGC-A-~GCGAACGGACAU-GAGG-G-AGCGCA ~AACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACG-G

- - - ——— - - - — -—

CEDMIMINMNY ==~ 1111133111 CCCC=CC(((=CCC TOCOTIEDINNI===00 N
UUGUUUAAAUUUAAAU----AGAUUUAACAAAUAGUUAGU-UAAUUUUAA-AUUUGUUUUAUUAGUUAUUA-~-ACUACA
= ~GCUCCAGCGUCAGGGGCCAGAGGUGGGAAA ~--~CGGUGUGA-~-~AACUCCUGUCCUGG-GGA--UCACCGACCG-A

- ~=== (=== (€ CLCLLLE-)==N)) NN=

1-111113) -1 11 VNN (K 2333)0030)
CUAUUUUUA-AUAAAACUAA-ACUGUAGAVAVUAUUAAUUAUGU-~G--UUGCGGAAAGGGGUUCGACUCCCCUCAUCUC
~UACGCCAAACCAGGACUACGCCCGUAGA-ACGC--AGUGA-GAAAGACACCAGGACAGGGGUUCGAGUCCCCUCAGGUC

- 1111111 9O » =)==))) -) INNINNY

)
CACCA
CACgu

T i i T] 0 T kS T M S L AR S e o 1t B M AL} U i e il T D T At S 1 S S o ok o vt e e e

by our algorithm:

sequence 1: Ureaplasma parvum tmRANA

sequence 2: Mycobacteriophage Bxzl pre-tmRNA

The constrained stem pair:

1st stem: (outermost arc, innermost arc), 2nd stem:(outermost arc, innermost arc)

((296, 332), (311, 321)), ((322, 386), (335, 344))

The optimal constrained alignment score is 314.000
Tha optimal constrained alignment is:

81
81

161
161

241
241

321
321

401
401

481
481

(OO (== (= (=000 (O OO0 (-0 C-¢ ===[[[-)~====) ~ -

GGGGAUGUCACGGUUUCGAC-~-GU-GAC--ACAUUAAUUUUUAAVUGC-AGUGGG-GUU~--AGC-C--—-~ cCuy-A-u
GGGCCUGACAAGCUUUCGACUGGUCGAUGGACA~~ACUG---AACAGCGGGCGAGUGUUGGCCGCACUUCUACUCUGAGY
O (({(== ((((-=~ CCCCCLOLC (e (1111

== 111 — - - - - -

~=~CGCUUYUCGAGGCAUUUUAAAUGCA--—GAAA---AUAAAAAA -UCUUCUGAAGUAGA-AUUAAACCCAGCGUU--U-
GAACGCGG-CAA--C-UGAUAAACGCAACCGACACGGAUGCAACGGUGACC-GACGCCGAGAUCGAGGCCUUCUUUGCUG
) NNy - - - (0

- - - == - = (¢ = - - =INN) =
AUG-G~CUUCAGCUACUAAU--GCA--AACUA~C~--GCUUUUGCGU-A~C~-UAAUVUAGUUAUU-AGUAGAAACG-UUCAY
AAGAGGCUGCCGCY-CUCGUCUGAAGGAACCAGCCUG-~~=~ GC-UCAGCGUGCU-~GCUGUGCAGCGGCCAGGCUUCAT
¢ CCC((C - INN)) memm- =1NN -

= (CC CCCC [-TOOL0=22)-30))Y 113===1113 CCCCCCCCC(--¢ ({---CII
~UAACAUAAUUA-CUAUUG-GUU-GGUUUUUG-GGCUUAUUYUACAA~ - ~UAGUUUUAAAUUUAA--AAUUCUU~~~AUU
CU--C-UAA-CAGC-A--GCGAACGGACAU-GAGG-G-AGCGCA~AACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACG

- - - - - -— - - -

CCCLEDINNMID) —--- 1111131137 Q=€ (K (=(CC ELOCLIED Y3302 ===02))
UGUUGUUUAAAUUUAAAU--——AGAUUUAACAAAUAGUUAGU-UAAUUUUAA-AUUUGUUUUAUUAGUUAUUA-~-ACUA
~G--GCUCCAGCGUCAGGGGCCAGAGGUGGGAAA~---CGGUGUGA----AACUCCUGUCCUGG~GGA--UCACCGACCG
- -- === (=== CCC TELLECT-D02--001) NN

1-111111 O D) NIH=-NN-INN-=) ([NN
CACUAUUUUUA~AUAARACUAAACU~GUAGAUAUUAUUAAUU~AUGU--GUUGC--GGAAAGGGGUUCGACUCCCCUCAU
=~A~UACGCCAAACCAGGACUACGCCCGUAGA-A--~CGCAGUGA-GAAAGACACCAGGACAGGGGUUCGAGUCCCCUCAG
- - 1311111 YD - === NN - Ny NINIINN

))))
CUCCACCA
GUCCACgu

1)

Figure 5.12: Constrained alignment between UP and MB

-

130

e P e g S b o T T S L8 o el L Aty i g i o ok T W o S AL B L S S ST Y ke el e

by Wang and Zhang’s algorithm:

