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Binary rewriting is the foundation of a wide range of binary analysis tools

and techniques, including securing untrusted code, enforcing control-flow integrity,

dynamic optimization, profiling, race detection, and taint tracking to prevent data

leaks. There are two equally important and necessary criteria that a binary rewriter

must have: it must be robust and incur low overhead. First, a binary rewriter must

work for different binaries, including those produced by commercial compilers from

a wide variety of languages, and possibly modified by obfuscation tools. Second, the

binary rewriter must be low overhead. Although the off-line use of programs, such

as testing and profiling, can tolerate large overheads, the use of binary rewriters in

deployed programs must not introduce significant overheads; typically, it should not

be more than a few percent. Existing binary rewriters have their challenges: static

rewriters do not reliably work for stripped binaries (i.e., those without relocation

information), and dynamic rewriters suffer from high base overhead. Because of this



high overhead, existing dynamic rewriters are limited to off-line testing and cannot

be practically used in deployment.

In the first part, we have designed and implemented a dynamic binary rewriter

called RL-Bin, a robust binary rewriter that can instrument binaries reliably with

very low overhead. Unlike existing static rewriters, RL-Bin works for all benign

binaries, including stripped binaries that do not contain relocation information. In

addition, RL-Bin does not suffer from high overhead because its design is not based

on the code-cache, which is the primary mechanism for other dynamic rewriters

such as Pin, DynamoRIO, and Dyninst. RL-Bin’s design and optimization meth-

ods have empowered RL-Bin to rewrite binaries with very low overhead (1.04x on

average for SPECrate 2017) and very low memory overhead (1.69x for SPECrate

2017). In comparison, existing dynamic rewriters have a high runtime overhead

(1.16x for DynamoRIO, 1.29x for Pin, and 1.20x for Dyninst) and have a bigger

memory footprint (2.5x for DynamoRIO, 2.73x for Pin, and 2.3x for Dyninst). RL-

Bin differentiates itself from other rewriters by having negligible overhead, which

is proportional to the added instrumentation. This low overhead is achieved by

utilizing an in-place design and applying multiple novel optimization methods. As

a result, lightweight instrumentation can be added to applications deployed in live

systems for monitoring and analysis purposes.

In the second part, we present RL-Bin++, an improved version of RL-Bin,

that handles various problematic real-world features commonly found in obfuscated

binaries. We demonstrate the effectiveness of RL-Bin++ for the SPECrate 2017

benchmark obfuscated with UPX, PECompact, and ASProtect obfuscation tools.



RL-Bin++ can efficiently instrument heavily obfuscated binaries (overhead aver-

aging 2.76x, compared to 4.11x, 4.72x, and 5.31x overhead respectively caused by

DynamoRIO, Dyninst, and Pin). However, the major accomplishment is that we

achieved this while maintaining the low overhead of RL-Bin for unobfuscated bina-

ries (only 1.04x). The extra level of robustness is achieved by employing dynamic

deobfuscation techniques and using a novel hybrid in-place and code-cache design.

Finally, to show the efficacy of RL-Bin in the development of sophisticated

and efficient analysis tools, we have designed, implemented, and tested two novel

applications of RL-Bin; An application-level file access permission system and a se-

curity tool for enforcing secure execution of applications. Using RL-Bin’s system

call instrumentation capability, we developed a fine-grained file access permission

system that enables the user to define separate file access policies for each applica-

tion. The overhead is very low, only 6%, making this tool practical to be used in

live systems. Secondly, we designed a security enforcement tool that instruments

indirect control transfer instructions to ensure that the program execution follows

the predetermined anticipated path. Hence, it would protect the application from

being hijacked. Our implementation showed effectiveness in detecting exploits in

real-world programs while being practical with a low overhead of only 9%.
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Chapter 1: Introduction

1.1 Motivation

There are several reasons why it is desirable to instrument or modify code that

is directly executed in deployment, ranging from application performance monitor-

ing (APM) [1], resource monitoring [2], security policy enforcement [3, 4, 5, 6, 7],

vulnerability patching [8], dynamic information flow tracking [9], and performance

optimization [10, 11, 12, 13]. Taken together, these form important sectors of the

software industry: for example, the application performance monitoring market

alone is a $3.5B/year market, and security policy enforcement on low-level is also a

multi-billion dollar market.

There are two types of code that is directly executed in deployment: 1. In-

terpreted code and 2. Binary code. Interpreted code is the code that executes only

in a software run-time interpreter (also known as an execution engine.) Examples

include Java bytecode, Python code, C# bytecode, and Javascript code. Instrument-

ing or modifying such code is straightforward: most language interpreters provide

methods to trigger user-specified actions when certain types of code instructions or

library calls are executed. Using this capability, entire industries have arisen for

instrumenting interpreted languages, such as in application performance monitoring

1



and security policy enforcement. This instrumentation and modification capability,

along with language-level advantages such as portability and modularity, are the

reasons why interpreted languages have become so popular in practice.

However, binary code (also known as machine code) has remained stubbornly

widespread. Binary code is the code that executes directly on the hardware using

machine code instructions. Binary code can theoretically be produced from any

language, but is typically produced not only from older languages like C, C++,

Fortran, and Cobol; but is also often produced from popular modern languages

such as Go, Erlang, VisualBasic, Swift, and Objective C.

Binary code is especially predominant in two types of code: IP-protected code,

and high-performance code. First, IP-protected code is code that is sold by compa-

nies to outside parties. Companies in nearly all cases want to protect their intellec-

tual property, so they do not want to reveal their source code to their customers or

third parties. Unfortunately this rules out most interpreted codes – many interpreted

codes used in deployment either are source code, such as Python or Javascript; or

source code can be easily recovered from them, such as from Java and C++bytecodes.

As a result, interpreted languages are very common for internally used code at com-

panies, as well as cloud-based code, but is nearly absent in distributed commercial

codes. For example, nearly all programs that come pre-packaged on a new laptop,

as well as most commercial programs that customers download and buy, are binary

code. Such distributed, IP-protected code is the most widespread use of binary code

today. Second, high-performance programs such as those in the domains of image

processing, financial transactions, machine learning, and scientific simulation codes

2



are often deployed in binary to ensure the highest execution speed.

It is important to gain the same benefits of instrumentation and modification

mentioned above for binary code that interpreted languages have long enjoyed. To

do so, we need a tool that can instrument and modify binary code, namely, a binary

rewriter.

In general, the reason for the great interest in research in binary rewriting is

that it offers many additional advantages over compiler-produced optimized binaries:

� Inter-procedural Optimization Capability. Although compilers, in theory, can

do whole-program optimizations, the reality is that they often do not. Many

commercial compilers – even highly optimizing ones – limit themselves to

the separate compilation, where each function (and sometimes each file) is

compiled in isolation. For example, GCC, the most widely used open-source

compiler used commercially, compiles each function in isolation even with the

highest optimization level. Research papers have presented whole-program

optimizations, but in limited contexts, with much remaining to be done. Bi-

nary rewriters always have access to the complete application, including li-

braries. Recognizing the deficiency regarding whole-program optimization in

commercial compilers and research, existing rewriters have proposed many

whole-program optimizations. They have demonstrated promising results on

even highly optimized binaries [14, 15] without excessive run-time. Having

the ability to rewrite arbitrary binaries will give external innovators the flex-

ibility to improve upon the offerings of commercial whole-program compilers
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– something they cannot do today.

� Extended Economic Feasibility. It is cheaper to implement a code transfor-

mation once for an instruction set in a binary rewriter rather than repeatedly

for each compiler for the instruction set. For example, the ARM instruction

set has over thirty compilers available for it, and the x86 has a similarly large

number of compilers from different vendors and different source languages.

The high expense of repeated compiler implementation usually cannot be sup-

ported by a small fraction of the demand.

� Source Language and Compiler Compatibility. A binary rewriter works for

code produced from any source language by any compiler.

� Security Enforcement Capability. A binary rewriter that can rewrite binaries

without relocation information can insert security checks into the binary. This

is not the case for a compiler since a malicious developer can avoid the security

checks by merely using a non-trusted compiler without security checks.

� Hand-coded Assembly Support. Code transformations cannot be applied by a

compiler to hand-coded assembly routines, since they are never compiled. In

contrast, a binary rewriter can transform such routines.

In this dissertation, we have designed and developed RL-Bin, a dynamic binary

rewriter which is capable of rewriting all benign binaries with very low overhead.

RL-Bin will find use in implementing a variety of applications of binary rewriting.

For example, researchers have proposed binary rewriting-based methods for securing

4



untrusted code [5, 16, 17], enforcing control flow integrity [18, 19], protocol reverse

engineering [20, 21], implementing software transactional memory [22], binary ran-

domization [23, 24, 25, 26], preventing control flow attacks [2, 27, 28, 29], automated

vulnerability repair [8, 30], profiling and race detecting tools [31], memory tracing

to identify cache inefficiencies [32], automatic program parallelization [33, 34, 35,

36, 37], and taint tracking to prevent sensitive data leaks [38, 39, 40]. Taken to-

gether, binary rewriting technologies offers great existing features, and an almost

unlimited future of yet-undiscovered opportunities, bounded only by the creativity

of researchers.

Figure 1.1 shows some of the use cases of RL-Bin. In Chapter 8 we have

designed and implemented prototypes of some of these use cases.

The Problem: Instrumenting programs

Program instrumentation is invaluable for following 
capabilities:
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Figure 1.1: Applications of Binary Rewriters
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1.2 Criteria and Trade-Offs in Building a Binary Rewriter

There are two equally important and necessary criteria that a binary rewriter

must have: it must be robust, and it must incur low overhead. First, a binary rewriter

must work for different type of binaries, including those produced by commercial

compilers from a wide variety of languages, and possibly modified by obfuscation

tools. Second, the binary rewriter must be low overhead. Although the off-line use

of programs, such as in testing and profiling, can tolerate large overheads, the use

of binary rewriters in deployed programs must not introduce significant overheads;

typically, it should not be more than a few percent [41].

Unfortunately there is no existing method today to modify all benign binary

code in a manner that is both robust and low overhead. To understand why, consider

that there are two types of binary rewriters: static vs. dynamic. Static rewriting

refers to approaches which take an executable binary program as input, and without

running it, produce another (rewritten) binary program as output that has the same

functionality as the input program, but is enhanced in some way, for example in

improving its run-time, memory use, or security. Dynamic rewriters change the

binary code during its execution, but never produce a binary program as output.

Instead they modify the binary code in memory, either in-place, or in a copy of the

code memory.

Static rewriters are not robust. Static rewriters can have very low over-

head, but are not robust – they often do not work for certain types of benign

programs, including those containing dynamically generated code, self-modifying
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code, and obfuscated work. As our related work section details, 24% of commercial

benign programs we measured had dynamically generated code, and 1% had obfus-

cated code. Several schemes do not even work for simpler programs with indirect

branches whose targets cannot be statically determined, especially for stripped bina-

ries (i.e. those without relocation information). Stripped binaries are predominant

in commercial third-party binaries. What is worse is that for all existing rewriters,

they cannot predict beforehand if they will work or not – they just simply stop

working without warning. When that happens, the program may crash, or it may

work, but without the enhancements in the modified binary code.

Dynamic rewriters have high overhead. In contrast, dynamic rewriters

are robust, but have high overheads, usually ranging from 20% to several hundred

percent. Dynamic rewriters are robust because they discover all code at run-time.

However, they incur high overhead since most of them maintain a code cache, where

rewritten copies of code blocks are stored and executed from. Maintaining a code

cache results in high overheads not only from the copying of code, but from the

requirement to translate code addresses that are targets of control transfer instruc-

tions, since those CTI targets now need to be changed at run-time because they are

now executed from a copy of the code, instead of the original code.

As a result of the drawbacks, there is no rewriter today that meets the critically

important, non-negotiable requirements of robustness and low overhead execution for

deployment use. As a result, binary rewriters are generally not used in deployment

today on third-party programs, since for those programs, usually no guarantees can

be made on how they were compiled.
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Dynamic rewriters, such as DynamoRIO[42], copy all the code that executes

into another memory region called a code cache. The code cache is useful because it

ensures robustness; the program still works If a piece of data is mistakenly assumed

to be code and rewritten. The reason is that the code cache was changed and the

original copy of the code segment is still unchanged.

The overhead of dynamic rewriters is caused by two factors. First, copying the

code into the code cache is expensive at run-time. Second, and more seriously, the

target addresses of an indirect Control Transfer Instruction (CTI) must be translated

at run-time because the locations of code have changed to be in the code cache

instead. Such indirect jumps or calls are actually very common – they mostly arise

from return instructions, function pointer calls, and calls to virtual functions in

object-oriented languages, such as C++. This translation process is inevitable for

DynamoRIO since the original destination address in the program is different from

the address of the rewritten code inside the code cache.

1.3 Robust, Low-Overhead Binary Instrumentation

Consequent to the needs above, we developed RL-Bin, our novel dynamic

binary rewriter that ensures both robust behavior and low-overhead execution. RL-

Bin provides guarantees that all benign programs execute correctly and that all the

code in the program is rewritten. First, it ensures low-overhead execution because

it rewrites code in-place in memory, thus avoiding a code cache and its overhead of

address translation and copying of code. Second, it is robust, because it monitors
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every control transfer, so no portion of the binary is rewritten until we know it

is code because we execute a control transfer to it at run time. The overhead of

monitoring every control transfer is reduced in two ways: (a) the monitoring code

removes itself after the potential code it monitors is proven to be code the first

time it is executed; and (b) our design optimizes away some monitoring code using

dynamic JIT-based optimizations that do not rely on unsafe assumptions on static

code.

Figure 1.2 shows the criteria for developing a binary rewriter. As illustrated

existing dynamic rewriters are robust but have high overhead and existing static

rewriters have low overhead but are not robust. RL-Bin is both robust and has low

run-time overhead.Summary of existing solutions
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RL-Bin supports several types of obfuscation, in addition to dynamically gen-
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erated and self-modifying code. As a result, it is robust enough to be used for

benign third-party applications. Also, we have designed and implemented several

optimizations, so it has very low overhead. Throughout this thesis we present the

following contributions.

� Chapter 3

– Design and development of the first low overhead dynamic binary rewriter

that can handle stripped binaries without relocation or debug informa-

tion, containing self-modifying or dynamically-generated code or obfus-

cation.

– An innovative method that tracks the execution of code dynamically by

anticipating future control flow to the new code, and adding instrumen-

tation and breakpoints to process such new code when discovered.

– Using a novel dynamic method to eliminate the overhead of breakpoints,

once the new code is discovered.

– The above design is unlike other dynamic rewriters that translate indirect

control transfer addresses to their copies in a code cache.

– The result is the first In-Place dynamic binary rewriter – which does

not use a code cache – that combines the robustness and coverage of a

dynamic rewriter with the low overhead of a static rewriter.

� Chapter 4

– Using Just-In-Time (JIT) dynamic analysis of the discovered code and
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traditional data flow analysis concepts, to find ”Safe” functions and fur-

ther reduce the overhead by eliminating redundant checks.

– In-depth analysis and exploration of trade-offs for several optimization

methods to change the impact on memory consumption, including fine-

tuning the parameters to get the best result.

� Chapter 5

– An extensive study of problematic features in obfuscated binaries and the

issues caused for binary rewriting tools.

� Chapter 6

– Development of several innovative methods to enhance RL-Bin, empow-

ering it to handle all kinds of benign binaries, including the ones that are

heavily obfuscated.

– Design and implementation of methods for dynamically deobfuscating

binaries while they are being executed.

– Design of a hybrid code-cache and in-place prototype that adapts itself

based on the characteristics of a binary.

� Chapter 7

– Extensive testing and run-time and memory overhead comparison with

DynamoRIO, Pin, and Dyninst for SPEC CPU2017 benchmark with over

7 million lines of code in C, C++, and Fortran, compiled with Microsoft
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Visual Studio, GCC, and ICC compilers. For obfuscated binary testing,

benchmark applications are obfuscated with three of the most common

obfuscation tools: UPX, PECompact, and ASProtect.

� Chapter 8

– Full design and implementation of an application-level file access permis-

sion system as a use case of RL-Bin. This tool is built on system call

instrumentation capability of RL-Bin and enables the user to define and

enforce separate file access policies for different applications.

– Design and development of a security tool for secure execution of appli-

cations as another use case of RL-Bin. This tool ensures that the original

control flow and calling convention regarding the return instructions is

properly enforced.

1.4 RL-Bin Advantages

RL-Bin will have the following advantages over existing binary rewriters:

� Does not require relocation information. Existing binary rewriters require

relocation information, but as explained, most commercial binaries lack this

information. As a result, only the original developers can rewrite those pro-

grams since only they have access to the object files, which need to be re-linked

to produce binaries with relocation information. In contrast, RL-Bin can be

applied by anyone to any binary executable.
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� Can be applied to legacy applications. Existing binary rewriters cannot rewrite

legacy binaries since virtually all binaries lack relocation information. More-

over, recompilation from source is often not possible since source code is often

not readily available for legacy code. Our rewriter will rewrite legacy binaries

without relocation information and source code.

� Can rewrite 100% of the binary code. Existing rewriters, even with relocation

information, cannot rewrite 100% of a binary’s code since they can only rewrite

what they can prove is code. The difficulty is that data may be buried in the

code section, which will break the program if rewritten. Hence rewriters must

be conservative if they cannot prove that a portion of the binary is code and

not rewrite it.

� Can be used to enforce security on untrusted code. Since existing static binary

rewriters can only be used with developer cooperation, it is not feasible to

enforce security properties on code from untrusted developers. This is because

an untrusted developer may not provide relocation information, leaving us

unable to rewrite the binary. However, any end-user can apply binary rewriting

to enforce security on any code by using RL-Bin, including untrusted code. A

malicious developer cannot avoid this. Moreover, since 100% of the binary’s

code can be rewritten, an attacker cannot hide malicious code in binaries by

making it appear like it might be data to avoid rewriting.

� Can rewrite obfuscated binaries. Obfuscation is a technique used to mislead

attempts to reverse-engineer the code, primarily by making it appear that
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code is data, and vice-versa. Obfuscation is commonly used for high-level

representations such as Java bytecode and Microsoft’s MSIL, since they are

close to the source. Recently obfuscation has become more prevalent in binary

code. Existing binary rewriters cannot rewrite obfuscated binaries correctly.

We have devised an innovative method that correctly rewrites the obfuscated

code.

1.5 Outline of Thesis

The dissertation is structured as follows: Chapter 2 introduces some of the

background knowledge needed for the subsequent chapters and also discusses the

capabilities and limitations of RL-Bin. Chapter 3 outlines the base algorithm of RL-

Bin and demonstrate our dynamic code discovery and execution routines. Chapter

4 describe the optimization methods designed to reduce the overhead of RL-Bin.

