251 research outputs found

    Integration of RFID and Industrial WSNs to Create A Smart Industrial Environment

    Get PDF
    A smart environment is a physical space that is seamlessly embedded with sensors, actuators, displays, and computing devices, connected through communication networks for data collection, to enable various pervasive applications. Radio frequency identification (RFID) and Wireless Sensor Networks (WSNs) can be used to create such smart environments, performing sensing, data acquisition, and communication functions, and thus connecting physical devices together to form a smart environment. This thesis first examines the features and requirements a smart industrial environment. It then focuses on the realization of such an environment by integrating RFID and industrial WSNs. ISA100.11a protocol is considered in particular for WSNs, while High Frequency RFID is considered for this thesis. This thesis describes designs and implementation of the hardware and software architecture necessary for proper integration of RFID and WSN systems. The hardware architecture focuses on communication interface and AI/AO interface circuit design; while the driver of the interface is implemented through embedded software. Through Web-based Human Machine Interface (HMI), the industrial users can monitor the process parameters, as well as send any necessary alarm information. In addition, a standard Mongo database is designed, allowing access to historical and current data to gain a more in-depth understanding of the environment being created. The information can therefore be uploaded to an IoT Cloud platform for easy access and storage. Four scenarios for smart industrial environments are mimicked and tested in a laboratory to demonstrate the proposed integrated system. The experimental results have showed that the communication from RFID reader to WSN node and the real-time wireless transmission of the integrated system meet design requirements. In addition, compared to a traditional wired PLC system where measurement error of the integrated system is less than 1%. The experimental results are thus satisfactory, and the design specifications have been achieved

    An IoT-aware Architecture to improve Safety in Sports Environments

    Get PDF
    The introduction of Internet of Things enabling technologies into the sport and recreational activities domain provide an interesting research challenge. Their adoption could significantly improve the sport experience and also the safety level of team sports. Despite this, only few attempts have been done to demonstrate the benefits provided by use of IoT technologies in sport environments. To fill this gap, this paper propose an IoT-aware Sport System based on the jointly use of different innovative technologies and standards. By exploiting the potentialities offered by an ultra-low-power Hybrid Sensing Network (HSN), composed of 6LoWPAN nodes integrating UHF RFID functionalities, the system is able to collect, in real time, both environmental parameters and players’ physiological data. Sensed data are then delivered to a Cloud platform where a monitoring application makes them easily accessible via REST Web Services. A simple proof of concept has demonstrated the appropriateness of the proposed solution

    WSN and RFID integration to support intelligent monitoring in smart buildings using hybrid intelligent decision support systems

    Get PDF
    The real time monitoring of environment context aware activities is becoming a standard in the service delivery in a wide range of domains (child and elderly care and supervision, logistics, circulation, and other). The safety of people, goods and premises depends on the prompt reaction to potential hazards identified at an early stage to engage appropriate control actions. This requires capturing real time data to process locally at the device level or communicate to backend systems for real time decision making. This research examines the wireless sensor network and radio frequency identification technology integration in smart homes to support advanced safety systems deployed upstream to safety and emergency response. These systems are based on the use of hybrid intelligent decision support systems configured in a multi-distributed architecture enabled by the wireless communication of detection and tracking data to support intelligent real-time monitoring in smart buildings. This paper introduces first the concept of wireless sensor network and radio frequency identification technology integration showing the various options for the task distribution between radio frequency identification and hybrid intelligent decision support systems. This integration is then illustrated in a multi-distributed system architecture to identify motion and control access in a smart building using a room capacity model for occupancy and evacuation, access rights and a navigation map automatically generated by the system. The solution shown in the case study is based on a virtual layout of the smart building which is implemented using the capabilities of the building information model and hybrid intelligent decision support system.The Saudi High Education Ministry and Brunel University (UK

    Internetworking Objects with RFID

    Get PDF

    An IoT-Aware Architecture for Smart Healthcare Systems

    Get PDF
    none7Over the last few years, the convincing forward steps in the development of Internet-of-Things (IoT) enabling solutions are spurring the advent of novel and fascinating applications. Among others, mainly Radio Frequency Identification (RFID), Wireless Sensor Network (WSN), and smart mobile technologies are leading this evolutionary trend. In the wake of this tendency, this paper proposes a novel, IoTaware, smart architecture for automatic monitoring and tracking of patients, personnel, and biomedical devices within hospitals and nursing institutes. Staying true to the IoT vision, we propose a Smart Hospital System (SHS) which relies on different, yet complementary, technologies, specifically RFID, WSN, and smart mobile, interoperating with each other through a CoAP/6LoWPAN/REST network infrastructure. The SHS is able to collect, in real time, both environmental conditions and patients’ physiological parameters via an ultra-low-power Hybrid Sensing Network (HSN) composed of 6LoWPAN nodes integrating UHF RFID functionalities. Sensed data are delivered to a control center where an advanced monitoring application makes them easily accessible by both local and remote users via a REST web service. The simple proof of concept implemented to validate the proposed SHS has highlighted a number of key capabilities and aspects of novelty which represent a significant step forward compared to the actual state of art.restrictedCATARINUCCI L.; DE DONNO D.; MAINETTI L.; PALANO L.; PATRONO L.; STEFANIZZI M.; TARRICONE L.Catarinucci, Luca; DE DONNO, Danilo; Mainetti, Luca; Palano, L.; Patrono, Luigi; Stefanizzi, MARIA LAURA; Tarricone, Lucian

    Strength, water absorption and thermal comfort of mortar bricks containing crushed ceramic waste

    Get PDF
    This present study investigated the crushed ceramic waste utilisation as sand replacement in solid mortar bricks. The percentage of crushed ceramic waste used were 0% (CW0), 10% (CW10), 20% (CW20) and 30% (CW30) from the total weight of sand. The dimension prescribed of mortar bricks are 215 mm x 102.5 mm x 65 mm as followed accordance to MS 2281:2010 and BS EN 771-1:2011+A1:2015. Four (4) tests were conducted on mortar bricks namely crushing strength, water absorption, compressive strength of masonry units and thermal comfort. The incorporation of ceramic waste in all designated mortar bricks showed the increment of crushing strength between 23% and 46% at 28 days of curing and decrement water absorption between 34% and 44% was recorded corresponding to control mortar bricks. The prism test of masonry units consists of mortar bricks containing ceramic waste indicated the high increment of compressive strength at about 200% as compared to mortar brick without ceramic waste. The thermal comfort test of ceramic mortar bricks were also showed the good insulation with low interior temperature. Therefore, the ceramic waste can be utilised as a material replacement to fine aggregate in mortar brick productions due to significant outcomes performed

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives

    Integrating Passive UHF RFID Tags with WSN Nodes: Challenges and Opportunities

    Get PDF
    Radio Frequency Identification (RFID) and Wireless Sensor Networks (WSNs) have received an ever-increasing attention in recent years, mainly because they represent two of the most important technologies enabling the Internet of Things vision. Although designed originally with different objectives, WSN and RFID represent two complementary technologies whose integration might increase their functionalities and extend their range of applications. However, important technological issues must still be solved in order to fully exploit the potentialities offered by such integration. In this work, an innovative RFID-WSN integration approach is presented and validated. It relies on the interconnection of a new-generation, long-range, EPCglobal Class-1 Generation-2 Ultra-High-Frequency (UHF) RFID tag with a commercial WSN node via the I2C interface. Experimental results have demonstrated the effectiveness of the proposed approach compared to existing solution in the literature. Interesting application scenarios enabled by the proposed RFID-WSN integration approach are briefly summarized at the end of the paper
    • 

    corecore