Ureaplasma-parvum~tmRNA
Cyanidium-caldarium-plastid-pre-tmRNA

score = 267.000000

81
81

161
161

241
241

321
321

401
401

(CCCC((-~ (OO (== ==—- ((==CC (- [TE====1N -~
GGGGAUGUCACGG~U-UUCGACGUGACACAUUAAUUU~~U----UA--AUUGCA-GUGGGGUUAGC----CCCUYAUC-~
GGGGCUGAAA~GGAUAUUCGAC~~~AUA--UUAAUUUCGUGCGCUAUGAU~GCAAGCCGAGAAUGCUUAUCUCGUAAAAA

(e - (===(((-= (¢ OO (= CILEC 20]

-111]
-GCUUUCGAGGCAUUUUAAAUGCAGAAAAUAAAAAAUCUUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUAC
AGCA---GA--CAAAG-AAAU--A-AA--UGCAAA--C-—--- AA-UAUUAUUGAA--~A---UU-A-G-CA~~A~-UAU

1113--- == = = e o= e e - e e e e e

(CCC(C 1IN (¢ CCCC LEEECTDNND N
UAAUGCAAACUACGCUUUUGCGUACUAAUUAGUUAUUAGUAGAAACGUUCAUUAACAUAAUTACUAUUGGUUGGUUUUUG
UA-~GAAAACCA-GC—~==== U-CUAGU~-AGUC-U-AG---~~~ C-=-C-UG---AU---U-CA==G-=--=--UU~-

- - —— - - - A - - ——— ——— e e ————— - ——

) 137333 (| CLECOTLCED>)2)03000 1311311111 (|
GGCUUAUUUUACAAUAGUUUUAAAUUUAAA AUUCUUAUUUGUUGUUUAAAUUUA AAUAGAUUUAACAAAUAGUUAGUUAA
----- AUUY--C-=UA-=——-A~=~=m e AU === A== B . I

- — - - A e e v s g

(CCCC CELTTEEODMIN MMM 11111111 0)-)) = == 331~ = ==
UUUUAAAUUUGUUTUATUAGUUAUUAACUACACUAUUUUVAAUAAAACUAAAC~UGUAG-A~-UAU-UA~-U-U--AAUUA

-Uy~A----UGU--~ UAUYY--——= === AAGCUUGUAGUAACVAUCUAGUGUACAAUU-
----------- IDDY DINVINNNIN-

- W ———— - A s o e . . i i T o

1IN (=« 223=310031))

UGUGUUGCGGAAAG~-GGGUUCGACUCCC-CUCAUCUCCACCA

UCUAU---GGAC-GUGGGUUCAAUUCCCAC-CAGCUCCACaa
))y===) =((C((IDDDDEIDDIIBD

o ——— T P T o ok i T T} B A AN U ik o A A

by our algorithm:

sequence 1: Ureaplasma parvum tmANA
sequence 2: Cyanidium caldarium plastid pre-tmRNA
The constrained stem pair:

ist stem:(outermost arc, innermost arc), 2nd stem: (outermost arc, innermost arc)

(C 47, 59), (50, 56)), ((61, 867), (55, 630

The optimal constrained aligmment score is 267.500
The optimal constrained alignment is:

81
81

161
161

241
241

321
321

401
401

(e - - (OO (0 == === (=0 -0 TL-==00=-0 -
GGGGAUGUCACGG-U~UUCGACGUGACACAUUAAUUU-~U-~~-~UA--AUUGC-AGUGG-GGUUAGC---CC-CUVAUC-

GGGGCUGAAA-GGAVAUUCGAC---AUA~-UUAAUUUCGUGCGCUAUGAU-GCAAGCCGAGAA-UGCUUAUCUCGUAAAA
e - (===C((== (CCC OO (L= =Lt 1N

--111]
=~GCUUUCGAGGCAUUUUAAAUGCAGAAAAUAAAAAAUCUUCUGAAGUAGAAUUAAACCCAGCGUUUAUGGCUUCAGCUA
AAGCA~~-GA--CAAAG~AAAU--A-AA--UGCAAA--C----~ AA-UAUUAUUGAA---A--~UU-A-G~CA~-A--TA

R e - e e -

(CCCC(C 1Y O CCCC TETCLTDNO N
CUAAUGCAAACUACGCUUUUGCGUACUAAUUAGUUAUUAGUAGAAACGUUCAUUAACAUAAUUACUAUUGGUUGGUUUUY
UUA--GAAAACCA-GC~—~===~U-CUAGU-AGUC-U~AG--—---~- C---C-UG--~AU==~Y-C-A--G-------UU-

IDDY 1311113 (| CCECLECETIODONMINMMN 1111113317 CCCC((C
GGGCUUAUUUYACAAUAGUUUUAAAUUUAAAAUUCUUAUUUGUUGUUUAAAUUUAAAUAGAUUUAACAAAUAGUUAGUUA
------ AUUY~~Cr-Up=mmm=pmmmwwm == AUU-—=A~ ———- | L | Y PAERION F R

e —— - - - - T A Al T — — - —— - ——— A MM e

(¢ CCCC CECTELCDDINININID 11111113 51 = == 0)=))= = ==)M)
AUUUUAAAUUUGUUUUAUUAGUUAUUAACUACACUAUUUUUAAUAAAACUAAACU-GUAG-A--UAU-UA-U-U--AAUY