We have also explored the trade-offs that exist in some of our optimization method.

RL-Bin can be configured to decrease run-time or memory overhead. In Chapter

5, we have described obfuscation techniques and the issues they create for binary

rewriting. Chapter 6 introduces RL-Bin++ which is an extension of RL-Bin that

can handle obfuscated binary code with comparatively low overhead. Chapter 7

demonstrates the results of our evaluation of RL-Bin and RL-Bin ++ and compare

them to DynamoRIO, Pin, and Dyninst. Chapter 8 looks into some use cases of

RL-Bin including the following; application-level file access permission tool, secure

execution by restricting RETs, collect run-time properties for end-point security
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tool, generating guaranteed trusted disassembly, debugging and patching in deploy-

ment, and just-in-time analysis and optimization tool. In Chapter 9 we demonstrate

the capabilites of RL-Bin’s application programming interface and compare its run-

time overhead to that of DynamoRIO. Chapter 10 describes the related works in

detail. Finally, Chapter 11 looks ahead at potential future work and concludes the

thesis.
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Chapter 2: Background

In this chapter, we will go over structure of memory image of a binary ap-

plication and then we review existing disassembly methods, since disassembly is an

important step in binary rewriters. Then we introduce the basic concepts about

some troublesome features that may be present in benign programs, since those will

need to be handled by any robust binary rewriter. Finally, in the last section we

briefly go over binaries with features for which RL-Bin might fail to instrument

properly, hence we have introduced RL-Bin++ in Chapter 6.

2.1 Memory Image of a Binary Application

The memory image of a binary application consists of code segment, data

segment, and some other memory areas that will be described in the following

paragraphs.

The code segment, which is also known as a text segment, is where a portion

of an executable file that contains instructions. It usually has read and execute

permissions only when loaded to memory. One of the main challenges in binary

rewriting is that it is possible to have data in the code segment. Every correct binary

rewriter should only modify instructions and not the memory locations that contain
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data. As a result, having data in the code segment means that instrumentation in

an address can only be done after making sure that the memory location contains

only code and no data.

The data segment contains global or static variables which have an initial

value. These include any global variable that is not defined in a function, or static

variables that are defined in a function but with static prefix so they retain their

address across calls. One challenge for binary rewriters is that sometimes programs

unpack the code in the data segment, and start executing code from there. Static

binary rewriters would not be able to see this code, since it is generated only after

the execution of the program begins.

Other memory areas in a running binary’s image include the BSS segment, and

heap and stack areas. The BSS segment is adjacent to the data segment and contains

uninitialized data. This segment contains all variables that are not initialized or

initialized to zero. The heap area contains dynamically allocated memory, and

commonly begins after previous segments and grows to larger addresses. The heap

area is shared between threads, shared libraries, and dynamically loaded modules.

The stack area contains the program stack. The stack pointer keeps track of the top

of the stack. The stack frame is the portion of the stack for a function, and contains

its local variables, temporaries, return address, and outgoing arguments.
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2.2 Existing Disassembly Techniques

Disassembly is a key step in static binary rewriting, so we discuss disassem-

bly techniques, which sheds light on several of the difficulties with static binary

rewriting.

2.2.1 Linear Sweep

Linear Sweep begins disassembly at the entry point into the code section of a

binary. This entry point is provided by common executable file formats such as the

Windows PE format. Each instruction is then decoded in sequence until the end

of the section, or until an error occurs. An advantage of linear sweep disassembly

is that it ensures complete code coverage, making it suitable for human viewing

of disassembly output. Its downside is that it can mistake data for code, such as

after an unconditional jump, leading to incorrect rewriting. Hence linear sweep is

unacceptable by itself for rewriters.

2.2.2 Recursive Traversal

Recursive Traversal only disassembles an instruction when we find a control-

flow path to that instruction. To do so, it starts disassembly at the binary code’s

entry point, but recognizes control transfers such as branches, jumps and calls.

When a control transfer instruction is encountered, recursive traversal continues

disassembling at all possible successor instructions. In the case of an unconditional

jump, disassembly continues at the jump target; for conditional branches, disassem-
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bly continues at the target as well as the fall-through instruction. The benefit of

recursive traversal over linear sweep is that it cannot mistakenly disassemble data

bytes as code; hence its output is always correct. However, because disassembly

stops at indirect control transfers, its code coverage is limited. In that sense, it

sacrifices coverage for guaranteed correctness while rewriting.

2.2.3 Pattern Matching

A variety of techniques employ pattern matching to identify bytes such as the

bounds of jump tables or to identify function prologues. Typically, these techniques

are architecture- and compiler-specific, which is a drawback since binary codes can

be produced by a wide variety of compilers and by hand-writing assembly code.

Further, these techniques cannot guarantee correctness since a series of data bytes

might also coincidentally fit the target pattern; hence we do not use this technique.

2.2.4 Speculative Disassembly

Another method used to increase code coverage is speculative disassembly. It

recognizes portions of the code segment that have not yet been disassembled and

assumes that these gaps in the disassembly are most likely the targets of indirect

control transfers. Disassembly is then restarted at the beginning of these identified

blocks assuming they are code. If disassembly encounters bit patterns that are not

legal instructions, then we know that those blocks must have been data and must

not be rewritten. However, unfortunately, the opposite is not true: a block that is
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actually data may coincidentally also look like legal instructions. Rewriting those

would break the code. Hence speculative disassembly is normally unacceptable for

rewriting since it could lead to incorrect code. Consequently, existing rewriters do

not use speculative techniques, but pay the price in less than 100% code coverage.

2.3 Troublesome Features in Benign Programs

We list some troublesome features that may occur in benign programs. These

must be handled correctly since our goal is robust binary rewriting. Existing static

rewriters have low overhead, but do not handle any of these features in general.

2.3.1 Obfuscation

Obfuscation is a technique used to mislead attempts to reverse-engineer the

code. Here we are primarily concerned about control-flow obfuscation, which makes

it appear that data is code, or vice-versa. (We are not concerned with symbol

obfuscation which makes the program harder to read by a human by changing

symbol names. Symbol obfuscation does not affect most binaries, since stripped

binaries lack symbol names anyway.) However, control-flow obfuscation is relevant

for binaries. There are publicly available applications and research methods which

will control-flow-obfuscate a binary application to further protect the binary from

reverse engineering, such as the binary obfuscation project tool [43], the Arxan tool

[44], and the work by Popov et. al [45].

There are two types of obfuscation techniques that are problematic for binary
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rewriters, and hence are discussed here: (i) Unconditional to conditional branch

flow obfuscation, and (ii) Exception-based obfuscation. Both rely on tricking a

disassembly routines like recursive traversal to make data appear to be code. Relying

on this for rewriting could break the program.

In the unconditional to conditional branch flow obfuscation, an unconditional

branch is replaced by a conditional branch, whose one target is never taken. Instead

the never-taken path contains data. When recursive traversal is used in a rewriter

with this obfuscation, it will falsely assume both targets are code and both will

be disassembled and instrumented. This will modify data incorrectly as code, thus

breaking the program.

Another technique is exception-based obfuscation. In this technique, a change

of control flow is achieved without a control-transfer instruction (CTI), using ex-

ceptions instead. For example, the program may contain a DIVIDE instruction in

which the programmer (or obfuscation tool) deliberately triggers an exception by

using a zero value in the denominator. The program also registers a custom ex-

ception handler for divide-by-zero exceptions, whose code can jump to any target

instruction in the program. In this way, a DIVIDE instruction can act as a jump

that disassembly cannot track. A binary rewriter relying on such disassembly may

miss the target code, thus hurting coverage; and may incorrectly assume the bytes

after the DIVIDE are code, when they could be data, thus breaking correctness.

There are several other exception types that can be used.
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2.3.2 Dynamically Generated Code

Dynamically generated code is actually common in benign applications. It is

mostly used when executing user scripts or any script coming from external sources.

Another reason for having dynamically generated code is packed code, used in a few

benign programs for obfuscation. In this approach, the data in the code segment

is unpacked during the execution of the program and then control is transferred to

this newly generated code using some sort of CTI. This obfuscates code to look like

data, so that human reverse engineers or static disassemblers miss that part of code.

Unlike dynamic rewriters, static rewriters cannot disassemble such dynami-

cally generated code. Our binary rewriter ensures that the newly generated code is

fully disassembled and instrumented, without incurring high overhead.

2.3.3 Self-Modifying Code

Self-modifying code is similar to dynamically generated code with an impor-

tant difference: the addresses into which dynamically generated code are stored

may already contain instructions that have been executed during the program. This

modifies the program’s code at run time.

Self-modifying code could cause serious problems for all types of binary rewrit-

ers, since it means that all the assumptions about the instructions in those memory

addresses are no longer valid after self-modification. For example, a problem could

be that all the instrumentations that were in those memory addresses, are now lost

because they are rewritten by the newly generated code. In the later chaoters, we
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will describe our proposed mechanism for RL-Bin to handle these cases.

2.4 Limitations of RL-Bin and Introduction of RL-Bin++

RL-Bin is capable of analyzing and instrumenting most of the common com-

mercial binary files which do not have relocation information, and may have ob-

fuscated, dynamically-generated or self-modifying code. However, RL-Bin is not

designed to support adversarial binaries, which can deliberately use methods to

prevent their examination by a binary rewriter or a debugger.

Here are certain types of behavior in adversarial binaries that can cause prob-

lems for the binary rewriter.

2.4.1 Verifying the Memory Image Checksum.

Some adversarial binaries compare the checksum on their memory image against

a previously calculated checksum to make sure that the program is not altered by

debuggers. The goal is not ensuring integrity, but defeating debuggers. In most

commercial binaries, developers know that many users may use debuggers on the

software which will not work with such binaries.

2.4.2 Disabling the Debugger.

Binaries can check the presence of a debugger, and if found, can try to disable

it. As mentioned before, commercial binary applications support debuggers.
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2.4.3 Debugger Breakpoints Modification.

Adversarial binaries attempt to remove breakpoints inserted by debuggers,

which can interfere with the operation of rewriters and debuggers. This behavior is

limited to only adversarial binaries.

Due to these limitations, RL-Bin might not properly instrument binaries with

aformentioned features. Hence, we have introduced RL-Bin++ in Chapter 6 which

is capable of handling troublesome features. These features are desribed in detail in

Chapter 5
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Chapter 3: Design

In this chapter, we describe the base un-optimized algorithm that is used

by RL-Bin. This algorithm has very high overhead (approximately 5x to 10x the

run-time of the un-instrumented program for SPEC CPU2017 benchmarks) but

demonstrates the correctness of the method.

3.1 System Design Overview

The components of RL-Bin are shown in Figure 3.1. The Control Unit keeps

the state of the application and manages other units. The Instrumentation Unit

creates and manages instrumentation routines. The Trampoline Unit is responsible

for efficiently placing trampolines in the original code to redirect execution to the

instrumentation routines. Finally, the analyzer and optimizer unit is responsible for

optimizing and removing instrumentation routines that are no longer needed.

3.2 RL-Bin Baseline Algorithm

Figure 3.2 shows intuitively how RL-Bin discovers and executes code. The

main intuition behind RL-Bin is to add instrumentation at run-time that monitors

the discovery of the new code. To discover code, our method assumes that a block of
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Figure 3.1: RL-Bin System Overview

memory is code only if we discover an actual control transfer to it during run-time.

Our purely dynamic disassembly method will begin at the start of a memory

block (whose address we call START) once it is proven to be code and follows non-

control-transfer instructions one after another, which are all discovered to be code,

until it reaches a control transfer instruction. Whenever the method reaches a CTI,

if that CTI can have more than one possible target, the method ensures that some

instrumentation is triggered when the actual target becomes known later during the

same run.

Some terminology: All instructions that change the control-flow behavior of a

program, such as branches, jumps, and calls, are called Control-Transfer Instructions

(CTIs). A direct CTI is a CTI whose target is specified by an immediate constant

in the instruction. Direct CTIs can be unconditional or conditional. An indirect

CTI is a CTI whose target is specified in a register or memory location and hence

is usually unknown statically.
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RL-Bin’s Overall Approach
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Figure 3.2: RL-Bin’s Cycle of Code Discovery and Execution

Here are the steps in RL-Bin dynamic Disassembly Routine:

1. Add entry point to the list of instructions to be discovered, let’s name it D.

2. Pick an instruction I from list D.

3. Mark the address of instruction I as discovered in the disassembly table.

4. If instruction I is a non-control-transfer instruction,

(a) The next instruction must be code as well, so we add it to list D if has

not been disassembled before.

5. If instruction I is an unconditional direct CTI,
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(a) It has only one possible constant target (i.e., it is a direct jump), so we

can infer that the target is definitely code as well, so we add the target

to list D and disassembly continues from there.

6. If instruction I is a conditional direct branch, (see Figure 3.3 as an example)

(a) We cannot assume that its target (T) and fall-through (F) addresses are

both code. As discussed before in section 2.3, because of conditional

branch obfuscation, only one of the target or the fall through may be

code, but not necessarily both. Hence we insert hardware breakpoints at

both the target and fall-through addresses (T and F).

(b) Register a custom exception handler for handling these hardware break-

points. Particularly, when either one of them is executed (say T),

i. It will register that memory location as code in the disassembly table.

ii. Then it removes hardware breakpoints at both T and F. (The rea-

son that hardware breakpoints are removed from a block after it is

executed is that in most ISAs, only a small number of hardware

breakpoints is allowed at a time. In the case of x86, there is a limit

of four hardware breakpoints that can be set at a time.)

iii. Adds trampoline at START (see trampoline (1) in Figure 3.3), which

will transfer to instrumentation routine that adds back the hardware

breakpoint at the non-executed address among T and F (say F) (If

the code is executed from START again, we do not need to disas-

semble the code from START again, but just insert the hardware
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breakpoint at F when at START.)

Note: In the case of x86, if there are more than four non-executed

addresses in the function, extra trampoline(s) will be placed in the

middle of function to remove hardware breakpoints from previous

addresses and insert them on the following addresses.

(c) Later, as an optimization, if the handler at F also executes, remove the

hardware breakpoint, as well as the instrumentation at START. This

leads to zero overhead in the steady state after T and F are both proven

to be code.

7. If instruction I is an indirect CTI,

(a) Insert trampolines to an instrumentation routine (see trampoline (2) in

Figure 3.3), just before the indirect CTI to the instrumentation routine

which,

i. Computes the target upon reaching that point.

ii. Add it to the list D, if it is not disassembled before.

(The target of indirect CTIs need to be checked every time because it

can change every time the instruction is executed; hence, our trampoline

and instrumentation will remain in place to check the target of indirect

CTIs to discover new code and handle unexpected control flows.)

8. If D is empty, then exit, otherwise go to step 2.

The above method works for dynamically-generated code without a special

29



jmp L

. . .

cmp eax, 0x01

jne T 

sub ebx, 0x04

mov eax, ebx

ret 

START:

L:

F:

T:

Trampoline(1)

Direct CTI

Conditional CTI

HW Breakpoint

HW Breakpoint

Trampoline(2)

Indirect CTI

Figure 3.3: Disassembling a Memory Block

case, since it tracks the CTI into the dynamically-generated code just like any other

CTI. It also handles unconditional to conditional branch obfuscation as described

above. However, the method needs additional components to handle self-modifying

code and exception-based obfuscation. These will be described in subsections below.

3.3 Handling Self-Modifying Code

Self-modifying code is handled as follows.

1. To check whether the code has modified itself, write-protect the pages that

contain code, so any write to these pages will cause an exception.

2. Register the exception handler to:

(a) Check the addresses which are being written.
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(b) If they have previously been discovered as code, remove those entries

from the disassembly table. (As a result, the newly written code will be

treated the same as the code which has never been seen before.)

The above method is very high overhead and it needs to be optimized. The

main overhead comes from the fact that every write to the code segment will cause

an exception. Such writes will happen if data is stored in the code segment and is

written to by the program. To reduce the overhead, we use the following scheme.

We add instrumentation code around memory store instructions that trigger the

exception for the first time. The instrumentation will turn off write protection,

check the addresses being written to, and turn back on write protection after the

memory store. In this way, stores to data locations in the code segment will never

trigger an exception more than once. As a result, only a small portion of memory

store instructions (those that write to the code segment) will be surrounded by our

added instrumentation.

3.4 Handling Exception-Based Obfuscation

This obfuscation happens when an instruction that is not a CTI is used to

transfer control of the program. As an example, a divide instruction which deliber-

ately triggers an exception can be used as a CTI. As a result, the memory location

following the divide instruction may never be executed. Actually, it may contain

data and not code. To handle exception-based obfuscation, we follow the following

method.
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1. Create a stub for every exception handler that is registered. When an in-

struction triggers the exception it will execute our instrumentation before the

actual exception handler.

2. Disassembly routine must stop disassembly at every instruction that can cause

an exception that has been registered so far. (In the common case no such

exceptions will be registered, thus the overhead will be minimal.)

(a) If such an exception causing instruction is found (in step 4 of the baseline

algorithm), put a hardware break-point on the instruction that immedi-

ately follows it.

(b) After hitting the breakpoint, remove it and start discovering code from

that location. (This method ensures that no data is mistakenly assumed

to be code.)

Using the algorithm in this section, more and more code is discovered during

run-time. This method will ensure that not a single instruction can be executed

without first being observed by our binary rewriter, even if the instruction has been

generated dynamically or through self-modification. Also, in case there is obfusca-

tion, we would never instrument data inside the code segment since we instrument

only the locations that contain code that has been executed during run-time.
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3.5 Handling Multi-Threaded Applications

By the advent of multi-core processors, multi-threaded applications have be-

come very common. As a result, every binary rewriter must handle such applica-

tions. The main issue in multi-threading is to make sure that the data structures

that are shared between threads are being used correctly. Specifically, they should

not be used by a thread while simultaneously being updated by another thread.

To avoid the problems regarding concurrent access to RL-Bin data structures, each

thread must acquire the lock before being able to modify RL-Bin internal data struc-

tures. During this modification, no other threads are allowed to access the same

data structure.

3.6 Disassembly Table Structure

Here we describe the disassembly table, which is the main data structure used

in the algorithm. The table keeps essential information about each byte of the code

segment in the main memory. Each entry of the disassembly table is used to track

the status of the corresponding memory location, and when a new action needs to

be taken.

