18 research outputs found

    Robust Low-Overhead Binary Rewriting: Design, Extensibility, And Customizability

    Get PDF
    Binary rewriting is the foundation of a wide range of binary analysis tools and techniques, including securing untrusted code, enforcing control-flow integrity, dynamic optimization, profiling, race detection, and taint tracking to prevent data leaks. There are two equally important and necessary criteria that a binary rewriter must have: it must be robust and incur low overhead. First, a binary rewriter must work for different binaries, including those produced by commercial compilers from a wide variety of languages, and possibly modified by obfuscation tools. Second, the binary rewriter must be low overhead. Although the off-line use of programs, such as testing and profiling, can tolerate large overheads, the use of binary rewriters in deployed programs must not introduce significant overheads; typically, it should not be more than a few percent. Existing binary rewriters have their challenges: static rewriters do not reliably work for stripped binaries (i.e., those without relocation information), and dynamic rewriters suffer from high base overhead. Because of this high overhead, existing dynamic rewriters are limited to off-line testing and cannot be practically used in deployment. In the first part, we have designed and implemented a dynamic binary rewriter called RL-Bin, a robust binary rewriter that can instrument binaries reliably with very low overhead. Unlike existing static rewriters, RL-Bin works for all benign binaries, including stripped binaries that do not contain relocation information. In addition, RL-Bin does not suffer from high overhead because its design is not based on the code-cache, which is the primary mechanism for other dynamic rewriters such as Pin, DynamoRIO, and Dyninst. RL-Bin's design and optimization methods have empowered RL-Bin to rewrite binaries with very low overhead (1.04x on average for SPECrate 2017) and very low memory overhead (1.69x for SPECrate 2017). In comparison, existing dynamic rewriters have a high runtime overhead (1.16x for DynamoRIO, 1.29x for Pin, and 1.20x for Dyninst) and have a bigger memory footprint (2.5x for DynamoRIO, 2.73x for Pin, and 2.3x for Dyninst). RL-Bin differentiates itself from other rewriters by having negligible overhead, which is proportional to the added instrumentation. This low overhead is achieved by utilizing an in-place design and applying multiple novel optimization methods. As a result, lightweight instrumentation can be added to applications deployed in live systems for monitoring and analysis purposes. In the second part, we present RL-Bin++, an improved version of RL-Bin, that handles various problematic real-world features commonly found in obfuscated binaries. We demonstrate the effectiveness of RL-Bin++ for the SPECrate 2017 benchmark obfuscated with UPX, PECompact, and ASProtect obfuscation tools. RL-Bin++ can efficiently instrument heavily obfuscated binaries (overhead averaging 2.76x, compared to 4.11x, 4.72x, and 5.31x overhead respectively caused by DynamoRIO, Dyninst, and Pin). However, the major accomplishment is that we achieved this while maintaining the low overhead of RL-Bin for unobfuscated binaries (only 1.04x). The extra level of robustness is achieved by employing dynamic deobfuscation techniques and using a novel hybrid in-place and code-cache design. Finally, to show the efficacy of RL-Bin in the development of sophisticated and efficient analysis tools, we have designed, implemented, and tested two novel applications of RL-Bin; An application-level file access permission system and a security tool for enforcing secure execution of applications. Using RL-Bin's system call instrumentation capability, we developed a fine-grained file access permission system that enables the user to define separate file access policies for each application. The overhead is very low, only 6%, making this tool practical to be used in live systems. Secondly, we designed a security enforcement tool that instruments indirect control transfer instructions to ensure that the program execution follows the predetermined anticipated path. Hence, it would protect the application from being hijacked. Our implementation showed effectiveness in detecting exploits in real-world programs while being practical with a low overhead of only 9%

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design โ€“ FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design โ€“ FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design โ€“ FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Evaluation Methodologies in Software Protection Research

    Full text link
    Man-at-the-end (MATE) attackers have full control over the system on which the attacked software runs, and try to break the confidentiality or integrity of assets embedded in the software. Both companies and malware authors want to prevent such attacks. This has driven an arms race between attackers and defenders, resulting in a plethora of different protection and analysis methods. However, it remains difficult to measure the strength of protections because MATE attackers can reach their goals in many different ways and a universally accepted evaluation methodology does not exist. This survey systematically reviews the evaluation methodologies of papers on obfuscation, a major class of protections against MATE attacks. For 572 papers, we collected 113 aspects of their evaluation methodologies, ranging from sample set types and sizes, over sample treatment, to performed measurements. We provide detailed insights into how the academic state of the art evaluates both the protections and analyses thereon. In summary, there is a clear need for better evaluation methodologies. We identify nine challenges for software protection evaluations, which represent threats to the validity, reproducibility, and interpretation of research results in the context of MATE attacks

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Geographic information extraction from texts

    Get PDF
    A large volume of unstructured texts, containing valuable geographic information, is available online. This information โ€“ provided implicitly or explicitly โ€“ is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction

    How does rumination impact cognition? A first mechanistic model.

    Get PDF
    Rumination is a process of uncontrolled, narrowly-foused neg- ative thinking that is often self-referential, and that is a hall- mark of depression. Despite its importance, little is known about its cognitive mechanisms. Rumination can be thought of as a specific, constrained form of mind-wandering. Here, we introduce a cognitive model of rumination that we devel- oped on the basis of our existing model of mind-wandering. The rumination model implements the hypothesis that rumina- tion is caused by maladaptive habits of thought. These habits of thought are modelled by adjusting the number of memory chunks and their associative structure, which changes the se- quence of memories that are retrieved during mind-wandering, such that during rumination the same set of negative memo- ries is retrieved repeatedly. The implementation of habits of thought was guided by empirical data from an experience sam- pling study in healthy and depressed participants. On the ba- sis of this empirically-derived memory structure, our model naturally predicts the declines in cognitive task performance that are typically observed in depressed patients. This study demonstrates how we can use cognitive models to better un- derstand the cognitive mechanisms underlying rumination and depression
    corecore