~=UU-A===~UGlU-— === mrmm e 1711111 SR AAGCUUGUAGUAACUAUCUAGUGUACAAUU
I T 1) 11NN

YIINMNNY T 13331
AUGUGUUGCGGAAAG-GGGUUCGACUCCC-CUCAUCUCCACCA

~UCUAU-~-GGAC-GUGGGUUCAAUUCCCAC-CAGCUCCACaa
- M)-==) =0«)=

Figure 5.13: Constrained alignment between UP and CC

131

by Wang and Zhang’s algorithm:

Mycobacteriophage~Bxz1-pre-tmRNA
Cyanidium-caldarium-plastid-pre-tmRNA

score = 282, 000000

81
a1

161
161

241

321
321

401
401

(| - - (¢ === - (({==((CCCC-TLCL (e €€C 1111
GGGCCUGACAAGG-U-UUCGACUGGUCGA~~U-G-GACAACU--GAACAGCGGGC-GAGUGUUGGCCGCACUUCUACUC-
GGGGCUGA~AAGGAUAUUCGACAUAUUAAUUUCGUG-C-GCUAUGAU-~GCAAGCCGAGAAU -~~~ GC--UU-AUCUCG

(e - (G0 QOO Q== (0 (== f===-- (f--00- 13N
I INY (((((
UGAGUGAACGCGGCAACUGAUAAACGCAACCGACACGGAUGCAACGGUGACCCACCCCCAGAUCGAGCCCUUCUUUGCUG
UAAAA-AA-GC---A--—-GACAAA~GAAAU--A-A---AUGCAA----- AC--A===-==A~=--A----UUAUU-G--~
=11-11--=]~~- - - - e —= mmmms oo s eeee - -
¢ 10 NN
AAGAGGCUGCCGCUCUCGUCUGAAGGAACCACCCUGGCUCAGCGUGCUGCUGUGCAGCGGCCAGGCUUCAUCUCTAACAG
AA-A-—--=---= U-UAG-C--AAU~A------ U--U-------AG L A---—- AAC--

CAGCGAACGGACAUGAGGGAGCGCAAACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACGGGCUCCAGCGUCAGGGGCCA

CAGCU=-~C~-~==-U-AGU-AG-=======- UC-U-~~AG-C--C-UGA -U~~-UC~=A-GU--U--AUU~TC~= ===~
(OO (CC TELLEED)INDIY) 1111111 O»» - -
GAGGUGGGAAACGGUGUGAAACUCCUGUCCUGGGGAUCACCGACCGAUACGCCAAACCAGGACUACGCCCGUAG-AACG-
-==-U-=--A4A---U-U--A--U--U-U~~~~=--AU---—G~ ~~~UUAUGUUAUU------- UAAGCUUGUAGUAACUA
------- Smm m e e e o mmmmeee e e —————— DY)
=)=))) - 1N (=« D=INNINN
-C~AGUG-AGAAAGACACCAGGACAG-GGGUUCGAGUCCC~CUCAGGUCCAC
UCUAGUGUACAAUUUC-UAUGGAC-GUGGGUUCAAUUCCCAC-CAGCUCCACaa

INNPVINININY =3y - NN

by our algorithm:

sequence 1: Mycobacteriophage Bxzl pre-tmRNA
sequence 2: Cyanidium caldarium plastid pre-tmRNA
The constrained stem pair:

1st stem:(outermost arc, innermost arc), 2nd stem: (outermost arc, inmermost arc)

(C 48, 70), (5%, 67)), ((61, 6€7), (55, 63))

The optimal constrained alignment score is 282.000
The optimal constrained alignment is:

81
81

161
161

241
241

321
321

401
401

CCCCC((- - (¢ - -- (((-=((CCCC-LLLC CCCCC (¢ 1111
GGGCCUGACAAGG-U-UUCGAC-UGGUCGA~-~U-G~GACAACU--GAACAGCGGGC-GAGUGUUGGCCGCACUUCUACUC
GGGGCUGA~AAGGAUAUUCGACAU-AUUAAUUUCGUG-C-GCUAUGAU~~GCAAGCCGAGAAU-———- GC--UU-AUCUC

(O - (=0 (0 == Q== (0O frmmmn [--E0- 1P

- 3))) (C((
~UGAGUGAACGCGGCAACUGAUAAACGCAACCGACACGGAUGCAACGGUGACCGACGCCGAGAUCGAGGCCUUCTUUGCY
GUAAAA-AA-GC~-~A---GACAAA-GAAAU--A-A-~-AUGCAA----- AC--A----=A~=U-~A~~--UUAUU-G--

) =11-11---1--- - e e e e e - -

(¢ CCC((2333 NNY
GAAGAGGCUGCCGCUCUCGUCUGAAGGAACCAGCCUGGCUCAGCGUGCUGCUGUGCAGCGGCCAGGCUUCAUCUCUAACA
—AA-A-=mmemmmm U-UAG-C=AAU-A--——— == mmmeme e U--y----~-- AG--~=~ A-—=-—-- A--—-- AAC-