For each byte in the code segment, there is a two-bit entry in the table which

can show one of four different possibilities (0 to 3) as the status code for that

location. If there is no information about the byte, whether it’s code or data, then

the entry is set to 0. If the byte is code and also it is the start of a basic block, the
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entry is 1. If the byte is code and but not the start of a basic block, the entry is

2. If the byte has been modified by the rewriter to add instrumentation, the entry

is 3. Figure 3.4 shows an example of a disassembly table. In the figure, the status

codes for 0, 1, 2, 3 are encoded in binary in the expected way as 00, 01, 10 and 11,

respectively.

3.7 Instrumentation and Trampolines

Since RL-Bin is an in-place binary rewriter, a trampoline is used to insert any

instrumentation in the original code. A trampoline is an instruction that we insert,

Corresponding 
Memory Location

2-bit Entry

… …

0x10000039 00 (Unknown)

0x10000040 01 (Code & Start of BB)

0x10000041 10 (Code)

0x10000042 10 (Code)

0x10000043 10 (Code)

0x10000044 10 (Code)

0x10000045 11 (Instrumentation)

0x10000046 11 (instrumentation)

… …

Figure 3.4: The Disassembly Table
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which rewrites an original known instruction in the code segment, and replaces it by

a CTI that will redirect control to the instrumentation of our choice that needs to be

executed at that point. The instrumentation itself is added elsewhere in the binary,

typically at its end. The instrumentation includes at its beginning the instruction

that was overwritten, followed by the new code of our choice to be inserted, then

followed by a CTI at its end that redirects control back to the original code at the

instruction following the overwritten instruction. Trampolining is a well-known way

of inserting code in binary rewriters.

There are several options for choosing the instruction used as the trampoline.

Each of these options could be used depending on the instruction inside the basic

block that needs to be instrumented.

In the best case, a five-byte long jump can be used to divert the execution to

the instrumentation. This is the preferred method since it is very low overhead and

also it would allow the instrumentation to be in any location in the main memory.

The only downside is to find one or more instructions with total length of five bytes

to be replaced by the trampoline.

Another choice is to use a two- or three-byte short jump. The advantage is

that finding the instruction to be replaced is easier; however, since it is a short jump,

there is not much flexibility regarding the location of instrumentation. This issue

could be resolved in two steps: first by jumping to a five byte long jump, and from

there trampolining to the actual instrumentation which could be placed anywhere

in the memory.

The least efficient way is using the one-byte trap. Since, it takes only one byte,
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it could be inserted anywhere that is needed. This trampoline is used as the last

option, if the methods described above cannot be used. The reason is that a trap

instruction takes hundreds of cycles to be executed and using it frequently would

lead to a very high overhead. Trampolining itself is well understood and common,

so many of the policies for optimizing trampolines are not new, and have been quite

successful in the past.
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Chapter 4: Optimizations

This chapter presents the optimization techniques used in RL-Bin to reduce

the overhead. The effectiveness of each optimization will be discussed in Section

7.3.

4.1 OP1. Conditional Branches

As was described in step 6.3 of the baseline algorithm, if at any point both

outcomes of a conditional branch are registered as code, then the instrumentation

and hardware breakpoints at that branch can both be removed. In the steady state,

the checks before most direct conditional branches are removed.

4.2 OP2. Predicting the Target of Indirect CTIs

The baseline algorithm in step 7, instruments every indirect CTI to compute

its target at run-time and register it as code if it is the first time that the address

is executed as code. This overhead can be reduced by an optimization with the

following intuition: indirect CTIs usually transfer the control to one of a few constant

targets. We will put a check which takes less time before this heavy check of an

indirect CTI.
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As an example, let’s assume that function foo() is being called from three

different call sites. So, the return instruction of the function will return to the

instruction after one of these call sites. First, the target will be checked against

the most frequent call site. If it matched, the indirect CTI can safely transfer the

control flow back to the call site. The same idea would be done for second and third

call sites. In the end, if none of the previous checks were true, we would refer to the

disassembly table to check whether the target of indirect CTI has been discovered

as code before.

4.2.1 Discussion on the trade-offs between different methods of pre-

diction

We will discuss two different methods that we tested for the prediction of

indirect CTIs. The first method is to use profiling to find out the most frequent

destinations of an indirect CTI. Based on the profiling information, we decide the

number of predictions for each branch. The other method uses a fixed number of

predictions and does not rely on profiling information. In this method, we dynam-

ically change the prediction if it was not correct. We discuss the two methods in

detail.

In the first method, the number of predictions will be determined based on

the frequency of the times that a particular destination is taken. The heavy check

(compute the address and check if it has been discovered before) in our implemen-

tation costs around 40 cycles. The light check that compares the target against a
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constant value costs 11 cycles in our implementation. If a light check is not taken,

we continue with the rest of the predictions, and if all of them are incorrect, we fall

back to the heavy check. Formula 1 shows the total cost of the mentioned checks.

Here H is the cost of the heavy check, and L is the cost of light checks. Also, f1 to fn

are the frequency of the destinations based on profiling information. N is the num-

ber of destinations for the indirect CTI. Also, i is the counter to help demonstrating

the cost of the check for the i-th destination.

(1) Total Cost of Checks for an Indirect CTI =
N∑
i=1

ifiL + (1 −
N∑
i=1

fi)(NL + H)

In order to find out the optimal number of light checks for each indirect CTI,

we include the first K frequent destinations out of N total destinations. As an

example, consider an indirect branch with the frequency of target addresses 0.8, 0.1,

0.02, 0.01, etc. For one light prediction, K=1, the total cost is (0.8*11+0.2*51 =

19). The cost is (0.8*11+0.1*22+0.1*62=17.2) for the prediction of two targets,

K=2. For three targets, K=3, the cost would be (0.8*11+0.1*22+0.02*33+0.08*73

= 17.5), which means that having two predictions (K=2) is the optimal case.

In general, to calculate the total cost of checks for K predictions, we replace

K for N in the formula above. We continue increasing the number of predictions,

K, until total cost reaches a minimum value, after which increasing K increases the

total cost.

Another method of prediction uses a purely dynamic method based on the

39



intuition that a branch is likely to take a target if it has been taken recently. We have

implemented and tested two versions of this method, with one or two predictions.

In the first version, we predict only one target and use light check only for that

prediction. Our prediction is the last destination that is taken by the indirect CTI.

If the predicted address is wrong, we change the prediction and replace it with the

newly taken destination. In the second version, two addresses are predicted. If we

have a misprediction, we replace the first prediction with the second prediction, and

the second prediction will be replaced by the last destination that is taken by the

indirect CTI. This method has more memory overhead, but its run-time overhead

is less than the first version.
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Figure 4.1: Run-time and Memory Overhead of Applications with Three Methods
of Prediction

Figure 4.1 shows the memory and Run-time overhead of SPECrate 2017 bench-

mark applications with three prediction methods: (1) profiling; (2) dynamic with

one prediction; and (3) dynamic with two predictions. The numbers shown in this

figure assume that all other optimization methods of RL-Bin have been applied. As

can be seen, the run-time overhead of the dynamic method with two predictions is

comparable with the profiling method, but its memory overhead is significantly less.
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The dynamic method with one prediction has the lowest memory overhead, which

comes at the expense of higher run-time overhead. Depending on the use case, one

of these methods can be used. The dynamic method with two predictions seems

to fit most of the cases because of the balance between its memory and run-time

overhead and the fact that it does not rely on profiling.

4.3 OP3. Function Cloning

It is often the case in programs that a small function is directly called fre-

quently from a call site. The intuition is to remove the check needed before the

return instruction (indirect CTI) to the call site. During the step 7 of the baseline

algorithm, we selectively clone functions to reduce the overhead and remove the

checks needed before their return instructions.

In this method, the function is cloned so that no check is needed if called

from that specific call site. First, the function is copied to a new location. The call

instruction is modified to a direct jump to the new location. As a result, no return

address will be pushed on the stack. Also, the return instructions in the function

are replaced by direct jumps to the instruction after the call site.

4.3.1 Discussion on when to perform function cloning

Function cloning has the advantage of removing indirect control flow instruc-

tions and the checks needed. However, the downside is that the cloning process

itself is not free and has high overhead in terms of run-time and memory. Thus, we
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need to decide when it is appropriate to clone a function for a particular call-site.

First, we will solely focus on run-time overhead. The ongoing cost is to execute

the return instruction and its instrumentation. If we decide to perform function

cloning for a call site, we pay a higher one-time cost of cloning, but we would no

longer have the ongoing cost. If we already knew how many times a particular call-

site would call the function throughout the execution, it would be easy to calculate

whether it is cost-effective to perform the cloning.

The uncertainty of the number of execution times of the call instruction is

similar to the snoop caching problem. According to [46], when there is an ongoing

cost and a higher cost to get rid of the ongoing cost, the efficient choice is to pay

the one-time cost after the sum of ongoing costs by that point exceeds the former.

As a result, we should clone the function after it has been executed enough times so

that the cost of return and its instrumentation exceeds the cost of cloning. Hence,

the formula for finding the threshold number is the following, where Cc is the cost

of cloning the function per byte, S is the size of the function in bytes, and Cr is the

cost of running the return and instrumentation.

(2) T =
CcS

Cr

Figure 4.2 illustrates the run-time and memory overhead when function cloning

is applied at higher thresholds. The overhead numbers in this figure are measured

after all other optimizations of RL-Bin have been applied. The numbers show that as
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the threshold increases, the run-time overhead increases, but the memory overhead

goes down. If the goal is to achieve the lowest possible run-time overhead, cloning

should be done at the threshold T. Otherwise, one can increase the threshold to

have a smaller memory footprint. By default RL-Bin is configured to apply function

cloning at the threshold T. If the goal is smaller memory overhead, then the threshold

10T seems to be a good choice, because it has only 31% memory overhead and its

run-time overhead is 7% which is an acceptable overhead for deployment in live

systems.
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Figure 4.2: The Trade-off Between Memory and Run-time Overheads With Different
Thresholds

4.4 OP4. Optimizing Whitelisted Modules

It often happens that applications load dynamically shared libraries during

their execution and then execute functions from them. In most cases, these DLLs

are part of the kernel or they are part of the standard library provided by the

programming language. It is possible to optimize away the checks needed for some

of these DLLs.

The interaction between the main module of the program and the shared
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libraries happens by calling a function exported by the library. The control will be

sent back to the main module after the execution of the function. The only exception

is when the library performs a callback and calls a function from the main module.

DLLs are analyzed and their callback functions are discovered. If the behavior of

the functions and the callback values can be determined prior to execution, then

the analyzed DLL will be whitelisted and checks in that module will be optimized

away.

Set I = Instructions in the function

Set C = Set of Safety Conditions(Called Functions)

1 bool Is_Safe(Address Entry_Point)

2   Set W={Entry_Point} //Insts waiting to be checked

3   While(𝑊 ≠ ∅)

4     pick inst from W

5     if(inst ∈ 𝑃) return false

6     if(inst ∈ Call_Instructions) 

7       add Dests(inst) to C

8       add Next(inst) to W if(Next(inst) ∉ 𝐼)

9     else add Dests(inst) to W if(Dests(inst) ∉ 𝐼)

10     if(stack_height ≠ value assigned before)

11       return false

12 else 

13 assign stack_height of Dests(inst)

14     if (inst is an indirect write)

15       if(Write_Address(inst) = Return_Address) 

16         return false

17     remove inst from W and add it to I

18   Let c ∈ 𝐶 , if(Is_Safe(c) = false) return false

19   return true

P1 = Set of indirect branch instructions

jmp dword ptr [eax*4 + 0x0c]

P2 = Set of instructions that modify the 
stack pointer to a value that is statically 
unknown.

add esp, eax

mov esp, dword ptr [ecx]

Not including  

add esp, 0x4 

(Added value is constant)

P3 = Set of instructions that write to an 
indirect address which may or may not 
be the return address of the function

i.e. mov dword ptr [eax], 0x3c

mov dword ptr [esp + ebp*4], eax

Not including

mov dword ptr [esp + 0x4], eax

(Check whether esp+0x4 points to return address)

𝑷 =ራ

𝒊=𝟏

𝟑

𝑷𝒊

Figure 4.3: The Algorithm to Determine Safety of a Given Function. (None of the
instructions in set P, defined on the right side, are allowed in a ”Safe” function.
Dests(inst) return the targets of CTIs and for non-CTIs, returns the next instruc-
tion.)

44



4.5 OP5. Detecting ”Safe” Functions

The most common indirect CTIs are return instructions. The overhead of

the checks before return instructions, checks added during step 7 of the baseline

algorithm, can be further eliminated when the function has certain properties. A

”Safe” function, can be proven that it cannot modify its own return address, hence

the return instruction always returns to the instruction after the call site.

We outline in Figure 4.3, our Just-In-Time (JIT) analysis algorithms, by which

the safety of many functions can be established before their execution. For such safe

functions, the instrumentation before the return instruction can be removed. The

intuition behind the algorithm is to determine the exact addresses of the memory

locations on the stack that will be modified by the instructions within the function.

If the return address is not modified, then the function will return to the original

call site.

”Stack Height” for every instruction, is defined to be the difference between

the value of the stack pointer at the entry point of the function and the value of stack

pointer at that instruction. For example, a push instruction will reduce the ”Stack

Height” by four. If the function does not contain any of the instructions defined in

Figure 4.3 as set P, the ”Stack Height” of all instructions can be determined prior

to the execution of the function. If there is more than one control flow paths from

the entry point to a given address, and ”Stack Height” is not the same between

different paths, we declare that function as not ”Safe” and do not optimize it. This

rarely happens in benign code.
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The algorithm will determine the ”Stack Height” of each instruction and based

on the ”Stack Height”, will determine whether an indirect write rewrites the return

address of the function. We also create a list of functions that are called from

this function and put them in set C. Later on, after disassembling all instructions

in the function, we check the safety of all the functions in set C. If any of the

called functions is not safe, the current function will be declared not ”Safe”. If all

the aforementioned checks showed that the return address cannot be modified, the

function will be declared ”Safe”. Note that the algorithm above will be executed

only once for each discovered function, thus there will be no overhead in the steady

state.

4.6 OP6. Using Data-Flow Analysis to Find ”Safe” Functions

OP5 algorithm does not cover some functions, because writing to global or

static data, which is not stored on the stack, is frequently done through indirect

addressing.

If there is a write to an indirect address, we need to make sure it does not

overwrite the return address of the function. Most of the indirect writes to the stack

are done using stack-derived registers as base registers (In x86, these are esp and

ebp registers). So, if the base register is not a stack-derived register or it’s not a

copy of these registers, then it cannot modify any value which is previously stored

on the stack. As a result, we must ensure the base register is not derived from the

stack pointer.
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We define the term PNSD, which is short for ”Provably Not Stack Derived”.

If a register value is PNSD, it means that it can be proved during run-time analysis

that the current value in the register is not derived from the stack pointer. An

indirect write instruction which uses a PNSD register can never write to the stack.

We use traditional data-flow analysis to identify all the different definitions that can

reach the base register in the write instruction. If all of the definitions of the base

register are PNSD, then the base register is also PNSD.

As it is demonstrated in Figure 4.4, we modify the algorithm in the previous

section to check for PNSD variables when there is an instruction, which stores the

value to an indirect address. Again, note that the analysis above will be done only

once for each discovered function, thus there will be no overhead in the steady state.

5  if(inst ∈ 𝑃) return false

5’ if(inst ∈ 𝑃3) 

5”   if(!Is_PNSD(base register))

5”’ return false

P3 = Set of instructions that write to an 
indirect address which may or may not be the 
return address of the function.

𝑷 = 𝒊=𝟏ڂ
𝟐 𝑷𝒊

i.e. mov dword ptr [eax + 0x38], 0x3c

Is_PNSD(eax) returns true if register eax is PNSD

Figure 4.4: Algorithm Modification to Cover Indirect Writes with PNSD Base Reg-
ister.

4.6.1 Discussion on when to apply OP5 and OP6

Optimization methods 5 and 6 provide the advantage of removing the check

before return instruction of safe functions. However, doing just-in-time analysis

when the code is discovered is very costly. The optimization will only be beneficial

if the cost of the analysis to determine the safety is amortized by the elimination of
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instrumentation in multiple executions of that function.

Similar to the discussion above made for function cloning in subsection 4.3,

according to [46] it would only be beneficial to apply the analysis when the function

has been executed enough times that the overhead is more than the cost of analysis.

Based on the following formula, we determine the threshold at which we would apply

the analysis for optimizations 5 and 6, where C5 and C6 are the constants related

to average cost of these optimizations per byte, and S is the size of the function

in bytes. Note that the data flow analysis in optimization 6 has quadratic time

complexity in S.

(3) T5 =
C5S

Cr

(4) T6 =
C6S

2

Cr

Figure 4.5 demonstrates the percentage of functions in the SPECrate 2017

benchmark, the safety of which can be determined by optimizations 5 and 6. We

have also shown the percentage of amortizable safe functions, the subset of Safe

functions for which it is worth it to analyze them to find if they are safe. For

amortizable safe functions, the benefit in run-time overhead is more than the time

of analysis. The analysis is done only once per function but every time the function

48



is executed we get the benefit of not instrumenting it. As it can be seen in this

figure, to get the lowest run-time overhead, optimizations OP5 and OP6 should

only be applied to the functions that are executed enough times to amortize the

analysis cost.
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OP5 and OP6

Similar to the discussion in function cloning in subsection 4.3, we can apply

OP5 and OP6 optimizations at a higher threshold. That means that the function

must be executed several times more than the analysis time. Unlike function cloning,

this does not lead to a trade-off between memory and run-time overheads. Applying

OP5 and OP6 at a higher threshold would lead to both higher run-time and memory

overhead.

We also considered applying OP5 and OP6 at a lower threshold, meaning that

OP5 and OP6 are applied to functions that are not executed enough times that would

amortize the function analysis time. This would lead to higher run-time overhead

but reduces the memory overhead, because proving that a function is safe means

there is no need to instrument the function. Although memory overhead is reduced,
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it is not by a very significant amount. In our experimental results for SPECrate

2017 applications, if we perform OP5 and OP6 analysis for every function (which

are not necessarily amortizable), memory overhead is reduced form 69% to 60% and

run-time overhead increases from 4% to 9%. The memory overhead reduction is not

worth the increase in run-time overhead, hence we apply OP5 and OP6 only when

the threshold is reached for each optimization.
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Chapter 5: Difficulties of Obfuscation for Binary Rewriting

Obfuscation refers to all different techniques used to conceal the structure of

the code. These methods were previously frequently used by malicious software, but

recently, it has become more common in benign applications. The reason is that

commercial applications need to be protected against reverse engineering. In some

cases, obfuscation would help with digital rights management (DRM) and avoid

undesired or illegal software uses.