GCAGCGAACGGACAUGAGGGAGCGCAAACCCUCGUCCCAAACAUCAUGAAUGCGUCGCACGGGCUCCAGCGUCAGGGGCC

~CAGCU=-=C~==~=U-AGU-AG~-~==—em UC-U--~AG~C~-C-UGA-U---UC--A-GU--U--AUU-UC-=~~=~—~
CCCCCCCC QO LTETLLEMOINY M 1111111 HH» -

AGAGGUGGGAAACGGUGUGAAACUCCUGUCCUGGGGAUCACCGACCGAUACGCCAAACCAGGACUACGCCCGUAG~AACG
----- J-=-AAA-~--U-U--A--U--U-[--~ AU----G UUAUGUUAUU <=+ «=—~UAAGCUUGUAGUAACU
-------- So- = mm me e o mmmeomm s e ——-m=e= D))
-=)-)3) - NN=y (=K INDNMMN
==C-AGUG~AGAAAGACACCA-GGACAG-GGGUUCGAGUCCC-CUCAGGUCCACgn
AUCUAGUGUACAAUUUC-U-AUGGAC-GUGGGUUCAAUUCCCAC~CAGCUCCACaa

ININIMIMNNY --N) =« 23323=2)30)

Figure 5.14: Constrained alignment between MB and CC

132

Alcaligenes eutrophus
RNase P RNA

o —0
o
1]

0-0 |

PO O0OQE PN —Q

40

|
ahGouecacsSas
Lrrrrrrr e

c
GCCACGUCCQUE
byl

OCpCCRAOCIr»OArQrCHO —~RPHHCOO» -
A

et V)t

[~Y~Ted B Jelt]

w0 aCd

< ~»
o -
a-Q
Q-0
D-O
c-»

(=
= =
O-o
o -0

A
CJ N

UUCG?CCUAA
a

R
£

133

cu CG_M(\
¢-8
_u - - . -
gz¢ Streptomyces bikiniensis
geu RNasc P RNA
c-G
C-G
GeUA
§-86
AC~Gg
A Vs,
1 4C A
\A A 160 UGUA
A G A
A ?Q\q‘; G
2 cCACCAGA
c A~ 130
A G
c G
cG !Ff fc,cus
G MG, 7 ¢
cAoh Cuwo Oag/Se M "6
W AL AAaygeh Ug QR‘BG
AcccgCaGaC A 08 8’
3 AR ccA pa) AGAGANC
GGGCC I A [
¢ c- o rdce6a6% " 2eouc Vg
A. G Ugg / H1] PF e
c. U G ccu CAG Ge 7. U
¢~ S A A A rCal g U
G~ G c_ 60" 300 7y ca’ PAUGS
9 ¢ CagA Gg6°Gc. /e Sag
cIAI u G a ..! GG
A c
B0 u

o-0
o-0
- =0
B-0-0
a-Q
o -0
O-0
> O
»0

»

I m

8.

O

n:“n

o

A Og

chuccsccucpc

0

|

CGAGC CGGGCG
| I I I | | T T I I |
ccucAGcccqf

aCchHc

[s1={~1z12]~] OC)RQC’O)/COO -0)-C‘I)G)O
)

S
-2

o

!y

PAaNOann

@
O
!
@

[

— A
U?CGGCCCA
k1))

Figure 5.15: Structures of Alcaligenes eutrophus and Streptomyces bikiniensis from
the RNase P database. Source: http://www.mbio.ncsu.edu/RNaseP

The RNA tertiary structures that we used above are very simple. Now we perform

experiments on two moderate RNA tertiary structures. These RNA structures are

selected from the RNase P Database [2]. Ribonuclease P is the ribonucleoprotein

endonuclease that cleaves transfer RNA precursors, removing 5 precursor sequences

and generating the mature 5 terminus of the tRNA. Alcaligenes eutrophus (AE) is

from the beta purple bacteria group and Streptomyces bikiniensis (SB) is from the

high G4C gram positive group. Figure 5.15 shows a 2D drawing of these two RNA

structures. The secondary bondings are represented by a dash or a dot between two

bases and tertiary bondings are represented by a solid line between distant bases. We

have shown their region table representations in Figure 5.1.

The results of the second comparison are shown in Table 5.6 (n = sequence length,

s = maximal number of arcs in crossing stem, pk = number of pseudoknots, fixed

parameter k = number of crossing maximal stem matches that overlap in a common

http://www.mbio.ncsu.edu/RNaseP

134

point, (7,7) = the start bases’s positions of the two selected maximal stems in our

constrained alignment algorithm).

_ Wang and Zhang’s results Our results
Aligned RNAs i) 8 k | pk | runtime memory (i, 7) runtime | memory

(13,12) 34s 15,916KB
AE / SB 341/398 | 8/8 | 8 | 3/4 8s 2,972 KB (50-4%) o T6.078KE

Table 5.6: Second comparison of our results to Wang and Zhang’s constrained align-
ment results

The concrete alignments between AE and SB produced by Wang and Zhang’s
algorithm and our algorithm are shown in Figure 5.16 and Figure 5.17, respectively.

These alignments are exactly the same.

N e e s T . . A A S i e el S A T B Y S L U Y A 54wl Sl B T T

by Wang and Zhang's algorithm:

Alcaligenes-eutrophus-pb-b
Streptomyces-bikiniensis-gpb-h

score = 186,000000

CCOCCECCCCCCCCCCC (O e NI N [0 LOCOECCCC LEOD CCCCC €
1 AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGT
1 CGAGCCGGGCGGGCGGCCGCGUGGRGGUCUUC-~GGACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGC

CCCCCOACOOOOCCCCCC €O (e ==o0nn N CEC CEUCECCCC LD CCCCdqC((

332 (CC((NN I K« - (OO Q= ((== ==)3=)3))==))
81 UAACAGCCAUCCACGGCAACGUGCGGAAUVAGGGCCACAGAGA-CGAGUCUUGCCGCCG-GG-~UUCG-~CC-CGGC~--G6
81 UAACGGCCACCCGGGGUGACCCGCGGGACAGUGCCACAGAAAAC-AG-~--ACCGCCGGGGACCUCGGUCCUCGGUAAGG

INNAWC NN I - e (L DM N
==))))mmmmm mm e emmem emmemeen e - NN (L -

161 G--AAGG------ GU--GA-A---~-- A= ——— CG-—---————- C-~GGUAACCUCCACCUGGAGCAAUCCCAA~
161 GUGAAACGGUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCAGGCGGCUAGGUAAACCCCACUCGGAGCAAGGUCAAG
U N L NN MNNINNN (L
------------------- L =CCTTTD-DDNND DD - (CCCCCLC

241 AU---A------G GCAGGCGAU-GAAG-CGGCCCG-CUGAGUCUGCGGGUAGGGAGCUGGA-GCCGGCUG
241 AGGGGACACCCCGGUGUCCCUGCGCGGAUGUUCGAGGGCUGCUCGCCCGAGUCCGCGGGUAGACCGCACGAGGCCGGC-G
CCCCC MMM L QI HN CLCCLLC=
DNVN= = I DM N 1313010)

321 GUAACAGCCGGC~-CUAGA-GGAAUGGUUGUCACGCACCGUUUG-CCGCAAGG-CGGGCGGGGCGCACAGAAUCCGGCUUA
321 GCAAC-GCCGGCCCUAGAUGGA-UGGCCGUCGC-C-CCGAC-GACCGCGAGGUCC--CGG-G-G-ACAGAACCCGGCGUA
)=INN =311 -0 =« 1)) ==N)-)-)- 11111111

> NN
401 UCGGCCUGCUUUGCUU

401 CAGCCCGACUCGUCUG
) IINNINN

Figure 5.16: Constrained alignment between AE and SB produced by Wang and
Zhang’s algorithm

— e e

T Tt . [l o} i ik o e O} A R Sy o i e Sk o L o e i i e ML ek, e L AL AL A S L M o T T

by our algorithm:

sequence 1: Alcaligenes-eutrophus-pb-b

sequence 2: Streptomyces-bikiniensis-gpb-h

The constrained stem pair:

1st stem:(outermost arc, innermost arc), 2nd stem: (outermost arc, innermost arc)

((50, 324), (58, 317)), ((48, 381), (56, 374))

The optimal constrained aligmment score is 186.000
The optimal constrained alignment is:

81
81

161
161

241
241

321
321

401
401

CCCCCCCCECCCCOCE O e DI N ELT COCCTCCCC DOOE € €«
AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGC
CGAGCCGGGCGGGCGGCCGCGYGGGGGUCUUC--GGACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGC

CCCCQOOCCCCCCCC (O CeCCeee == MmN N (00 CLCCOCCCC EOOD QL

33 (CU(NN I« - CCCC (= (-~ ==))=3)))--))
UAACAGCCAUCCACGGCAACGUGCGGAAUAGGGCCACAGAGA-CGAGUCUUGCCGCCG-GG--UUCG--CC-CGGC--GG
UAACGGCCACCCGGGGUGACCCGCGGGACAGUGCCACAGAAAAC-AG—~~~ACCGCCGGGGACCUCGGUCCUCGGUAAGG

2323 (0 2 ¢« il SUCSC(CSCAOERND DD DD DD DD JNDD.
==)))) == el NN L -
G-—-AAGG———--~GU--GA-A----~ A-omm e CG——-———-——- C--GGUAACCUCCACCUGGAGCAAUCCCAA-
GUGAAACGGUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCAGGCGGCUAGGUAAACCCCACUCGGAGCAAGGUCAAG
(CC(((31333 CCCCCC((3333) 23NIMNNY ([
------------------- (L =C=CCC1IIDN-HDMINN NN = CCCC((
AU---p-~rne G GCAGGCGAU-GA-AGCGGCCCGCU-GAGUCUGCGGGUAGGGAGCUGGA-GCCGGCUG
AGGGGACACCCCGGUGUCCCUGCGCGGAUGUUCGAGGGCUGCUCGCCCGAGUCCGCGGGUAGACCGCACGAGGCCGGL-G
(OO 2100 (L« (CCCCC 3311000000 N (OO
IINM- - I (C - VNN N 11111111

GUAACAGCCGGC-CUAGA-GGAAUGGUUGUCACGCACCGUUUG-CCGCAAGG-CGGGCGGGGCGCACAGAAUCCGGCUUA
GCAAC-GCCGGCCCUAGAUGGA-UGGCCGUCGC-C-CCGAC-GACCGCGAGGUCC--CGG-G-G-ACAGAACCCGGCGUA
3= = NNN) W0 -((1NN ==IN-))- 11111111