Obfuscated binaries have complex features that can be categorized into the fol-

lowing groups: Anti-Disassembly, Anti-Debugging, Anti-Rewriting, Dynamic Code,

and Convention Infringement. In general, these features are added to prevent the

software from being reverse engineered or modified. The problematic characteris-

tics of obfuscated binaries intentionally mislead analysis tools such as disassemblers,

debuggers, and rewriters.

5.1 Explanation of Problematic Features

Several features are introduced by obfuscators to throw off analysis tools. This

section categorizes these features based on the similarity and the targeted analysis

tool. Table 5.1 shows the five categories of these challenging features. This section
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describes the reasoning behind each type and how they can affect analysis tools.

Categories Problematic features

Obfuscating CTI Targets
Anti-Disassembly

Ambiguous Code and Data

Dynamic Code Unpacking
Dynamic Code Modification

Self-Modifying Code

Anti-Rewriting Self-Checksum of code

Section Label Misuse

Convention Infringement Function Handling Obstruction

Calling Convention Misuse

Anti-Debugging Debugger Resistant

Table 5.1: Categories of Problematic Features Found in Obfuscated Binaries

5.1.1 Anti-Disassembly

Disassembly tools such as IDA Pro [47] depend on extracting instruction from

the binary file by well-known methods like linear sweep or recursive traversal. Linear

sweep starts at the entry point of the binary and consecutively disassemble instruc-

tions one after another. On the other hand, recursive traversal begins at the entry

point and follows control transfer instructions to disassemble code.

There are three primary methods of throwing off disassemblers. The first

method is creating unnecessary indirection in CTIs, whose target is unknown before
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execution and will be missed by static disassemblers. The second method is creating

ambiguity by converting unconditional branches to conditional branches with two

targets. One of the targets is fake and contains data instead of code. Disassemblers

using the recursive traversal method would mistakenly disassemble invalid instruc-

tions from the fake target address. The third method is changing the control-flow

by deliberately causing exceptions during run-time. Static tools would not realize

that exception would happen during run-time, and therefore they would miss the

program’s original control-flow.

5.1.2 Dynamic Code Modification

Most of the analysis tools are static. Hence, it is enticing for obfuscation tools

to generate and execute code dynamically. This code will remain hidden from all

static tools. We categorize dynamic code modification to dynamically-generated

and self-modifying code. The difference between dynamically-generated and self-

modifying code is that the latter replaces the code that has been executed before.

The most common method used by obfuscators is unpacking encrypted code and

running the decrypted payload.

5.1.3 Anti-Rewriting

Anti-rewriting techniques are used to ensure that the binary is not modified

by rewriting tools. The technique validates that the original code is not altered by

calculating checksum and verifying it against a known value. The checksum might
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be calculated over the static binary file or part of the program’s memory image. It

could be the whole code segment or just the unpacked payload. Another variation

of anti-rewriting methods is to hide code in strange locations such as the Portable

Executable (PE) header file. The goal is to detect if a rewriter has modified or

renamed sections of the binary file. In that case, the hidden code is altered, and the

rewriter will be detected.

5.1.4 Convention Infringement

There exist unwritten rules about binary code that is generated by compilers.

For example, functions are generally a continuous part of code addresses starting at

the entry-point and ending with one or more return instructions. Functions regularly

do not share code blocks and follow a calling convention for using registers, passing,

and cleaning up the arguments. In addition, memory sections are divided into code

and data sections with separate read/write/execute permissions. None of the rules

mentioned above is mandatory, and obfuscation tools do not follow them to evade

the analysis tools that depend on them.

5.1.5 Anti-Debugging

Obfuscation tools attempt to bypass debuggers by detecting them and inter-

fering with breakpoints. Debuggers register themselves in the operating system as

the target process’s debugger to get the first chance to handle the exceptions. In

addition, debuggers use one-byte software breakpoints and single-step traps, and
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hardware breakpoints to monitor the execution of the application. Obfuscation

tools can detect the debugger registration and stop execution if a debugger is found.

Additionally, they can insert or remove breakpoints that are intended to be solely

used by the debugger. By doing that, the debugger would not be able to behave as

expected.

5.2 Effect of Problematic Features on RL-Bin

This section discusses in detail the problematic features in each of the five

obfuscation categories. Primarily, we examine the effect of each feature on RL-Bin.

Some features significantly increase the overhead of RL-Bin, while others would

cause the program to behave unexpectedly under RL-Bin. Table 5.2 demonstrates

the code artifacts corresponding to each feature. In this section, we will study the

effect of these code constructions on RL-Bin.

5.2.1 CTI Target Obfuscation

Unlike conditional and unconditional direct branches, indirect CTIs have an

unknown number of destinations which are not known before run-time. Anti-

disassembly schemes convert direct CTIs to indirect CTIs so that static disassem-

blers cannot follow the program’s control-flow. As discussed in the previous section,

RL-Bin inserts a dynamic check before indirect CTIs. As a result, an increased

number of indirect CTIs would lead to higher overhead when the binary is executed

under RL-Bin.
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Category Problematic Feature Code Artifacts

Anti-Disassembly CTI Target Obfuscation High Percentage
of Indirect Calls

High Percentage
of Indirect Jumps

Ambiguous Code
and Data

Conditional Branch
Obfuscation

Dynamic Code Self-Modifying Code Code Rewriting

Overwrite of
Executing Function

Anti-Rewriting Memory Checksumming Checksum of Code

Convention
Infringement

Section Protection
Violation

Writeable Data in
Code Segment

Function Handling
Obstruction

Function Entry
Not First Block

Functions Share
Blocks of Code

Non-standard
Calls/Returns

Calling-Convention
Exploitation

Flags Used Across
Functions

Anti-Debugging Breakpoint Manipulation Reusing HW Or
SW Breakpoints

Table 5.2: Code Artifacts of Problematic Features.
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5.2.2 Ambiguous Code and Data

Another method that is used by anti-disassembly tools is converting uncondi-

tional branches to conditional branches. The main goal of obfuscators is to increase

the control-flow’s complexity so that disassemblers would be less likely to find the

actual execution path. In the case of RL-Bin, it will encounter numerous condi-

tional branches for which one of the targets is never executed as code. That would

force RL-Bin to move and replace hardware breakpoints frequently, clearly leading

to higher overhead.

5.2.3 Self-modifying Code

Dynamic code generation and execution commonly occur when executing inter-

preted languages such as JavaScript. RL-Bin has no problem handling dynamically-

generated code since the code is discovered dynamically. There is no difference

between the dynamically-executed code and static code from the rewriter point of

view. However, self-modifying code requires RL-Bin to invalidate the result of its

analysis for self-modified addresses. Self-modifying is rare in benign commercial

binaries, but obfuscation tools would deliberately transform regular code to self-

modifying code to hinder the performance of binary analysis tools.

5.2.4 Memory Checksumming

This method is used to validate the code’s integrity and ensure that it has

not been modified before execution. The checksum can be either calculated for
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the binary file or its memory image. The binary file checksum would detect the

transformations done by static rewriters. RL-Bin does not modify the binary file

so that the file checksum can be verified. However, RL-Bin inserts instrumentation

in place of the original code, which would change the memory image checksum.

Consequently, the obfuscation tool would detect the presence of RL-Bin, and the

program behavior would change accordingly. Binary rewriters should not cause any

change in the program’s behavior.

5.2.5 Section Protection Violation

Mixing code and data is a popular strategy in binary obfuscation tools. Tra-

ditionally, code and data are stored in separate binary sections with their own

read/write/execute permissions. While the code section is read/execute-only, writable

data and read-only data are stored in separate sections.

Obfuscation tools do not follow these conventions and place writable data in

the code section. Any data write in the code section triggers RL-Bin’s detection

method for self-modifying code. Repeated writes to the code section would signifi-

cantly increase the overhead of RL-Bin.

5.2.6 Function Handling Obstruction

Reverse engineering is heavily dependent on detecting and analyzing functions

within a binary. A function is the smallest piece of code that performs a meaningful

task; therefore, analysis tools employ complex algorithms to detect the functions’
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boundaries and properties.

Because of the importance of functions in program analysis, the obfuscation

tools try to hide the functions’ boundaries. This task is done using an alternative

sequence of instructions that are equivalent to call/return instructions. For exam-

ple, a subsequent push and jump can be used instead of a call. Other function

obfuscation techniques that are deployed include creating non-contiguous functions

or abnormal functions that share basic blocks.

Together these techniques will hinder the ”safe function analysis” used in RL-

Bin, hence leading to fewer safe functions detected. Our analysis shows that the

number of ”safe functions” seen in obfuscated binaries is one-third of the binaries

before obfuscation. As a result, the overhead of obfuscated binaries running under

RL-Bin is unacceptable.

5.2.7 Calling-Convention Exploitation

Compilers generate code that follows appropriate calling conventions. Each

calling convention uses a different standard to handle passing arguments and clean-

ing them up after the call. Still, the common fact is that the flags register’s value

is not passed across different functions. RL-Bin utilizes this fact and modifies the

flags register value in the instrumentation routine for the return instruction. If the

flag register value is live across the return, the program may behave unexpectedly

under RL-Bin.
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5.2.8 Breakpoint Manipulation

This obfuscation technique uses the software and hardware breakpoints to

redirect the control-flow. The tool registers the appropriate handler and inserts

the breakpoint in the original code. Once the breakpoint is hit, the control-flow

switches to the handler, and the execution continue from there. These breakpoints

are supposed to be used only by debuggers. If an application uses these breakpoints,

the debugger cannot differentiate between the user’s breakpoints and the original

ones. Particularly, RL-Bin uses software (SW) and hardware (HW) breakpoints to

manage the control-flow. If the program manipulates the breakpoints set by RL-Bin,

the rewriter might lose control of the application.
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Chapter 6: Overcoming Troublesome Features, Introducing RLBin++

6.1 Proposed Methods for Handling Obfuscation

We have designed and implemented novel methods to handle the challenging

features that RL-Bin had not previously handled. As discussed in Chapter 5, RL-Bin

can still instrument the program with an unsatisfactory overhead for some features.

For the rest of the features, RL-Bin might cause the program behavior to change,

which must never happen. Our methods would resolve all the issues that were

discussed in Chapter 5. Table 6.1 demonstrates which code artifacts are handled by

a given method. In this chapter, we will describe each of our proposed methods in

detail, and we would show the effectiveness of these methods in Section 7.5.

6.2 Indirect CTI Deobfuscation

RL-Bin follows the execution of the program dynamically by tracking all

control-flow transfer instructions, specifically indirect CTIs. Obfuscation tools con-

vert direct jumps and calls to indirect CTIs, forcing RL-Bin to insert instrumen-

tation before indirect CTIs, effectively leading to higher overhead. We propose a

deobfuscation method to change these indirect CTIs back to the original direct jump
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# Method Name Handled Code Artifacts

I Indirect CTI Deobfuscation High Percentage of Indirect Calls

High Percentage of Indirect Jumps

II Hybrid Code-Cache - Write Emulation Code Rewriting

Conditional Branch Obfuscation

Writeable Data in Code Segment

III Shadow Memory - Read Emulation Checksum of Code

IV Safe Function Detection Improvement Function Entry Not First Block

Functions Share Blocks of Code

Non-standard Calls/Returns

Overwrite of Executing Function

V Flag Register Liveness Analysis Flags Used Across Functions

VI Breakpoint Protection Reusing HW or SW Breakpoints

Table 6.1: Methods Introduced to Efficiently Handle Code Artifacts.

or call. Based on our observation of obfuscated binaries, we detected three main

patterns to create indirect CTIs. These obfuscation methods are demonstrated in

figure 6.1.

The first method is creating an address table to create indirection. Instead of

directly jumping to a location, the obfuscator changes the instruction to an indirect

jump going to an address stored in the address table. Our method would detect

such indirect CTIs and convert them back to the original direct CTI. Then we make
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original copy is never executed, and only the copy of the block can be executed from the code-cache. Implementing the 

code-cache would also help with conditional branch obfuscation, which will be discussed later in subsection 6.6. 

Figure 1: Three Patterns of Indirect CTI Obfuscation. 

The disassembly table keeps the information of executed code addresses. If a block of code is copied to the code-

cache, the corresponding value would be CODE_CACHE. Otherwise, it would be ORIG_CODE, which means that it will 

be executed from its original location. To catch the writes to the code pages, we write-protect the code section to causes 

an exception. A handler is registered to catch this exception and replace the write instruction with an emulated-write, 

shown in figure 2. The emulated-write would check the destination address. If it is an original code location, it will write 

the value, and we will move the block to the code-cache. If the block is already in the code-cache, we invalidate the entry 

for that block so that the new rewritten version is copied and executed from the cache. Finally, if the address is not code, 

it must be data, and we will execute the write instruction normally. 

For better performance, we remove write-access-protection before executing an emulated-write so that it does not 

trigger an exception. After the emulated-write, we will enable the write-access-protection. The number of instructions 

that write to code pages is limited; hence, our method's overhead is minimal. The results section will demonstrate our 

method's effectiveness for handling self-modifying code and writing to code pages. 

Original Write Emulated Write 

 mov dword ptr[0x0100], eax 

 

 Disable Write Access Protection 

if(d_table[0x100] == ORIG_CODE) 

    move the block to the code-cache 

else if(d_table[0x100] == CODE_CACHE) 

    invalidate the block 

else mov dword ptr[0x0100], eax 

Enable Write Access Protection 

Figure 2: Converting Write Instruction to Emulated Write Routine. 

6.3 Shadow Memory - Read Emulation 

Obfuscated binaries might attempt to calculate and validate the checksum of code on the memory. RL-Bin sometimes 

replaces the original instructions with instrumentation code, and that would modify the checksum. We propose a 

solution that would emulate the read instructions and deceive them into reading the original value. 

All code pages will be read-protected so that any read from the code section causes an exception. We register a 

handler to catch this exception. Once a read instruction attempts reading from the code section, we replace it with 

emulated read, demonstrated in figure 3.  

Before Obfuscation jmp 0x0100 Obfuscation 1 jmp dword ptr[0x2000] Address Table 

0x2000 : 0x100 

 

 

Obfuscation 2 mov eax,0x100 

jmp eax 

 

 

 

Obfuscation 3 mov eax,dword ptr[0x2000] 

jmp eax 

Address Table 

0x2000 : 0x100 

Figure 6.1: Three Patterns of Indirect CTI Obfuscation

sure that the address table remains constant by write protecting it. If the address

table values are modified at any later point, we will change the corresponding direct

CTIs. The second method of indirect CTI obfuscation is storing a constant value

in a register and using that register as an operand. The instruction that stores

the constant value might not be immediately before the jump instruction. Our

workaround is to perform Just-In-Time (JIT) data-flow analysis on the basic block

that ends with the indirect CTI. If the register has only one definition reaching the

indirect CTI, we will convert the indirect CTI back to the original direct CTI. The

last type of obfuscation in our study is the combination of previous techniques. Our

solution would be performing the same data-flow analysis on the operand register.

Additionally, we write-protect the address table and update the corresponding CTI

if the table is modified.

6.3 Hybrid Code-Cache - Write Emulation

Compiled binaries rarely write a value on code pages. On the contrary, the

behavior is frequently observed in obfuscated binaries. A write to a code page

might overwrite an instruction, self-modifying code, or write to a data address. We
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propose a combination of code-cache and write emulation to handle both cases of

self-modifying code and frequent writes to the code section. A code-cache is a copy

of code blocks. If a block of code is on the code-cache, the original copy is never

executed, and only the copy of the block can be executed from the code-cache.

Implementing the code-cache would also help with conditional branch obfuscation,

which will be discussed later in Section 6.6.

The disassembly table keeps the information of executed code addresses. If

a block of code is copied to the code-cache, the corresponding value would be

CODE CACHE. Otherwise, it would be ORIG CODE, which means that it will be

executed from its original location. To catch the writes to the code pages, we write-

protect the code section to causes an exception. A handler is registered to catch this

exception and replace the write instruction with an emulated-write, shown in figure

6.2. The emulated-write would check the destination address. If it is an original

code location, it will write the value, and we will move the block to the code-cache.

If the block is already in the code-cache, we invalidate the entry for that block so

that the new rewritten version is copied and executed from the cache. Finally, if

the address is not code, it must be data, and we will execute the write instruction

normally.

For better performance, we remove write-access-protection before executing an

emulated-write so that it does not trigger an exception. After the emulated-write,

we will enable the write-access-protection. The number of instructions that write to

code pages is limited; hence, our method’s overhead is minimal. The results section

will demonstrate our method’s effectiveness for handling self-modifying code and
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original copy is never executed, and only the copy of the block can be executed from the code-cache. Implementing the 

code-cache would also help with conditional branch obfuscation, which will be discussed later in subsection 6.6. 

Figure 1: Three Patterns of Indirect CTI Obfuscation. 

The disassembly table keeps the information of executed code addresses. If a block of code is copied to the code-

cache, the corresponding value would be CODE_CACHE. Otherwise, it would be ORIG_CODE, which means that it will 

be executed from its original location. To catch the writes to the code pages, we write-protect the code section to causes 

an exception. A handler is registered to catch this exception and replace the write instruction with an emulated-write, 

shown in figure 2. The emulated-write would check the destination address. If it is an original code location, it will write 

the value, and we will move the block to the code-cache. If the block is already in the code-cache, we invalidate the entry 

for that block so that the new rewritten version is copied and executed from the cache. Finally, if the address is not code, 

it must be data, and we will execute the write instruction normally. 

For better performance, we remove write-access-protection before executing an emulated-write so that it does not 

trigger an exception. After the emulated-write, we will enable the write-access-protection. The number of instructions 

that write to code pages is limited; hence, our method's overhead is minimal. The results section will demonstrate our 

method's effectiveness for handling self-modifying code and writing to code pages. 

Original Write Emulated Write 

 mov dword ptr[0x0100], eax 

 

 Disable Write Access Protection 

if(d_table[0x100] == ORIG_CODE) 

    move the block to the code-cache 

else if(d_table[0x100] == CODE_CACHE) 

    invalidate the block 

else mov dword ptr[0x0100], eax 

Enable Write Access Protection 

Figure 2: Converting Write Instruction to Emulated Write Routine. 

6.3 Shadow Memory - Read Emulation 

Obfuscated binaries might attempt to calculate and validate the checksum of code on the memory. RL-Bin sometimes 

replaces the original instructions with instrumentation code, and that would modify the checksum. We propose a 

solution that would emulate the read instructions and deceive them into reading the original value. 

All code pages will be read-protected so that any read from the code section causes an exception. We register a 

handler to catch this exception. Once a read instruction attempts reading from the code section, we replace it with 

emulated read, demonstrated in figure 3.  