Y NMNNN
UCGGCCUGCUUUGCUU
CAGCCCGACUCGUCUG
) INNMY

A e il e ok T T o 1 poul i . v ke v i B T T T —— o o L i L, gy S s g

by our algorithm:

sequence 1: Alcaligenes-eutrophus-pb-b

sequence 2: Streptomyces-bikiniensis-gpb-h

The constrained stem pair:

1st stem: (outermost arc, innermost arc), 2nd stem:(outermost arc, innermost arc)

(C 12, 278), (18, 272)), (C 12, 341), (18, 3356))

The optimal constrained aligmment score is 186.000
The optimal constrained aligmment is:

a1
81

161
161

241
241

321
321

401
401

CCCCCOQOOCCCCCCC (0 (e NN N COC COCCECCCC LO0D CCCCC (Ol
AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGC
CGAGCCGGGCGRGCGGCCGCGUGGGGGUCUUC--GGACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGC
COCCCOCCCCEECC CC ¢ —=IDNN N EOC ELCCCCCCC CEOTD €CQaaqqC((

M)« MY - CCCC CCQE=C(~~ ==))=13))-=))
UAACAGCCAUCCACGGCAACGUGCGGAAUVAGGGCCACAGAGA~-CGAGUCUUGCCGCCG-GG~~UUCG~~CC~-CGGC-~GG
UAACGGCCACCCGGGGUGACCCGCGGGACAGUGCCACAGAAAAC-AG----ACCGCCGGGGACCUCGGUCCUCGGUAAGG

3333 (C(((NN I = === (OO« NDNNINY N
==))))===m==- m= m mmees seeemeseme smeeee—eeo -- MIINIMNN) W -
G--AAGG-----~ GU--GA-A-—--- A -===C ====C--GGUAACCUCCACCUGGAGCAAUCCCAA~
GUGAAACGGUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCAGGCGGCUAGGUAAACCCCACUCGGAGCAAGGUCAAG
(OO 230 CCCC((C NN DINDNMINN
-—=- -~ ====((CCCC =(=CCCTITTIN=00NN NN = (O«
AU---p-=m=mm o= GCAGGCGAU-GA-AGCGGCCCGCU-GAGUCUGCGGGUAGGGAGCUGGA -GCCGGCUG
AGGGGACACCCCGGUGUCCCUGCGCGGAUGUUCGAGGGCUGCUCGCCCGAGUCCGCGGGUAGACCGCACGAGGCCGRC-G
(CCCCC((223330 (C((((CCCCIIINNNINN N 1€4444€E3¢
NMIINN- - 2300 (0 -« NN N 11131111

GUAACAGCCGGC-CUAGA-GGAAUGGUUGUCACGCACCGUUUG-CCGCAAGG-CGGGCGGGGCGCACAGAAUCCGGCUUA
GCAAC-GCCGGCCCUAGAUGGA-UGGCCGUCGC~C-CCGAC-GACCGCGAGGUCC--CGG-G-G~ACAGAACCCGGCGUA
)=33)3) =) (0 =0« 23 ==IN=)-)- 1111111)

> NNNNN
UCGGCCUGCUUUGCUU

CAGCCCGACUCGUCUG
VADDPIDIDIDD

135

Figure 5.17: Constrained alignment between AE and SB produced by our algorithm

136

Chapter 6
Conclusions and Future Work

In this thesis, based on the previous works on the alignment between RNA struc-
tures, we have presented an improved algorithm for alignment between RNA tertiary
structures. For simple tertiary structures, we can compute the optimal alignment
efliciently. For moderate tertiary structures, we adopt the constrained alignment ap-
proach. Although the result produced by constrained alignment is not guaranteed to
be an optimal solution, in practice it would be reasonable.

Major contributions of this thesis are summarized as follows:

e We proposed a new partition approach of the set of maximal stem pairs. And we
proposed a method to optimize the preliminary partition result. The optimized

partition is local minimal.

e We proposed a method to preprocess “crossing stem pairs” and filter out unnec-
essary “crossing stem pairs” to accelerate the computation of optimal alignment

between RNA tertiary structures.

e We proposed a faster implementation to compute optimal alignment between

RNA tertiary structures.

e We proposed a constrained alignment method to align moderate RNA tertiary

structures.

137

These algorithms have been implemented into a software package. We performed
extensive experiments of our alignment algorithms on real RNA structures. Exper-
imental tests show that our algorithms can be used to compute alignment between
RNA tertiary structures in practical applications.

For further work, we have several directions listed as follows.

e We can get local minimal partition of the set of maximal stem pairs by our
method. But currently we have not found any polynomial algorithm to compute

the minimum partition of the set of maximal stem pairs. We conjecture that

this problem is NP-Hard.

e Currently, our alignment algorithm is under linear gap penalty model. It can

be extended to affine gap penalty model.