Before Obfuscation jmp 0x0100 Obfuscation 1 jmp dword ptr[0x2000] Address Table 

0x2000 : 0x100 

 

 

Obfuscation 2 mov eax,0x100 

jmp eax 

 

 

 

Obfuscation 3 mov eax,dword ptr[0x2000] 

jmp eax 

Address Table 

0x2000 : 0x100 

Figure 6.2: Converting Write Instruction to Emulated Write Routine

writing to code pages.

6.4 Shadow Memory - Read Emulation

Obfuscated binaries might attempt to calculate and validate the checksum

of code on the memory. RL-Bin sometimes replaces the original instructions with

instrumentation code, and that would modify the checksum. We propose a solution

that would emulate the read instructions and deceive them into reading the original

value. All code pages will be read-protected so that any read from the code section

causes an exception. We register a handler to catch this exception. Once a read

instruction attempts reading from the code section, we replace it with emulated

read, demonstrated in figure 6.3.

If an instruction is replaced by instrumentation, the corresponding value in

the disassembly table is REPLACED. We maintain a map, ORIG, to keep the

original bytes that are rewritten. If a read instruction reads from a modified address,

we will feed it the actual value. As an optimization, emulated-read disables read

access protection before reading and enable it after that, so the exception is not
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If an instruction is replaced by instrumentation, the corresponding value in the disassembly table is REPLACED. We 

maintain a map, ORIG, to keep the original bytes that are rewritten. If a read instruction reads from a modified address, 

we will feed it the actual value. As an optimization, emulated-read disables read access protection before reading and 

enable it after that, so the exception is not triggered. Obfuscated binaries typically attempt to calculate this checksum 

only once, so emulated read does not have an adverse effect on the overhead. 

Original Read Emulated Read 

 mov eax, dword ptr [0x0100] 

 

 Disable Read access protection 

if(d_table[0x100] == REPLACED) 

    mov eax, ORIG[0x0100] 

else 

    mov eax, ORIG[0x0100] 

Enable Read access protection 

Figure 3: Converting Read Instruction to Emulated Read Routine. 

6.4 Safe Function Detection Improvement 

Obfuscation tools use multiple techniques and code artifacts that limit RL-Bin's ability to detect functions and their 

safety property. First, non-standard use of calls or returns means fewer functions can be detected.  

Next, shared blocks between functions lead to the safety property not be decided by our current method. Finally, the 

functions that overwrite themselves can mislead our approach to declare a function to be safe mistakenly. Once the 

function is overwritten, it might no longer be safe. We deem a function is no longer safe once an overwrite to the same 

function is detected. 

To handle the first two issues, we modify our algorithm to detect subfunctions. We determine the safety of these 

subfunctions based on how they are connected during run-time. Here are the relaxed criteria for a subfunction. 

 Each subfunction has only one entry-point and one or more exit points. 

 The control-flow can be redirected to the entry-point of subfunctions by any direct or indirect CTI. Also, exit-point 

does not need to be a return instruction and could be any indirect CTI.   

 The stack pointer's value could change between the entry-point and exit-point(s) by a fixed amount. 

These modifications would lead to smaller chunks of code being detected as subfunctions. During run-time, these 

subfunctions will be analyzed. Once the control-flow between subfunctions is determined, we declare a subfunction to 

be safe if the stack's return address is not modified. 

6.5 Flag Register Liveness Analysis 

As discussed in section 5, obfuscation tools might use the flag register's value immediately after returning from a call. It 

would cause a problem for RL-Bin because RL-Bin's instrumentation for the return instruction overwrites the zero bit of 

the flag register. A high-overhead solution would be saving and restoring the flag register before and after the 

instrumentation routine that performs the check. Our proposed optimization is to not save and restore the flags register 

when possible. We would perform dynamic JIT analysis in the target of the return instruction to ensure that the value 

of the flag register is dead, meaning that instruction will overwrite it before being used by any other instruction. If the 

flag register is not live in any of the targets of return, there is no need to save and restore the flags register. 

Figure 6.3: Converting Read Instruction to Emulated Read Routine

triggered. Obfuscated binaries typically attempt to calculate this checksum only

once, so emulated read does not have an adverse effect on the overhead.

6.5 Safe Function Detection Improvement

Obfuscation tools use multiple techniques and code artifacts that limit RL-

Bin’s ability to detect functions and their safety property. First, non-standard

use of calls or returns means fewer functions can be detected. Next, shared blocks

between functions lead to the safety property not be decided by our current method.

Finally, the functions that overwrite themselves can mislead our approach to declare

a function to be safe mistakenly. Once the function is overwritten, it might no

longer be safe. We deem a function is no longer safe once an overwrite to the same

function is detected. To handle the first two issues, we modify our algorithm to

detect subfunctions. We determine the safety of these subfunctions based on how

they are connected during run-time. Here are the relaxed criteria for a subfunction.

� Each subfunction has only one entry-point and one or more exit points.
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� The control-flow can be redirected to the entry-point of subfunctions by any

direct or indirect CTI. Also, exit-point does not need to be a return instruction

and could be any indirect CTI.

� The stack pointer’s value could change between the entry-point and exit-

point(s) by a fixed amount.

These modifications would lead to smaller chunks of code being detected as

subfunctions. During run-time, these subfunctions will be analyzed. Once the

control-flow between subfunctions is determined, we declare a subfunction to be

safe if the stack’s return address is not modified.

6.6 Flag Register Liveness Analysis

As discussed in Chapter 5, obfuscation tools might use the flag register’s value

immediately after returning from a call. It would cause a problem for RL-Bin

because RL-Bin’s instrumentation for the return instruction overwrites the zero bit

of the flag register. A high-overhead solution would be saving and restoring the flag

register before and after the instrumentation routine that performs the check. Our

proposed optimization is to not save and restore the flags register when possible. We

would perform dynamic JIT analysis in the target of the return instruction to ensure

that the value of the flag register is dead, meaning that instruction will overwrite it

before being used by any other instruction. If the flag register is not live in any of

the targets of return, there is no need to save and restore the flags register.

RL-Bin uses hardware and software breakpoints to follow the control-flow of
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the program. The one-byte trap (0xcc in x86 assembly) for instrumentation pur-

poses. RL-Bin inserts a one-byte trap and registers an exception handler for it.

When the exception is triggered, RL-Bin will execute the instrumentation routine.

As discussed in Chapter 3 , hardware breakpoints are used at the fall-through and

target of conditional CTIs and triggered once the path is executed. If the obfus-

cated binary writes to registers which control hardware breakpoints, our proposed

method is to switch to selectively using code-cache. In this case, we give up on us-

ing hardware breakpoints to handle conditional CTIs. The basic block that contains

the conditional CTI will be copied to the code-cache. Unlike the original memory,

we can put instrumentation in the fall-through and target in the code-cache. Once

both paths are taken, we can execute that basic block from the original location. We

modify the algorithm to maintain a map of one-byte traps inserted by RL-Bin++

to handle software breakpoint manipulation. Once the trap is triggered, the address

will be checked against the rewriter map. If the breakpoint is not inserted by the

rewriter, it would not catch the exception and not interfere with the program’s in-

tended control-flow. As a result, RL-Bin++ and the binary both will use the traps

with no conflicts.
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Chapter 7: Evaluation and Results

We have completed and tested a fully optimized prototype of the above method.

Most of the code is written in C++, while there are some functions which are writ-

ten in x86 assembly, for the sake of optimization. Our experiments are done on

a system with Intel Core i7, 3.33GHz CPU with 12 Mb cache and 24.0 Gb DDR3

memory on 64-bit Windows 10 OS. We chose Windows Operating System since most

commercial binaries are developed for Windows.

In our experimental setup, we used SPECrate 2017 Integer and Floating Point

with their reference data sets. SPECrate Integer has 10 benchmarks demonstrated

in table 7.1 and all of them are included in our testing. However, we could evaluate

10 out of 13 benchmarks in SPECrate Floating Point, which are shown in table

7.2. The other three benchmarks could not be compiled for 32-bit x86 Windows

machines, thus fotonik3d r, cactuBSSN r, and cam4 r were excluded from the set.

Also, we compiled the binaries with three different compilers; Microsoft Visual

Studio, GCC, and ICC. The overhead reported for each benchmark is the average

of the overhead for binaries compiled with these compilers. In the case that a

benchmark could not be compiled with a particular compiler, that compiler is not

included in the average.
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Benchmark

Name
Language KLOC Application Area

500.perlbench r C 362 Perl Interpreter

502.gcc r C 1304 GNU C Compiler

505.mcf r C 3 Route Planning

520.omnetpp r C++ 134 Discrete Event Simulation

523.xalancbmk r C++ 520 XML to HTML Conversion

525.x264 r C 96 Video Compression

531.deepsjeng r C++ 10 Alpha-beta Tree Search (Chess)

541.leela r C++ 21 Monte Carlo Tree Search (Go)

548.exchange2 r Fortran 1 Sudoku Recursive Solution Generator

557.xz r C 33 General Data Compression

Table 7.1: SPECrate 2017 Integer

Comparison with DynamoRIO, Pin, and Dyninst: According to [48] and [49],

we compared RL-Bin to the most efficient and robust state-of-the-art dynamic

rewriters available. The reason for their robustness is the implementation using

the code-cache. To the best of our knowledge, the three mentioned rewriters are

the most efficient ones that are commonly used for instrumentation purposes in

academia and industry.
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Benchmark

Name
Language KLOC Application Area

503.bwaves r Fortran 1 Explosion modeling

507.cactuBSSN r C++, C, Fortran 257 Physics: relativity

508.namd r C++ 8 Molecular dynamics

510.parest r C++ 427 Biomedical imaging

511.povray r C++, C 170 Ray tracing

519.lbm r C 1 Fluid dynamics

521.wrf r Fortran, C 991 Weather forecasting

526.blender r C++, C 1577 3D rendering and animation

527.cam4 r Fortran, C 407 Atmosphere modeling

538.imagick r C 259 Image manipulation

544.nab r C 24 Molecular dynamics

549.fotonik3d r Fortran 14 Computational Electromagnetics

554.roms r Fortran 210 Regional ocean modeling

Table 7.2: SPECrate 2017 Floating Point

7.1 Run-time Overhead

The goal of RL-Bin is to perform only light instrumentation in an efficient man-

ner. Although it can be used to perform heavy instrumentation, such as basic block

counting, no binary rewriter can deliver low overhead for such instrumentation, be-
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cause the added instrumentation itself is heavyweight. Hence such instrumentations

are not good use-cases for RL-Bin, whose main motivation is low run-time overhead

in deployed code. As a result, the run-time overhead of applications running under

binary rewriter without instrumentation should be low and has been measured.

7.1.1 Overhead without Instrumentation

As it is illustrated in Figure 7.1, RL-Bin outperforms other rewriters by a

significant margin, allowing it to be a more feasible choice for deployed code. In this

Figure, a run-time of 100 is the run-time of the original unmodified program without

rewriting. (The overhead shown as 107, means the overhead added by the rewriter

is 7% without any instrumentation.) In fact, the overhead of DynamoRIO, Pin, and

Dyninst for the average of SPECrate 2017 Floating Point and Integer benchmarks

respectively is 1.16x, 1.26x, and 1.20 on average, whereas the overhead of RL-Bin

is 1.04x for the same benchmarks (4% on average). The reason for higher overhead

in Integer benchmarks is the higher number of indirect CTIs compared to Floating

Point benchmarks.
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Figure 7.1: Normalized Run-Time and Memory of Rewriters Without Added In-
strumentation for SPECrate 2017.

The memory overhead is also illustrated in figure 7.1. The memory overhead
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of DynamoRIO, Pin, and Dyninst is 2.3x, 2.73x, and 2.5x respectively, while that of

RL-Bin is only 1.69x. The main reason for lower memory overhead is that RL-Bin is

an in-place design which does not rely on a code-cache, which consumes significant

amount of memory.
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Figure 7.2: Normalized Run-Time and Memory Overhead of Rewriters with Added
Instrumentations to Count External Calls for SPECrate 2017

7.1.2 Overhead with Instrumentation

The next experiment measures the run-time and memory overhead added by

the rewriters when instrumenting the application to count the number of external

calls from the application module to other DLLs. This particular instrumentation

is used because the number of locations that need to be instrumented is relatively

low. Hence, it is a good use-case of RL-Bin to perform light instrumentation with

very low overhead. Figure 7.2 shows the overhead of RL-Bin with an average of

19% compared to DynamoRIO, Pin, and Dyninst which have 28%, 38%, and 33%

average overhead respectively. Our experiment demonstrates that RL-Bin can be

successfully used to add instrumentation with fairly low overhead compared to other

dynamic rewriters.
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7.2 Memory vs Run-time Trade-off and Fine-Tuning Optimization

Methods

In this section, we will demonstrate how RL-Bin could be fine-tuned to de-

crease its memory footprint. Based on the discussions in section 4, we can fine-tune

the function cloning and branch prediction optimizations to reduce memory over-

head of RL-Bin.

Figure 7.3 shows the run-time and memory overheads of SPECrate 2017 bench-

marks with their reference data set and no added instrumentation. This figure shows

the memory and run-time of RL-Bin with different configurations for branch predic-

tion and function cloning. In this figure, Prof means that profiling method is used

for branch prediction, and Dyn1 and Dyn2 mean that dynamic branch prediction

method with one or two predictions is used. By default RL-Bin is configured for

best performance and clones the function at the threshold, T, and uses the dynamic

prediction method with two predictions. The run-time overhead is 4% over the

native execution with 69% memory overhead over the application’s code segment.
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By changing the branch prediction method and function cloning threshold, it

is possible to reduce the memory footprint to only 18%, at the expense of run-time

overhead as high as 15%. In particular, to get satisfying memory and run-time

overhead, RL-Bin can be tuned to clone functions at 10T and use the dynamic

prediction with two predictions method, which would lead to 7% run-time overhead

and 31% memory overhead. The correct configuration can be chosen by the user

(e.g., the system administrator), based on the objectives and constraints of the

system and application.

7.3 Optimization Effectiveness

To show the contribution of each optimization method proposed in section

4, we measured the overhead of SPECrate 2017 Integer and Floating Point with

different optimization levels. Figure 7.4 shows the overhead with six different opti-

mization level. For Specrate 2017 Integer, The overhead is expectedly large (10.25x

for perlbench r) without any optimization. Optimizing conditional branches (OP1)

will bring the average overhead from 7.24x to 2.93x. Adding target prediction for

indirect CTIs will reduce the overhead of remaining checks, thus the average over-

head will be 2.02x with OP1+OP2. Whitelisting modules and cloning functions

(OP4 and OP3) will remove lots of the added overhead for checking the target of

indirect CTIs and will bring down the average overhead to 1.22x. The last set of

optimizations (OP5 and OP6) detect safe functions and remove the check before the

return instruction in such functions. Thus, boosting the overhead to just 1.07x on
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average for SPECrate 2017 Integer benchmark suite.
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Figure 7.4: The Contribution of Optimization Methods in Reducing Overhead of
RL-Bin for SPECrate 2017 Integer Without Instrumentation

7.4 Robustness

Our last experiment is designed to demonstrate that RL-Bin is robust enough

to handle commercial multi-threaded applications that contain dynamically gen-

erated and self-modifying code, as well as obfuscation. We aimed to show that

RL-Bin fully instruments the binary and it achieves full code coverage, meaning

that no instruction is executed without being monitored by RL-Bin. The number of

dynamically executed instructions was measured by instrumenting every basic block
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of the application to add the size of the basic block to the total count.

7.4.1 Commercial Applications

Table 7.3 shows the list of commercial binary applications that we used in

our testing. We tested three popular Microsoft Office tools; Word, PowerPoint, and

Excel as well as Adobe Acrobat Reader, Adobe Premiere Pro, Adobe Photoshop, and

Apache Web Server. In our experiments, in order to have dynamically generated and

self-modifying code, we opened documents which contained VBA code in Microsoft

Office and JavaScript in Adobe Reader. Apache Web Server heavily uses multi-

threading, so this application would appropriately stress test the multi-threading

capabilities of RL-Bin.

For commercial programs, we did not measure the overhead, since interaction

with users and other uncertain factors, make them unacceptable as benchmarks

for measuring the overhead, introduced by RL-Bin. Instead SPEC CPU 2017 was

used for measuring overhead, since they are standardized benchmarks without user

interaction, making them suitable for run-time measurement.

The measurements on number of dynamic instructions were done with both

RL-Bin and DynamoRIO. The results showed that the numbers are the same for

every application in the set, thus proving that every single instruction is counted by

RL-Bin and full code coverage is achieved. As a result, proposed optimization tech-

niques do not result in any loss of coverage, verifying that RL-Bin instrumentation

is robust and accurate.
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Application Name Feature(s) Size Application Area

Apache HTTP Server Multi-threading 21 Mb Cross-platform Web Server

Microsoft Word
Multi-threading,

Dynamic Code
1.8 Mb Word Processor

Microsoft Excel
Multi-threading,

Dynamic Code
57 Mb Spreadsheet Editor

Microsoft PowerPoint
Multi-threading,

Dynamic Code
1.3 Mb Presentation Program

Adobe Acrobat Reader Self-modifying Code 2.6 Mb PDF Viewer

Adobe Premiere Pro
Multi-threading,

Dynamic Code
2.3 Mb Video Editor

Adobe Photoshop Multi-threading 142 Mb Raster Graphics Editor

Table 7.3: Commercial Applications Benchmark

7.4.2 Obfuscated Binaries

Based on the study [50], we selected three of the most popular obfuscation tools

for our testing: UPX, PECompact, and ASProtect. UPX [51], short for Ultimate

Packer for eXecutables, is an open-source obfuscation tool available for many plat-

forms. It provides basic obfuscation techniques, mostly by creating indirect CTIs

and writable data in the code section. PECompact [52] is a commercial obfusca-

tion tool. In addition to the obfuscation techniques provided by UPX, PECompact

generates a significant amount of self-modifying code. The third and last obfusca-

tion tool used in our testing is a commercial tool called ASProtect [53]. It uses a
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wide range of control-flow, anti-disassembly, and anti-debugging techniques and is

notorious for generating binary files that are very difficult to reverse engineer.

Table 7.4 shows our feature comparison of the selected obfuscation tools. We

have also included a column for original binary files for comparison. As demon-

strated, the three obfuscation tools used in our testing deploy all of the challenging

features discussed in the paper. Hence, they are an appropriate test to measure the

robustness and overhead of RL-Bin++.