¢ In the current implementation, we only a,céept the region table format for input

RNA tertiary structures. We can extend our package to accept other RNA data

formats (ct2 format, rnaml format).

e We can implement the optimization technique discussed in Section 4.5.10 to

remove redundant computation.

e We can design artificial RNA tertiary structures to test how complicated tertiary
structures that our optimal alignment algorithm can handle with limited mem-
ory (such as 1 GB). We can set a standard according to those designed tertiary
structures. For tertiary structures which are simpler than the designed struc-
tures, we can compute the optimal alignment. For tertiary structures which are
more complicated than the designed structures, we can compute the constrained

alignment.

These issues are worth further investigation.

138

Bibliography

[1] V. Bafna, S. Muthukrishnan, and R. Ravi, “Computing similarity between RNA
strings”, Proceedings of the 6th Annual Symposium on Combinatorial Pattern
Matching (CPM 1995), LNCS 937, pp.1-14, 1995.

2] J. W. Brown, “The Ribonuclease P Database”, Nucleic Acids Research, 27:314,
1999.

13] J. H. Chen, S. Y. Le, and J. V. Maizel, “Prediction of common secondary struc-

tures of RNAs: a genetic algorithm approach”, Nucleic Acids Research, 28:4,
pp.991-999, 2000. .

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms (2nd edition), The MIT Press, 2001.

5] F. Corpet and B. Michot, “RNAlign program: alignment of RNA sequences
using both primary and secondary structures”, Computer Applications in the
Biosciences, vol. 10, no. 4, pp.389-399, 1995.

6] P. A. Evans, “Algorithms and Complexity for Annotated Sequence Analysis”,
PhD thesis, University of Victoria, 1999.

(7] O. Gotoh, “An Improved Algorithm for Matching Biological Sequences”, Journal
of Molecular Biology, 162, pp.705-708, 1982.

[8] T. Jiang, G. Lin, B. Ma, and K. Zhang, “The longest common subsequence prob-
lem for arc-annotated sequences”, Proceedings of the 11th Annual Symposium on
Combinatorial Pattern Matching (CPM 2000), LNCS 1848, pages 154-165, 2000.

9] T. Jiang, G. Lin, B. Ma, and K. Zhang, “A géneral edit distance between two
RNA structures”, Journal of Computational Biology, 9(2): 371-388, 2002.

[10] H. T. Laquer, “Asymptotic limits for a two-dimensional recursion”, Studies in
Applied Mathematics, 64: 271-277, 1981.

[11] H. Lenhof, K. Reinert, and M. Vingron, “A polyhedral approach to RNA se-
quence structure alignment”, Proceedings of the Second Annual International

[12]

[13]

[14]

[15]

[16]

17]

[18]

[19]

[20]

[21]

[22]

139

Conference on Computational Molecular Biology (RECOMB’98), pages 153-159,
1998.

B. Ma, L. Wang, K. Zhang, “Computing similarity between RNA structures”,
Theoretical Computer Science, 276(1-2): 111-132, 2002.

M. Mohl, S. Will, and R. Backofen, “Fixed parameter tractable alignment of

RNA structures including arbitrary pseudoknots”, Proceedings of the 19th An-
nual Symposium on Combinatorial Pattern Matching (CPM 2008), LNCS 5029,

- pp. 69-81, 2008.

S. E. Needleman and C. D. Wunsch, “A general method applicable to the search

for similarities in the amino-acid sequences of two proteins”, Journal of Molecular
Biology, vol. 48, pp.443-453, 1970.

C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation, and

complexity classes”, Journal of Computer and System Sciences, vol. 43, pp.425-
440, 1991.

Y. Sakakibara, M. Brown, R. Hughey, 1. S. Mian, K. Sjolander, R. Underwood,
and D. Haussler, “Stochastic context-free grammar for tRNA modeling”, Nucleic
Acids Research, vol. 22, no. 23, pp. 5112-5120, 1994.

D. Sankoff, “Simultaneous solution of the RNA folding, alignment and protose-
quence problems”, SIAM Journal on Applied Mathematics, vol. 45, no. 5, pp.810-
824, 1985.

T. F. Smith and M. S. Waterman, “Comparison of Biosequences”, Advances in
Applied Mathematics, 2, pp.482-489, 1981.

Z. Wang and K. Zhang, “Alignment between two RNA structures”, Proceedings

of the 26th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2001), LNCS 2136, pp. 690-703, 2001.

K. Zhang, “Sequence Similarity”, Course Notes on Computational Biology, Uni-
versity of Western Ontario, 2008.

K. Zhang, L. Wang, and B. Ma, “Computing similarity between RNA struc-
tures”, Proceedings of the 10th Annual Symposium on Combinatorial Pattern
Matching (CPM 1999), LNCS 1645, pp. 281-293, 1999.

C. Zwieb, J. Gorodkin, B. Knudsen, J. Burks, J. Wower, ““mRDB (tmRNA
database)”, Nucleic Acids Research, 31(1), 446-447, 2003.