Code Artifact Original UPX PECompact ASProtect

High % of Indirect Calls/Jumps 7% 84% 44% 8%

Conditional Branch Obfuscation 7 7 7 3

Code Rewriting (opcode/argument) 7 7 3 3

Overwrite of Executing Function 7 7 7 3

Checksum of Code 7 7 3 3

Writeable Data in Code Segment 7 3 3 3

Functions Share Blocks of Code 7 7 3 3

Non-standard Calls/Returns 7 3 3 3

Flags Used Across Functions 7 7 7 3

Reusing HW Or SW Breakpoints 7 7 7 3

Table 7.4: Methods Introduced to Efficiently Handle Code Artifacts.

Table 7.5 shows the program’s behavior running under RL-Bin and RL-Bin++

in the presence of the code artifacts. As described, for some cases, RL-Bin can handle
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the code artifact but with high overhead. For other artifacts, the program behavior

would be unexpected, leading to a crash. RL-Bin++ successfully dealt with all

challenging code artifacts.

Code Artifacts
Effect on the Binary Rewriter

RL-Bin RL-Bin++

High % of Indirect
Calls/Jumps

High overhead (4x) Deobfuscation reduces
the overhead (1.9x)

Conditional Branch
Obfuscation

High overhead (4x) Code-cache reduces
the overhead (2.5x)

Code Rewriting High overhead (4x) Write emulation reduces
the overhead (2.4x)

Overwrite of
Executing Function

Unexpected
behavior

Handled by enhanced
safe function detection

Checksum of Code Unexpected
behavior

Handled by Read
Emulation

Writeable Data
in Code Segment

High overhead (4x) Write emulation reduces
the overhead (2.4x)

Functions Share
Blocks of Code

High overhead (4x) Enhanced detection reduces
the overhead (2.2x)

Non-standard
Calls/Returns

High overhead (4x) Enhanced detection reduces
the overhead (2.2x)

Flags Used
Across Functions

Crash/Unexpected
behavior

Handled by liveness
analysis

Reusing HW or SW
Breakpoints

Crash/Unexpected
behavior

Uses alternate methods
without using breakpoints

Table 7.5: Effect of Problematic Code Artifacts on RL-Bin and RL-Bin++.
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7.5 Performance and Memory Overhead for Obfuscated Binaries

In this section, we compare the overhead of RL-Bin++ with Pin and Dy-

namoRIO. Among the dynamic binary rewriters discussed in the related works sec-

tion, only Pin and DynamoRIO are mature and robust enough to properly handle

the obfuscation techniques. As described at the beginning of this chapter, our ex-

periment used SPECrate 2017 benchmarks with their reference data sets consisting

of 10 Integer and 13 Floating-Point applications. We excluded three of the Floating-

Point benchmarks because they could not be compiled for x86 Windows machine.

We compiled the remaining benchmark programs with Microsoft Visual Studio and

obfuscated them with the three obfuscation tools mentioned above.

Figure 7.5 illustrates the average overhead of RL-Bin, Pin, DynamoRIO, and

RL-Bin++. As anticipated, RL-Bin only worked for original binaries and the bi-

naries packed by UPX. RL-Bin++ can handle the binaries obfuscated by UPX,

PECompact, and ASProtect. The overhead for RL-Bin++ is lower than both Pin

and DynamoRIO, which are the most efficient dynamic binary rewriters based on a

previous study [49]. On average, for obfuscated binaries, RL-Bin++ has 2.7x over-

head while the overhead of Pin and DynamoRIO is 4.11x and 5.31x, respectively.

Finally, it is demonstrated that RL-Bin++ overhead for unobfuscated binaries

is 1.06x, the same as RL-Bin, while Pin and DynamoRIO have more than 1.16x

overhead. RL-Bin++ is the only robust dynamic rewriter with an overhead that is

low enough for deployment in live systems.

To show the effect of each of the methods proposed in Chapter 6 , we measured
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the overhead of the same benchmarks while different methods were applied succes-

sively. The result has been demonstrated in figure 7.6. It can be seen for the original

binaries, the first set of columns, that the overhead remains almost the same. The

reason is that none of the problematic code artifacts are present in unobfuscated

binaries.
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Figure 7.6: Effect of Proposed Methods on Robustness and Overhead of Obfuscated
Binaries

RL-Bin can execute binaries packed by UPX with high overhead. Applying

methods I, II, and III would reduce the overhead caused by a high percentage of

indirect CTIs, writable data in the code section, and non-standard calls and returns.

Methods IV, V, and VI do not significantly affect the overhead of these binaries.
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RL-Bin cannot handle binaries obfuscated with PECompact unless methods I,

II, and III are added. The reason is that self-checksum is not handled unless method

III is applied. Method IV would help with detecting more safe functions and further

reduces the overhead. Methods V and VI do not have a meaningful effect on the

overhead.
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Chapter 8: Use Cases of RL-Bin

In this chapter, we demonstrate the capabilities of RL-Bin as a base that can be

used to develop complex analysis tools for practical use cases, such as to enforce secu-

rity policies. In particular, using RL-Bin’s instrumentations, we have designed and

implemented six analysis tools, including the following; application-level file access

permission tool, secure execution by restricting RETs, collect run-time properties

for end-point security tool, generating guaranteed trusted disassembly, debugging

and patching in deployment, and just-in-time analysis and optimization tool. First,

we have developed an application-level file access permission system that enables

the user to define separate access policies for each application. Second, we have

created a security enforcement tool that instruments the most common form of in-

direct CTIs to ensure that the program execution follows the intended path. Hence,

it would protect the application from being hijacked in those cases. Third, we have

developed a tool which extracts run-time meta-data from dynamic execution of the

application. The extracted data can be fed into a machine learning based endpoint

security tool. Fourth, we have shown how RL-Bin can be used a disassembler that

proviodes full code coverage without having any false positives, which is incorect

disassembly of data instead of code. Fifth, we have designed a debugging in de-
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ployment system which provides the unique ability to monitor the application in an

external environment and fix potential issues specific to that environment. Lastly,

we have shown how RL-Bin can be used as a dynamic optimization tool. In this

chapter, we describe each of these use cases in detail.

8.1 Application-level File Access Permission

The primary goal of file access permission methods is to limit unauthorized

users’ ability to read/write/modify files containing sensitive information. The unau-

thorized access could be from either a malicious binary or benign program. As an

example, typical ransomware attacks include encryption of the sensitive files on the

system. The files cannot be accessed unless the ransom is paid to the attacker. In

addition, in some scenarios, benign applications perform data extraction to gather

information about the files on the system, usually for statistical analysis and data

mining purposes. In the case of benign programs, the access would not harm the

user, but still, it is unauthorized access performed without the user’s knowledge.

We are not only preventing benign applications from performing actions without

the user’s knowledge. We are also preventing users from knowingly or inadvertently

performing actions that are unauthorized as per the organization’s security policies.

To deal with the critical cases described above, the user or system administra-

tor must have the ability to control the files that each application can access. This

capability is built into the operating system like Windows and Unix. However, the

security policy is enforced per file and per user, meaning that each user has per-
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mission to access specific files on the system. This means that all the applications

executed under file permissions of a particular user have access to the same files.

For some purposes, the OS file access permissions are not fine-grained. Con-

sider a scenario in which the user has downloaded an application that is only sup-

posed to access its own configuration files and never access any other file on the

system. The user or system administrator should be able to determine which files

can be accessed by a specific application. In the following parts of this subsection,

we describe the design and implementation of an RL-Bin based system that provides

fine-grained application-level permissions.

In order to develop a file access permission system, we need to have the capa-

bility of intercepting system calls. System calls are executed within the kernel and

provide many services, including I/O services that access files. For the rest of this

subsection, we only target Windows operating system and discuss the methods that

are used to intercept system calls in Windows.

Application
System DLL
(ntdll.dll)

System Service Stub
(KiFastSystemCall)

System Service
Routine

User Mode Kernel Mode

int 2e  sysenter

iretd sysexit

API

Figure 8.1: How System Calls Are Made and Possible Interception Locations

Figure 8.1 shows how applications make system calls in Windows. First, the

application calls an API (Application Program Interface) function which resides in

a system DLL, usually ntdll. Then the API function sets the parameters for the

system call and calls the system service stub, which is the common gateway for all

system calls. System service stub would use either sysenter or int 2e instruction
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to transfer the control to kernel mode. System service routine in the kernel mode

execute the requested system call based on the parameters that are passed and then

transfers the control back to the user mode. Although this is the recommended

method for accessing system calls, applications can bypass API and call the system

calls directly.

There exist three methods for intercepting the system calls. First method

intercept the API call. The second method intercepts the system service stub, and

the last method intercept the system calls within the kernel mode. In the following

paragraphs, we describe the aforementioned methods, and then propose our method

for system call interception.

The first method for intercepting system calls is to intercept API function

calls. In this method, the API’s address on the import address table is modified to

a wrapper function, which then calls the API. The wrapper function can analyze

the parameters and results of the API. This method, which is usually used by

patching tools, has two main disadvantages. First, using Windows APIs is only

the recommended method for accessing system calls. However, it is still possible to

access them directly, and this method would not intercept the system calls that are

called directly. The other disadvantage is that anti-patching methods bypass the

import address table and call the APIs by unconventional methods. In this case, the

patching tools would miss these API; hence not all system calls will be intercepted.

The second method is to intercept system calls at the system service stub that

is shared by all system calls. As can be seen in figure 8.1, all system calls go through

the same stub. This method would definitely intercept all system calls. However,
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it would intercept all the system calls and not just the specific ones used for file

access. The overhead of intercepting and examining all system calls would lead to

high overhead, making this approach unsuitable for deployment in practice. Later

on in this subsection, we show the overhead of this method for intercepting the

system calls.

The last method that we discuss in this subsection intercepts the system calls

within the kernel. The kernel code for handling different system calls needs to be

changed. OS kernel modification is almost impossible for closed-source operating

systems such as Windows, so this method is not suitable for implementing the

application-level file access permission system.

8.1.1 Our Solution

Our approach is an extension to the first method. We instrument the binary

using RL-Bin to intercept the specific system calls in which we are interested. The

system calls might be invoked either directly from the application or from the body

of the API function that invokes that system calls. We instrument both of these

instances to intercept these system calls. By doing that, we are only intercepting the

needed system calls, i.e., those used for file I/O. As a result, we avoid high overhead.

In addition, we do not miss any system call because of bypassing methods used to

circumvent patching tools since RL-Bin dynamically disassembles and disassembles

and executes every instruction within the application and the system DLLs.
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Figure 8.2: Overhead of File-Access Permission System Using RL-Bin

8.1.2 Implementation and Experimental Results

We have implemented a prototype of a file access permission system using

the method described above. For this experiment, our environmental setup is the

same as the results section of this paper, and RL-Bin is configured for best run-

time overhead. We observed the applications in SPECrate 2017 benchmark and

the files that are accessed by each application. Then we implemented a system

that intercepts all the system calls and allows each application to only access the

intended input and output files for that benchmark. Figure 8.2 shows the overhead

of each application in the SPECrate 2017 benchmark suite. The average run-time
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overhead of this tool based on RL-Bin is only 6% percents and it has only 2% extra

overhead compared to 4% overhead for uninstrumented binaries.

For comparison, we implemented the same method by using the DynamoRIO

binary rewriter. As illustrated in figure 8.3, the overhead is higher than the imple-

mentation of our proposed method using RL-Bin. As it can be seen, the overhead

is 24% which is four times the overhead of implementation using RL-Bin. Addi-

tionally, we have also implemented this file access permission system by the method

that intercepts all system calls at the common stub. It is shown that the average

overhead of this approach is 54%, which cannot be tolerated for live deployment in

end user systems.
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Figure 8.3: Comparison of Overhead Between RL-Bin, DynamoRIO, and Common
Stub Methods
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8.2 Secure Execution by Restricting RETs

A long-standing problem in security is to ensure that a benign program’s

control-flow is not modified. The primary method to ensure the application is not

hijacked during attacks is to use a defense mechanism called Control Flow Integrity.

CFI is one of the most effective application control-flow hijack defense methods

invented to date and has theoretical properties ensuring its soundness and scope of

the defense.

Here is how CFI works. First, the control flow graph (CFG) of the application

is calculated using source code analysis, binary analysis, or execution profiling. Then

CFI ensures that software execution follows one of the paths in its intended CFG. To

enforce this security policy, runtime checks are instrumented before control transfer

instructions to ensure that the CTI takes one of the edges from the CFG. The

target address must be the destination of one of the outgoing edges from the current

node. These runtime checks prevent any unintended control flow transfers during

the program’s execution.

CFI can protect against various attacks based on hijacking the control-flow of

a benign application. These include stack-based buffer overflow attacks, heap-based

jump-to-libc attacks [54], and return-oriented programming [55] (ROP). In any of

these attacks, the attacker needs to transfer control to the payload code that the

attacker could inject or may already be resident on the computer. During this step,

CFI intercepts the CTI, checks its destination against allowed destinations, and thus

terminates any attack before executing any malicious code.
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8.2.1 Existing CFI-Based Tools

The Control Flow Integrity scheme was first introduced in 2005 by Abadi et al.

[56]. Its goal is to monitor all CTIs to ensure that the application is following one

of the edges in its CFG, which is determined in advance. Their instrumentations

were added using Vulcan [57] which is a static binary rewriter. The overhead caused

by added instrumentation was 16% on average for the SPEC benchmark, which is

relatively high for deployment on the live systems. Some other CFI implementa-

tions have been proposed with just a few percent overhead [58]. However, these

implementations require source code, and the modification would be done as part

of the compiling process.

Others have tried to optimize the checks and succeeded to decrease the over-

head to just about 3.6% to 8.6% [18]. However, they still rely on static binary

rewriters, leading to the robustness problems we outlined in Section 1 for all such

rewriters. Using a dynamic binary rewriter to perform the instrumentations for CFI

has been tested [59]. The overhead was reported to be around 20%, mostly due to

the high overhead caused by the binary rewriter itself. As discussed above, there is

no variation of CFI implemented, which is both robust (i.e. not depending on the

static analysis and inaccurate assumptions) and low overhead.

8.2.2 Our Solution

Our solution is a purely dynamic partial implementation of the CFI method

(of one part of CFI for return instructions only) which does not rely on any static
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information or unreliable assumptions, which which would make our solution robust

and practical for all binaries. In this solution, we restrict the addresses that can

be taken by return instructions and make sure returns follow calling conventions.

Specifically, we use RL-Bin to insert instrumentation before return instructions to

ensure that the return target address is an instruction after a call instruction.

The proposed method does not rely on a control flow graph (CFG) resulted

from static analysis. Instead, we dynamically discover call and return instructions

and ensure the return target is an instruction after one of the call instructions ex-

ecuted by that point. Although our method does not implement full CFI, it has

some advantages compared to traditional CFI. The main benefit of our approach

is that our approach is purely dynamic and it does not rely on any static pre-

determined CFG. The policy of our method provides coverage against the main

category of memory-based attacks, such as return address modification and stack-

based buffer-overflow attacks. It would also significantly reduce the possibility of

return-oriented-programming attacks by restricting the number of potential ROP

gadgets. As a future work, there exists opportunity to extend this method to re-

strict other types of indirect CTIs as well to improve coverage of type of attacks that

this tool can prevent. In the next subsection, we would show both the effectiveness

and performance of our proposed method.

One of the essential properties of a security system is that it should not cause

false alarms, meaning that it should allow every non-malicious control-flow to be

executed without any interruption. In our case, we must not interfere with return

instructions expected to perform tasks other than returning from a function. To
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avoid false positives, we detect the returns used for purposes such as stack unwinding

and thread context switch. The returns that are used for stack unwinding are part of

standard C++ exception handling routines. Our method detects specific sequence of

instructions generated by the compiler to perform stack unwinding when handling an

exception. In addition, return instructions which perform context switch, only exist

in a few specific library routines within system libraries. We put all the instruction

within these routines in the list of instructions that are expected not to follow usual

calling convention. As described in the next subsection, our experimental results

showed that all false positives could be avoided by detecting and excluding these

special return instructions.

8.2.3 Implementation and Experimental Results

In this subsection, first, we demonstrate the effectiveness of the security policy

on two real-world exploits. Then, we discuss the effect of added instrumentation

to enforce the security policy and compare two implementations of this method by

DynamoRIO and RL-Bin.

Our secure execution tool is capable of providing protection against a wide

range of security attacks. According to CWE (Common Weakness Enumeration)[60],

56% of security attacks in the past year have exploited one or more vulnerability

that eventually leads to a stack-based overflow attack, which is just one of the classes

of attacks this method can prevent.

Table 8.1 demonstrates two real-world applications with the stack-based over-
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flow vulnerability. We used existing proof-of-concept works to perform the attacks

on these two applications. We were able to conduct the attack on the native appli-

cations successfully. Running the applications under RL-Bin with instrumentation

added to ensure secure execution resulted in all intrusion attempts being detected

by RL-Bin. In addition, the SPECrate 2017 benchmarks gave no false positives

executed on the reference data set.

ID Application Description

CVE-2009-2550 Hamster Audio Player 0.3a
Stack-based buffer overflow allows
remote attackers to execute arbi-
trary code via a playlist file.

CVE-2013-4730 PCMan’s FTP Server 2.0.7
Buffer overflow allows remote at-
tackers to execute arbitrary code via
a long string in a USER command.

Table 8.1: Two Real-World Applications with Buffer-Overflow Exploits

To demonstrate the performance of our prototype, we measured the overhead

of SPECrate 2017 benchmark applications using the same environment and system

described in Chapter 7. Figure 8.4 shows the overhead added by instrumentation for

each application compare to the native execution. As can be seen, RL-Bin’s instru-

mentation has only 9% overhead, which makes it practical to be used in real-world

systems. In comparison, the implementation based on DynamoRIO has around 27%

overhead, highly unlikely to be used in practice.
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Figure 8.4: Comparison of Overhead of Security Policy Enforced by DynamoRIO
and RL-Bin

8.3 Collect Run-time Properties for End-point Security Tool

As the program is being executed, valuable meta-data on run-time properties

can be collected during execution. The meta-data that is collected include indirect

branch targets, dynamic addresses accessed, exceptions taken, and the list of func-

tions that do not return to caller. These dynamic metadata can help in just-in-time

program analysis scheme (for example, a machine learning based endpoint security

tool) run concurrently with RL-Bin, or in offline program analysis run after the pro-

gram has executed with RL-Bin. Since this metadata information is not available

prior to execution, all static tools used for program analysis do not have access to

such information. Collecting dynamic information from the program enables us to
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have deep knowledge and understanding about the execution of the program.

Getting dynamic metadata from the program requires modification and in-

strumentation of the program which needs to be done by a dynamic binary rewriter.

However existing dynamic rewriters have two major problems. First, they have

very high run-time overhead. Second, they are not customized for gathering these

information. One may be able to use the instrumentation API provided by these

tools to collect the metadata; however, most of this information is already known

to the rewriter and there is no need for additional instrumentation from the user.

Therefore, if existing dynamic rewriters are going to be used for this purpose, extra

effort is needed from the user for adding instrumentation to the program. The added

instrumentation will further increase the run-time overhead.

We collect this metadata with the lowest possible overhead, in a manner that

is complete and triggered only when needed. There are two main categories of use

cases of the metadata extracted from the program dynamically. First, it can be used

in an endpoint security tool. Since we have access to fine-grained information from

a dynamic execution of the program, we can detect program-level features from a

program to detect whether it’s acting maliciously or not. Another category of use

cases is program analysis and optimization tools. Although several optimizations

are done before compilation, there exist optimizations that can only be done during

or after the execution of the program. Extracted metadata from our tool will enable

optimization tools to perform such optimizations.
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8.3.1 End-point Security Tool.

An example of a use case for the extracted metadata is developing an endpoint

security tool. An endpoint security tool is a software tool which monitors an exe-

cuting program at endpoint computer systems, and is capable of detecting malicious

behavior during its execution. Existing endpoint security tools collect both static

and dynamic information about the executing program. This information is distilled

into features and fed to a machine learning system that predicts whether the pro-

gram is malicious or not. The machine learning tool is previously trained on both

known malware and benign programs, enabling it to distinguish future programs as

one or the other with high confidence.

One shortcoming of existing endpoint security tools is that they only use a com-

bination of static program header information and dynamic information about the

sequence of system calls made by the executing program. Other dynamic informa-

tion on the behavior of running programs, which we term ”program-level features”,

is not collected. This information is not collected because whereas OS-level tools can

intercept all system calls at low overhead, collecting program-level features requires

a dynamic binary rewriter. Existing dynamic binary rewriters have high overhead,

which is not tolerable in endpoint tools, since they are used in deployment. Static

binary rewriters cannot disassemble code with any accuracy, and hence are not used

either. Hence no existing binary rewriters are used in endpoint tools today.

An opportunity is to use metadata generated by RL-Bin to collect program-

level features in an endpoint tool during the execution of the program being moni-
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tored. Some program level features are typical in malicious code, and can be used

as indicators fed to machine learning to increase the accuracy of malware detection.

Examples of this behaviors are self-modifying and dynamically generated code, ob-

fuscations, and packed code. Obfuscation is done by using instructions in a way

that is not intended. As an example, one may register an exception handler with

malicious code. Then use a divide instruction, which always divides by zero, as a

control transfer instruction which redirects the flow to the malicious code. Such

techniques can be easily detected by using RL-Bin. These detected features then

become inputs to machine learning to improve its accuracy of malware detection.

8.3.2 Existing Tools

To the best of our knowledge, there is no tool that extracts run-time infor-

mation, from the program. However, this would be possible by instrumenting the

binary by using a dynamic instrumentation tool such as DynamoRIO[42], Pin[48],

Dyninst’11 [49], Vulcan [57], or BIRD [61]. All mentioned rewriters, except for

BIRD, have a high run-time overhead, more than 20% for un-instrumented binary.

BIRD, on the other hand, does not support self-modification or obfuscation, so it

would crash for many benign programs that have these features.

Another method would be using a debugger such as GDB [62] , OllyDbg [63], or

WinDbg [64]. These debuggers are not meant to extract such runtime information;

however it would be possible to log runtime metadata by tweaking the debuggers.

This method would still incur high overhead and it would be impractical for use in
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live deployment.

8.3.3 Implementation and Experimental Results

We have implemented a prototype of our tool which extracts run-time meta

data. We collected the following meta data: indirect branch targets, dynamic ad-

dresses accessed, exceptions taken, and the list of functions that do not return to

caller. Figure 8.5 shows the overhead of each application in the SPECrate 2017

benchmark suite. The average run-time overhead of the meta-data extraction tool

based on RL-Bin is only 10% percents and compared to 4.5% overhead for uninstru-

mented binaries.
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Figure 8.5: Overhead of Meta Data Extraction System Using RL-Bin
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For the sake of comparison, we also implemented the same meta data extrac-

tion tool by using the DynamoRIO binary rewriter. As illustrated in figure 8.6, the

overhead is higher than the implementation of our method using RL-Bin. As it is

shown, the overhead is 36% which is much more than the 10% run-time overhead

for the implementation using RL-Bin.
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Figure 8.6: Comparison of Overhead of Meta Data Extraction System Using RL-Bin
and DynamoRIO

8.4 Guaranteed Trusted Disassembly

Program disassembly analyzes the program to know what the instructions in

the program are, and is the basis of all program analysis tools. For many such tools,

it is necessary or desirable to have a disassembly that is guaranteed to be correct,
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meaning that every instruction in the output disassembly should be guaranteed to

be an instruction. In general at the binary level, instructions can only be guaranteed

to be so if they have been executed. Further, it is desirable to approach full code

coverage, meaning that most or all the instructions should be included in the final

disassembly.

Current disassembly tools are impractical. There are two main methods that is

used for getting disassembly of the program; static and dynamic disassembly tools.

Static disassemblers use one of the techniques mentioned earlier in section 2.2. De-

pending on the technique that is used, we will have either incomplete or untrusted

disassembly. The main reasons are obfuscation, self-modifying or dynamically gen-

erated code, as described earlier in section 2.3. Below we describe why each of these

features in code can result in incorrect disassembly.

Dynamic tools can extract the complete trusted disassembly as follows. The

method is to instrument each block of the binary code so that instrumentation code

extract the disassembly of that block of code. First, the entry point of the program

is instrumented. Then disassembly starts at the entry point and continue until

reaching a control transfer instruction. Then each of the possible target blocks are

instrumented with similar code. The instrumentation in the current block is no

longer needed and can be removed. The algorithm will continue in a similar pattern

by executing the instrumentation code when reaching a new block of code for the

first time.

However dynamic tools incur high runtime overhead, as described in Chapter

10, which makes them impractical for use in live deployment. Dynamic tools (in-
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cluding RL-Bin) do not ensure complete code coverage, but approach it since every

instruction that has been executed so far is included in the output disassembly,

which is good enough for many just-in-time tools.

8.4.1 Existing Disassembly Tools

The most frequently used tool is objdump [65] which is a static binary disas-

sembly tool which takes a binary as input and outputs a disassembly listing. The

two main issues for objdump is that it outputs the disassembly as an unstructured

text file which cannot be easily analyzed in an interactive way. The other issue is

that it might disassemble data instead of code, and it is common to find bad jumps,

jumps that are targeting data instead of code, in objdump disassembly.

Another commonly used tool is the Ida-Pro disassembler [47], which generates

C-like pseudo-code whose purpose is to aid in the human understanding of the binary

code. The generated pseudo-code is not meant to be executed, and often would not

work if it is attempted to be compiled. Moreover Ida-Pro is not fully automatic,

and may require human interaction. Further Ida-Pro’s disassembly output is not

guaranteed to be correct. Ida-Pro reports high disassembly coverage and the reason

is that they use many speculative disassembly methods which may or may not

be correct. For a program to be executed without crashing, we need a trusted

disassembly, in which we can ensure with 100% certainty that every instruction in

disassembly is actually code.

[15, 66] aim to achieve better code coverage by combining multiple disassembly
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techniques including recursive traversal and linear sweep, however these tools are

static and have all the shortcomings of static disassembly tools regarding dynami-

cally generated, self-modifying and obfuscated code.

Dynamic debugging tools such as gdb [62] could also be used for disassembly.

The gdb tool uses symbolic information or source code if provided, otherwise it

shows the disassembly of the instructions that are currently executing. This would

ensure correct disassembly since the instructions that are shown are either being

executed or have been executed before. The main disadvantage of this tool is that

disassembly cannot be stored in a way which is suitable for later analysis and also

this method has a very high runtime overhead.

Another tool which aims to disassemble a program is BIRD [61], a low-

overhead tool which uses a hybrid of both static and dynamic disassembly. Initially,

BIRD disassembles the program using speculative static disassembly. Each memory

location has a confidence score which shows the probability of that memory loca-

tion to be code. Later on, while the program is being executed, the confidence score

is updated. In addition if a new memory location is discovered as code, it would

be disassembled. If confidence score is more than a certain threshold, then that

memory location is marked as code in the final disassembly. This method does not

ensure 100% trusted disassembly; however; in most cases, disassembly is accurate,

Although the runtime overhead of BIRD is acceptable, the problem is the inability

to disassemble self-modifying code, no support for obfuscation, and the lack of 100%

correct disassembly.

MULTIVERSE [67] tries to achieve better code coverage by Superset Disass-
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mebly. Their approach disassembles the binary code into a superset of instructions,

and also benefits from MULTIVERSE, an static binary rewriter that is capable of

relocating instructions by redirecting all indirect control flow transfers.
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Figure 8.7: Overhead of Disassembly Tool Using RL-Bin

8.4.2 Implementation and Experimental Results

We have modified RL-Bin to output disassembly of the program as it is being

executed, in a manner that is correct and low overhead. The disassembly provided

by RL-Bin contains every instruction that is executed. This guarantee flows from

the property of RL-Bin that it monitors all the code as it executes, and never loses

control of the program. Moreover no data is mistakenly output as code, since RL-Bin
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only outputs instructions after they are executed.

We have implemented and tested a prototype of our disassembly tool. Figure

8.7 shows the overhead of each application in the SPECrate 2017 benchmark suite.

The average run-time overhead of the disassembly tool based on RL-Bin is only

6.5% percents and compared to 4.5% overhead for uninstrumented binaries.

Again for comparison, we also implemented the disassembly tool by using the

DynamoRIO binary rewriter. As it is shown in figure 8.8, the overhead is higher

than the implementation of our method using RL-Bin. As it is shown, the overhead

is 29% which is much more than the 6.5% run-time overhead for the implementation

using RL-Bin.
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Figure 8.8: Comparison of Overhead of Disassembly Tool Using RL-Bin and Dy-
namoRIO
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8.5 Debugging and Patching in Deployment

Making sure that the application is running flawlessly is one of the most ar-

duous tasks in software development process. In practice, it is often the case that

programs face run-time errors, or show unexpected behavior. The main reason is

insufficient test data sets for different scenarios. End user systems will have different

resources, and configuration. An error may arise only in certain execution platforms,

and never come up in development tests. As a result, debugging is needed even after

the development process.

Now, consider the following scenario. The developer has released the software

to the end user, but there is a bug in the software which only happens in the end user

system. The developer cannot reproduce the error in the development environment.

There are two existing methods to solve this problem. First, the program may be

executed with the presence of a debugger to find where the issue happens. However,

almost all commercial binaries are stripped of their debug information to protect

their code from being reverse-engineered. As a result, this solution is impractical

and the developer will not share debugging information with the user. Another

solution is to generate an error log whenever the application crashes and send it to

the developer. Log file may contain current stack, and the value of certain attributes

of the program. This may be useful to learn more about the issue, however, it is

too general, the developer will need extra information. In addition, neither of the

methods above would patch the code and solve the issue. Even if the error is found,

the user needs to wait for the next release of the application which may take a long
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time. If the bug is a security concern, it is crucial to patch the program as soon as

possible.

There exist tools in the literature [68] that would propose automatic ap-

proaches for pin-pointing the causes of the software failures. RL-Bin can also be

used as the base tool for instrumenting those application without high overhead.

8.5.1 Our Solution

Our solution takes as input debugging information of the program and any

arbitrary instrumentation that the developer wants to put in the program. We

recompile RL-Bin to use the information of the debug file and generate instru-

mentation that will be inserted in the target application. Based on the debug file,

RL-Bin would know where to instrument. The modified version of RL-Bin, dynamic

debugger, will be sent to the end user. Added instrumentation will monitor execu-

tion and send requested information to the developer. Thus, enabling the developer

to pinpoint the problem and fix the issue. This dynamic debugger does not reveal

debugging information to the end user. Only recompiled RL-Bin is sent to the end-

user system and the debug information file never gets exposed. Another advantage

is that the code can be patched dynamically when the binary is being executed.

This is crucial for certain service applications which need to be responsive all the

time.
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Figure 8.9: Overhead of Debugging in Deployment System Using RL-Bin

8.5.2 Implementation and Experimental Results

As a proof of concept, we developed a prototype of our dynamic debugger.

This prototype is capable of parsing PDB file format which stores debugging infor-

mation of the programs compiled with Microsoft Visual Studio. Our debugger will

instrument the program to monitor it during its execution.

We implemented and tested a simple use case. Ten random functions are

chosen in each of the applications in SPEC CPU2017 benchmark, and then instru-

mentation is added to report the maximum value of the first argument passed to

each of these ten functions during the execution of the program. (The purpose of
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our test was to measure the overhead, the actual functions and the way that it needs

to be monitored depends on the developer and may vary case by case.)

Figure 8.9 shows that the average overhead is just 9%, which means that

added instrumentation to monitor these functions added 4.5% extra overhead in

comparison to 4.5% overhead for binaries without added instrumentation.

For the sake of comparison, we also implemented the debugging tool by using

the DynamoRIO binary rewriter. As illustrated in figure 8.10, the overhead is higher

than the implementation of our method using RL-Bin. As it is shown, the overhead

is 33% which is much more than the 9% run-time overhead for the implementation

using RL-Bin.
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Figure 8.10: Comparison of Overhead of Debugging in Deployment System Using
RL-Bin and DynamoRIO
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8.6 Just-in-time Analysis and Optimization Tool

Program performance can be boosted by performing optimizations that are

customized based on the input values provided to the program, and also the prop-

erties, resources and configuration of the system. The optimizations that can be

done dynamically have three main objectives: (i) adaptive optimization of the pro-

gram based on the input values provided to the program; (ii) optimizing the code

in order to effectively use the resources of the system; and (iii) performing program

optimizations that require run-time information, such as indirect branch optimiza-

tion for the common case, and program level inter-function optimizations. We will

further investigate one or more categories of these optimizations in order to show

the capabilities of our tool. We discuss each of the three categories in turn below.

First, program execution is very dependent on the input values provided. For

example, a run-time variable might be the number of times that a loop is executed.

Depending on that value, some loop optimization techniques may be done. Gen-

erally, this type of optimization is done by using the information extracted from

profiling. However profiling has two drawbacks: (i) it places the burden on the user

of the program to collect profiles and re-optimize the program; and (ii) profiling

encapsulates average-case behavior when run on a representative input, but does

not re-optimize each time a different input is provided. A run-time program op-

timization system at the binary level based on RL-Bin can automate optimization

during the run of the program itself without user involvement, and optimizes for the

input in each individual run and data inputs, rather than a single profile input.
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Second, resource-based optimizations can be done that significantly boost the

performance of the system. Programs are compiled and optimized for specific archi-

tectures. However, they’re not optimized for every end-point system. Just-in-times

optimizations can be done based on the resources of the system such as number of

processor cores, amount of memory, and network connection speed. As an example,

we can perform optimizations such as loop unrolling and function cloning which

boost performance of the program at the expense of extra memory overhead. On

the other hand, we may want to perform code de-bloating optimization if the system

does not have sufficient memory.

Finally, we gain the ability to optimize parts of the code using run-time values.

One simple example is that an indirect branch or indirect call may actually point to

one location most of the time at run time. This indirect branch can be modified and

changed to a direct branch with an extra check to make sure that the assumption

about the branch is correct. Such optimizations can help boost the performance of

the system, because of the fact that indirect CTIs cause significant overhead since

they cannot be predicted and statically optimized.

8.6.1 Implementation and Experimental Results

As a proof of concept, we implemented the last optimization described in

previous subsection. We used RL-Bin to convert an indirect branch or indirect call

to a direct branch with an extra check to make sure that the assumption about the

branch is correct. Our prototype will convert those indirect CTIs which have only
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one destination to a direct CTI. Figure 8.11 shows that this dynamic optimization

can reduce the overhead of Specrate Floating Point applications by one percent.

However, the overhead of RL-Bin for SPECrate 2017 Integer benchmarks is high

and the benefit of optimization cannot be gained for these benchmarks.
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Figure 8.11: Overhead reduction of Dynamic Optimization Tool Using RL-Bin
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Chapter 9: Application User Interface

9.1 Customizable Easy to Use Interface for Instrumentation

Having a customizable and easy to use API is one of the most important fea-

tures of a binary rewriter. Existing rewriters such as Dyninst, PIN and DynamoRIO

have expressive and flexible APIs [69, 70, 71] that enable users to specify instrumen-

tations at the function, basic block, or instruction level. Defining a general-purpose,

complete, efficient, and flexible set of APIs avoids the need for the user of the binary

rewriter to understand and modify its source code, a process that is time consuming

and error prone. The better the APIs are, the less effort is needed from the user to

instrument a program for a specific use case.

Our custom instrumentation API has functionalities similar to existing APIs.

However, the implementation is different and the main reason is that our rewriter

is not based on a code cache. As a result, unlike DynamoRIO and PIN, we do

not focus on trace-level instrumentation. The focus of our API is efficiency. In our

initial prototype, we provide APIs for the functionalities listed below.

� Program control and initialization

� Analyzing and instrumenting a routine/function/procedure within a section
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� Analyzing and instrumenting a basic block or instructions within the basic

block

� Analyzing and modifying the arguments passed to routines

� Providing thread and process support

� Providing system call support

� Accessing debug information

� Analyzing and modifying hardware and software exceptions

We have designed and implemented an instrumentation API for RL-Bin that

is both efficient and flexible. We have similar set of APIs compared to existing tools,

so that users who are familiar with currently available tools can adapt to RL-Bin

with minimal effort.

Custom Instrumentation APIs in Existing Rewriters

Most advanced binary instrumentation tool enjoy the benefits of providing

a custom instrumentation API to the user. Examples of these APIs include Dy-

namoRIO’s API [70], Pin’s API [71], and Dyninst’s API [69]. All of these rewriters

provide a robust and flexible API which can be used for instrumentation in instruc-

tion, basic block, trace, or function level. Pin’s API has some methods to instrument

child processes, multiple threads, and monitoring operating system interaction with

the program. DynamoRIO’s API can steal a register from the program and use it

only for instrumentation. It also provides some optimization techniques for reducing
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overhead of persisting instrumentation code. We will borrow the best ideas from

these tools in designing the API for RL-Bin. Since RL-Bin’s internal structure is not

similar to the tools above, the implementation of the APIs is likely to be different.

9.2 Example Instrumentation Using API

This section gives three example usecases of application programming inter-

face of RL-Bin: Call/Return Profiling using our function profiling interface, Basic

Block Counter using our basic block interface, and Conditional CTI Profiling us-

ing our instruction profiling interface. In the following subsections, we demonstrate

the result of instrumentation performed by RL-Bin and compare it with the same

instrumentation using DynamoRIO.