	Improved Algorithms for Alignment between RNA Tertiary Structures
	Recommended Citation

	Improved Algorithms for Alignment between RNA Tertiary Structures

	CERTIFICATE OF EXAMINATION

	Qichan Ma entitled

	Improved Algorithms for Alignment between RNA Tertiary Structures is accepted in partial fulfillment of the requirements for the degree of Master of Science

	Abstract

	Acknowledgements

	Contents

	List of Tables

	List of Figures

	List of Algorithms

	Chapter 1

	Introduction

	1.1	Objective and Motivation

	1.2	RNA Structures

	Chapter 2

	A Review of Sequence Alignment

	2.1	Alignment

	2.1.1	Edit Operations

	cost((Si, S2)) = 2T(Sili - S2lil) i½M

	+ 2r(S{l4 → à)

	+ Er0- S2li)

	2.1.2	Number of Alignments

	2.1.3	Dynamic Programming Solution

	2.1.3.1	Dynamic Programming

	2.1.3.2	Property of Optimal Alignments

	Lemma 2.1.1

	2.1.3.3	Algorithm

	4:	end for

	5:	for j — 1 to m do

	Algorithm 2.2 Sequence-Traceback(S1, S2, M(0..S1; 0.S2))

	14:	end if

	15;	end while

	16:	while i > 0 do

	19:	end while

	20; while j > 0 do

	23:	end while

	2.1.3.4 An Example

	2.2 Gap

	2.2.1	Gap Penalty Models

	Lemma 2.2.1

	Lemma 2.2.3 Forj > 0,

	+ 2 T(SG4 → SZli])

	+ > T(S{[4 → A)

	2.2.2	Computing Optimal Alignment with Affine Gap Penalty

	2.2.2.1	Property of Optimal Alignments

	Lemma 2.2.5

	2.	2.2.2 Algorithm

	4:	while i> 0 and j > 0 do

	5:	if t = A then

	14:	end if

	15:	else if t = D then

	23:	end if

	32:	end if

	33:	end if

	34:	end while

	40:	end while

	41:	while j > 0 do

	44:	end while

	4:	if i > 0 and j=-1 then

	Chapter 3

	A Review of RNA Structural

	Alignment

	3.1	RNA Alignment Models

	costinear ((SJ,S2)) = 2 T(Rili] → RLli)

	+ 2T(R([4 à)

	+ ∑r(λ→¾[i])

	+ 2 T((R[[4], R[D]) — (R9], RAUD)

	+ 2 T((R,[i], R(DD)-A)

	+ 2 F(-(R2,R4UD))

	+ 2 T((R,W, R[L]))

	+	2 F((R24), R2[]))

	+	2 T((R4l), R(DD) - (R56,A))

	+ 2 T((R(E, R(DD) — (1, RUD))

	+ 2 T((R4[],A) → (R9[4,R9U1)

	+ 2 Γ((λ, «,H → (Ratal, R2L1)	(3.2) (i,j)EPA4

	min {cost((R1, R2))}.

	3.2	Hardness Results

	3.3	Wang and Zhang’s Algorithm

	3.3.1	Property of Optimal Alignments

	N(0,3)	= Γ(λ → (Ral/1,	Rab1)/2	(3.11)

	Lemma 3.3.1

	Lemma 3.3.2 Fori > 0,

	3.3.2	Algorithm

	3.3.3	Constrained Alignment

	3.4 Môhl et al.’s Algorithm

	3.4.1	Partition Arc Pairs into Crossing Arc Pairs and Noncrossing Arc Pairs

	3.4.2	Precomputation of Stem Pairs

	if Rid = Rzlil

	3.4.3	Property of Optimal Alignment

	3.4.4	Algorithms

	4.1	Basic Definitions

	4.2	Partition Arc Pairs into Crossing Arc Pairs and Non-crossing Arc Pairs

	4.3	A General Score Scheme

	N(0,3) = Γ(λ → (Ra1, Ra[/1))/2 N(0,j) = ro → (R/1, Ra[1))/2

	4.4	Property of Optimal Alignments

	Lemma 4.4.1

	4.5	Algorithms

	4.5.1	Partition m_stem Pairs into Crossing m_stem Pairs and Non-crossing m_stem Pairs

	4.5.2	Accelerating Computation by Preprocessing Crossing

	Stem Pairs

	4.5.2.1	Preprocess Crossing Stem Pairs

	Lemma 4.5.7

	4.5.3 Formula for Computing Optimal Alignment

	Lemma 4.5.9

	4.5.4	Computing All Possible Proper Open Stem Pairs Sets

	4.5.5	Algorithm for Computing Optimal Subalignment without Open Stem pairs

	6:	end if

	7:	end for

	4.5.5.1	Modifying Conditions of Lemma 4.5.11

	4.5.5.2	Organizing Values

	4.5.5.3	Generate New Matrices

	4.5.5.5	Computation of Lemma 4.5.11

	4.5.6	Algorithm for Computing Optimal Subalignment with

	Open Stem pairs

	4.5.7	Algorithm for Computing Optimal Global Alignment

	4.5.8	Trace Back to Produce Optimal Alignment

	4.5.9	Complexity

	4.5.10	Possible Further Optimization

	4.6 Constrained Alignment

	Chapter 5

	Implementation and Experiment

	Results

	5.1	Implementation

	5.2 Experiment Results

	5.2.1	Results of Filtering Crossing Stem Pairs

	5.2.2 Comparison to Mohl et al.,s results

	5.2.3 Comparison to Wang and Zhang’s results

	Chapter 6

	Conclusions and Future Work

	Bibliography