9.2.1 Call/Return Profiling

This experiment measures the run-time overhead added by RL-Bin when in-

strumenting the application to count the number of direct and indirect calls and

return instructions through the dynamic execution. In this particular instrumenta-

tion, the number of locations that need to be instrumented is comparatively low.

Figure 9.1 shows the overhead of each application in the SPECrate 2017 bench-

mark suite. The average run-time overhead of Call/Return Profiling instrumenta-

tion based on RL-Bin is only 15.5% percents and compared to 4.5% overhead for

uninstrumented binaries.

Figure 9.2 shows the overhead of RL-Bin with an average of 15.5% compared
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Figure 9.1: Overhead of Call/Return Profiling Using RL-Bin

to DynamoRIO which has 30% average overhead for the similar instrumentation.

Our experiment demonstrates that RL-Bin can be successfully used to add instru-

mentation with fairly low overhead compared to DynamoRIO.
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Figure 9.2: Comparison of Overhead of Call/Return Profiling Using RL-Bin and
DynamoRIO

9.2.2 Basic Block Counter

This experiment measures the run-time overhead added by RL-Bin when in-

strumenting the application to count the number of basic blocks that were executed

dynamically. For this instrumentation, the number of locations that need to be in-

strumented is very high. RL-Bin is not designed for these type of instrumentations.

Figure 9.3 shows the overhead of each application in the SPECrate 2017 bench-

mark suite. The average run-time overhead of Basic Block Counter instrumentation

based on RL-Bin is 72.5% percents and compared to 4.5% overhead for uninstru-

mented binaries.

Figure 9.4 shows the overhead of RL-Bin with an average of 72.5% compared
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Figure 9.3: Overhead of Basic Block Counter Using RL-Bin

to DynamoRIO which has 49.5% average overhead for the similar instrumentation.

Our experiment demonstrates that RL-Bin does not have the performance of Dy-

namoRIO when the amount of instrumentation is very heavy. The main reason is

that RL-Bin uses an in-place design instead of a code cache. As a matter of fact,

RL-Bin is designed for light instrumentation and the goal is to be deployed in live

system. No existing rewriter, including RL-Bin, DynamoRIO, Pin, and Dyninst, can

perform heavy instrumentation with an acceptable overhead for live deployment.
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Figure 9.4: Comparison of Overhead of Basic Block Counter Using RL-Bin and
DynamoRIO

9.2.3 Conditional CTI Profiling

This experiment measures the run-time overhead added by RL-Bin when in-

strumenting the application to count the number of taken and not taken conditional

branches during dynamic execution. For this instrumentation, the number of lo-

cations that need to be instrumented is fairly high, which RL-Bin is not designed

handle very well.

Figure 9.5 shows the overhead of each application in the SPECrate 2017 bench-

mark suite. The average run-time overhead of Conditional CTI Profiling instru-

mentation based on RL-Bin is 20.5% percents and compared to 4.5% overhead for

uninstrumented binaries.
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Figure 9.5: Overhead of Conditional CTI Profiling Using RL-Bin

Figure 9.6 shows the overhead of RL-Bin with an average of 20.5% compared

to DynamoRIO which has 24% average overhead for the similar instrumentation.

This experiment shows that although RL-Bin is not designed to perform heavy in-

strumentation, its overhead is still very competetive to other dynamic rewriters such

as DynamoRIO. Still, this type of instrumentation are not practical for deployment

in any live system. With this experiment, we demonstrated that the performance

of RL-Bin for off-line use cases is nearly as good as other dynamic instrumentation

frameworks.
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Figure 9.6: Comparison of Conditional CTI Profiling Using RL-Bin and Dy-
namoRIO
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Chapter 10: Related Works

Binary rewriting is a well researched field of study and during the past thirty

years, there has been several major rewriters developed to address specific needs

of the community. [72] thoroughly covers existing works in full depth. Figure

10.1 shows the advantages and disadvantages to static rewriters and other dynamic

rewriters. In this chapter, we will dicuss static and dynamic rewriters in details and

compare them with RL-Bin.

2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Limitations: 
 
RL-Bin is capable of analyzing and instrumenting every single instruction before its execution. 
Even if the instruction is rewritten by the program itself, RL-Bin can detect the change and 
reanalyze and reinstrument the instruction, if necessary. However, if another process which is ot 
monitored by RL-Bin rewrite some portions of the current process memory space, then RL-Bin 
would not be able to detect that behavior and it could lead to improper execution of the program.  
 
The act of rewriting other process’s memory space can be done either by gaining administrative 
privileges by the attacker or done by using side channel or rowhammer memory attacks. In 
neither of these cases, can RL-Bin ensure correct rewriting and execution of the program. 
However, if every untrusted process is executed while being analyzed by RL-Bin, then we can 
ensure that these processes would not adversely affect the memory space of any other process.     
 
There are certain types of programs which try to use different methods to prevent their 
examination by a binary rewriter or a debugger. These methods are not limited to those binary 
rewriters which use in-place code instrumentation. There exist some checks that can detect a 
code cache binary rewriter. For example, checking the memory image of the program can be 
used to detect existence of a code cache. 
 
Here are certain types of behavior of programs that can cause problem for the binary rewriter.     
 
(i) Checking that the memory image of the program is unmodified using a checksum on it. The 
program compares its checksum on its memory image against a previously calculated 
checksum to make sure that the program is not altered by any other process or debugger. If the 
checksum does not match, the program does not run. This method is only a check that can 
identify presence of a debugger and would not crash the program or the binary rewriter 
unexpectedly. The problem might be solved by removing read permission from the pages that 

RL-Bin 

Advantages 

- Low-overhead for light 
instrumentation 
- Can rewrite every 
program 

Limitations 

- High overhead for 
heavy instrumentation 
 

Static 

Advantages 

- Low-overhead 
 

Limitations 

Does not work for: 
- Self modifying code 
- Obfuscation 
- Binary file modified 
on the disk 

Dynamic 

Advantages 

- Rewrite every program 
- Reasonable overhead 
for heavy instrumentation 

Limitations 

- High-overhead, so can 
be used for testing, but 
impractical for use in 
deployment. 
 

Commented [RB3]: Need a reference. 

Commented [RB4]: Why is this not in the list of 
problems below? 

Commented [RB5]: This seems irrelevant since the 
binary rewriter did change the program’s functionality, 
which should never happen. 

Figure 10.1: Comparison of Advantages and Disadvantages of RL-Bin with Static
and Dynamic Rewriters
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10.1 Static Binary Rewriters

Currently, lots of static rewriting solutions are available including [14, 73, 74,

75, 76, 77, 78]. SecondWrite project [73] aims to recover compilable source code from

binaries, initially output as LLVM IR, which could then further be compiled into

rewritten executable code. ATOM [74] and Vulcan [57] provide flexible interfaces

for code instrumentation which help in the development of program analysis tools.

Dyninst’s 2007 version [49, 79] is an in-place static binary rewriter aiming to provide

low-overhead instrumentation capability. Pebil [75] is another static binary rewriter

focused on achieving efficient binary instrumentation by using function-level code

relocation for inserting control structures.

Another type of static binary rewriters include Etch [11] , Squeeze and Squeeze++

[80, 81] , OM [82] , ALTO [83], PLTO [14], Spike [84, 85] and Diablo [86, 87]. These

are optimizing binary tools or object-code rewriters. These static rewriters are not

particularly used for general instrumentation purposes and are mostly used in op-

timizations. The input of these static rewriters are object files and not the binary.

Hence these tools can only be used by software developers. As an example, Diablo

[86] aims to provide a framework for link-time program transformation with whole

program optimization. Unlike these static rewriters, RL-Bin is not dependant on

relocation infromation that is stripped from most of commercial binaries.

Static rewriters, including all of the above, face significant limitations due to

the lack of run-time information when trying to disassemble and instrument the

binary. The first limitation is that they cannot disassemble dynamically generated
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or self-modifying code. The reason is that these codes are not available before the

execution of the program. This will lead to incomplete code coverage.

Dynamically generated code is quite common in benign applications. In a

recent study [88], it was observed that 29 out of 120 benign applications contain

dynamically generated code, which is used for supporting execution of user scripts.

This means that implementations of security policies which use static binary rewrit-

ers would fail for 24% of applications.

The second limitation of static binary rewriting arises from the fact that some

benign programs contain data in their code segment. Static disassemblers aim to

understand the contents of code segments using two types of disassembly – linear

sweep or recursive traversal. Linear sweep ensures high code coverage. However, it

cannot distinguish between real code and data in the code segment.

To overcome the problem of data in code segments, another method of disas-

sembly must be used. This method is recursive traversal, which only treats a region

of the code segment as code if it can statically prove a control-flow path to it exists.

static control flow paths are only known through direct CTIs. For indirect CTIs,

the targets are not statically known and the target is only reachable via indirect

CTIs.

A third limitation of static binary rewriting is that some benign programs

contain obfuscated code, in which case static rewriting can break the program. The

relevant kind of obfuscation is control-flow obfuscation whose goal is to mislead

disassemblers so that they cannot reverse engineer binaries.
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10.2 Dynamic Binary Rewriters

There are two main types of dynamic binary rewriters: in-place designs, and

code-cache based designs. We will go over them briefly.

In-place designs, such as BIRD [61] have lower over-head in comparison to

code-cache based designs by avoiding the high overhead incurred by maintaining the

code cache; however, they fail to support some of the features which may happen

relatively frequently in benign binaries such as obfuscation, dynamically-generated

and self-modifying code. The reason BIRD does not work for obfuscated code is

that it assumes both the fall through and destination of a conditional branch are

code, which may not be true in obfuscated code. Further, BIRD does not support

self-modifying code. The reason is that once they disassemble code from a location,

they never change the disassembly even if the code is overwritten.

Unlike static and in-place dynamic rewriters, code-cache based dynamic

rewriters are robust and can correctly rewrite all programs. However existing rewrit-

ers have high overhead that is generally unacceptable for deployment on live sys-

tems. Two of the most popular code-cache based dynamic rewriters are DynamoRIO

[42, 89] and Pin [48, 90] with 1.2x and 1.54x run-time overhead, respectively, on aver-

age for the full SPEC’06 benchmark suite even without any instrumentation inserted.

Dyninst’11 [91] is another code-cache based design which has 1.2x overhead for the

same benchmark. Valgrind [92] is another dynamic binary rewriter which has a very

strong API for adding instrumentation; however, it has very high overhead, around

2x to 3x compared to un-instrumented binaries.
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Figure 10.2 illustrates and compares the robustness and run-time overhead of

the static and dynamic rewriters that we discussed throughout this chapter. As it

can be seen, RL-Bin is both robust and also has low run-time overhead which makes

it the only practical choice for instrumenting binaries in live deployment.

10.3 Deobfuscation Tools

Research survey papers such as [93, 94] extensively study and discuss obfus-

cation tools and mitigation techniques. In this subsection, however, we only briefly

go over some of the solutions proposed to counteract obfuscation. Specifially, we

focus on low-overhead solutions that are robust and capable of deobfuscating a wide

range of binaries.

The first type of deobfuscation tools attempts to unpack the encrypted code

bytes. Some of the static unpacking tools use the X-Ray technique [95], which ana-

lyzes the packed code’s statistical properties to determine the encryption algorithm

used. The downside of these tools is that they are not effective against advanced

encryption techniques. The other static methods [96, 97] find and reverse the code

that does the unpacking automatically. Although this approach has been useful for

specific packer tools, it has failed to show effectiveness for a wide range of real-

world binaries. [98] uses portable execuatable static features to detect obfuscation

of packer tools.

Dynamic unpacking tools are more robust. Fine-grained approaches [99, 100,

101, 102] use whole system emulators to inspect memory write instructions to find
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the memory locations that are written to and then executed. The overhead of these

methods is overwhelming, and they increase the run-time of the binary by order of

magnitudes. There are coarse-grained dynamic approaches [103, 104] that utilize the

operating system to track memory writes and execution at page-level granularity.

However, these methods cannot identify the exact code bytes that were unpacked

and executed.

Another category of deobfuscation tools aims to address anti-disassembly tech-

niques. To handle obfuscation and the issues regarding non-returning calls, [105]

uses a modified version of recursive traversal with no assumption about the call

instructions that must return. Instead, it will look for specific statistical properties

in the byte codes after the call instruction to determine whether they form actual

sequences of valid instructions. While this method helps with code coverage, it has

not been sufficient for real-world obfuscated code. To handle obfuscated indirect

CTIs and increase code coverage, some disassembly tools deploy value-set analy-

sis [106] to find all possible destinations for indirect CTIs and limit the number

of targets taken during run-time. However, due to multiple obfuscation techniques

applied simultaneously, the analysis of these tools would mostly be incomplete and

inconclusive.

The primary method to address anti-rewriting techniques such as self check-

summing is redirecting memory read to an unchanged copy of the modified memory

locations. Some solutions [107] achieve this by changing the Operating System

handling of Translation Lookaside Buffer (TLB) to provide different versions of

cached memory for code and data. Another solution [108] emulates memory read
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instructions by using virtualization, which would lead to an order of magnitudes for

overhead, preventing these methods from being deployed in live systems.
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Chapter 11: Conclusion and Future Works

11.1 Achievements

A binary rewriter is a software tool that can change binary code (also known

as machine code) without needing its source code to improve it in some way, such

as in its security, performance, manageability, or track-ability. Binary programs are

widespread today in IP-protected applications meant for distribution to customers

and high-performance codes. Conversations with industry professionals have re-

vealed that they will not accept an unreliable tool that may occasionally crash the

program. Nor will they accept a tool that has more than a few percent overheads in

deployment use. No existing rewriter can fully meet these requirements. Thus all

the advantages of instrumentation and monitoring in security, performance, man-

ageability, and track-ability are lost for deployed binary programs.

The goal of this thesis was to gain the benefits of instrumentation and modi-

fication for binary code. To this end, we needed to develop a binary rewriter that

fulfills two main criteria: First, it must work for a different type of binaries, includ-

ing those produced by commercial compilers from a wide variety of languages, and

possibly modified by obfuscation tools. Second, the binary rewriter must be low

overhead.
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We have demonstrated in this thesis that we have achieved the goal of robust-

ness. RL-Bin is robust, meaning that it can handle all types of obfuscation and

other troublesome features that exist in benign binaries. Chapters 5 and 6 have

described these features and our countermeasures in detail.

In addition, RL-Bin has only 4% run-time overhead for the SPECrate bench-

mark suite, which is low enough for practical deployment in live systems. This is

achieved by using multiple optimization methods, including a Just-In-Time (JIT)

dynamic analysis of the discovered code and traditional data flow analysis concepts,

to find ”Safe” functions and reduction of overhead by eliminating redundant checks.

In addition, we have in-depth analysis and exploration of trade-offs for optimization

methods to get the run-time overhead.

The result is the first In-Place dynamic binary rewriter – which does not use a

code cache – that combines the robustness and coverage of a dynamic rewriter with

the low overhead of a static rewriter.

11.2 Future Works

As future work, it is possible to extend the secure execution tool, described

in section 8.2, to protect all types of vulnerable indirect CTIs to increase coverage

against other types of attacks. It is also possible to improve the transparency of

RL-Bin by employing methods to conceal the presence of RL-Bin to avoid detection

by anti-rewriting techniques. There are also plans to improve RL-Bin’s Application

Programming Interface and extend its support for multiple platforms and operating

132



systems.

11.2.1 RL-Bin-Based Implementation of CFI and Other Analysis

Tool

We imagine that RL-Bin can be used for the full implementation of CFI. To

protect all types of vulnerable indirect CTIs to increase coverage against other types

of attacks. To this end, one must find dynamic methods to restrict an indirect call

or jump’s potential destinations. Then, during run-time, RL-Bin added instrumen-

tations to ensure that indirect calls and jumps follow the restricted control flow.

In addition, we believe that RL-Bin can be the basis of numerous run-time

tools. The capability to easily monitor control flow enables the user to implement

new tracing tools, logging, and code coverage. One crucial distinction is that RL-

Bin has adaptability, which means that code analysis instrumentation does not have

to be permanent and removed after the goal is achieved. This would further reduce

the overhead.

We also believe that RL-Bin can be an appropriate basis for an OS dependant

in-process debugger, which can provide fast and flexible debugging infrastructure

from within the binary process space.

11.2.2 Improve Transparency

RL-Bin is both robust and has low overhead, but it still has issues with trans-

parency. Some malicious binaries use anti-debugging techniques to exploit the lack of
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transparency in instrumented binaries. They detect the presence of a binary rewriter

and terminate the execution of the application. In future work, transparency issues

would be resolved for sensitive binaries.

11.2.3 Programming Interface Extention

Our application programming interface could be enhanced to allow customiza-

tion of internal data structures and provide control over other internal aspects of

the system. This would enable the user to have greater flexibility when developing

binary analysis tools based on RL-Bin. For example, one can extract internal infor-

mation from within RL-Bin to develop a security tool with less overhead than using

our current programming interface.

11.2.4 Support Additional Platforms

The current version of RL-Bin is implemented for x86 architecture and the

Windows operating system. We tested RL-Bin with several commercial applications

and compiled binaries with different compilers, including GCC, MSVS, and ICC.

RL-Bin has also been tested with heavily obfuscated code.

As many applications are developed for other architectures and operating sys-

tems, as future work, RL-Bin will add support for x-64 and ARM architectures and

support Linux OS. This would further increase the usability of RL-Bin as a basis

for developing binary analysis tools.
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11.3 Summary

We have developed a new type of binary rewriter called RL-Bin that can

reliably rewrite all benign programs and incurs low run-time overhead. It does so

using a design that

1. avoids the copying and address translation inherent in code-cached-based dy-

namic rewriters by rewriting the memory image in-place;

2. is purely dynamic and continuously instruments the code to conceptually mon-

itor every control transfer to discover new code;

3. rewrites a memory block in the code segment only after it is known to be code

at run-time;

4. uses a design that adaptively removes code-discovering instrumentation at

run-time after it is no longer needed; and

5. uses just-in-time (JIT) analysis to perform further optimizations to reduce

overhead.

The implementation of RL-Bin is robust and low overhead and is well-tested.

RL-Bin’s design and optimization methods have empowered RL-Bin to rewrite bi-

naries with very low run-time overhead (1.04x on average for SPECrate 2017) and

comparatively low memory overhead (1.69x for SPECrate 2017). In comparison,

other dynamic rewriters have a high run-time overhead (1.16x for DynamoRIO,
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1.29x for Pin, and 1.20x for Dyninst) and have a bigger memory footprint (2.5x for

DynamoRIO, 2.73x for Pin, and 2.3x for Dyninst).
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