27,758 research outputs found
Within-socket Myoelectric Prediction of Continuous Ankle Kinematics for Control of a Powered Transtibial Prosthesis
Objective. Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees. Approach. Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal \u27prediction\u27 interval between the EMG/kinematic input and the model\u27s estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval. Main results. Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking. Significance. The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model\u27s predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response
Fibromatosis of the Plantar Fascia: Diagnosis and Indications For Surgical Treatment
Plantar fibromatosis is a rare, benign lesion involving the plantar aponeurosis. Eleven patients (13 feet) underwent 24 operations, including local excision, wide excision, or complete plantar fasciectomy. Clinical results were evaluated retrospectively. There were no differences among the subgroups in postoperative complications. Two primary fasciectomies did not recur. Three of six revised fasciectomies, seven of nine wide excisions, and six of seven local excisions recurred. Our results indicate that recurrence of plantar fibromatosis after surgical resection can be reduced by aggressive initial surgical resection
Full gait cycle analysis of lower limb and trunk kinematics and muscle activations during walking in participants with and without ankle instability
This document is the Accepted Manuscript version of the following article: Lynsey Northeast, Charlotte N. Gautrey, Lindsay Bottoms, Gerwyn Hughes, Andrew C. S. Mitchell, and Andrew Greenhalgh, ‘Full gait cycle analysis of lower limb and trunk kinematics and muscle activations during walking in participants with and without ankle instability’, Gait & Posture, Vol. 64: 114-118, July 2018. Under embargo until 7 June 2019. The final, definitive version is available online at doi: https://doi.org/10.1016/j.gaitpost.2018.06.001Background Chronic ankle instability (CAI) has previously been linked to altered lower limb kinematics and muscle activation characteristics during walking, though little research has been performed analysing the full time-series across the stance and swing phases of gait. Research Question The aim of this study was to compare trunk and lower limb kinematics and muscle activity between those with chronic ankle instability and healthy controls. Methods Kinematics and muscle activity were measured in 18 (14 males, 4 females) healthy controls (age 22.4 ± 3.6 years, height 177.8 ± 7.6 cm, mass 70.4 ± 11.9 kg, UK shoe size 8.4 ± 1.6), and 18 (13 males, 5 females) participants with chronic ankle instability (age 22.0 ± 2.7 years, height 176.8 ± 7.9 cm, mass 74.1 ± 9.6 kg, UK shoe size 8.1 ± 1.9) during barefoot walking trials, using a combined Helen Hayes and Oxford foot model. Surface electromyography (sEMG) was recorded for the tibialis anterior and gluteus medius. Full curve statistical parametric mapping was performed using independent and paired-samples T-tests. Results No significant differences were observed in kinematic or sEMG variables between or within groups for the duration of the swing phase of gait. A significantly increased forefoot-tibia inversion was seen in the CAI affected limb when compared to the CAI unaffected limb at 4–16% stance (p = 0.039). No other significant differences were observed. Significance There appears to be no differences in muscle activation and movement between CAI and healthy control groups. However, participants with CAI exhibited increased inversion patterns during the stance phase of gait in their affected limb compared to their unaffected limb. This may predispose those with CAI to episodes of giving way and further ankle sprains.Peer reviewedFinal Accepted Versio
Four layer bandage compared with short stretch bandage for venous leg ulcers: systematic review and meta-analysis of randomised controlled trials with data from individual patients
<p><b>Objective:</b> To compare the effectiveness of two types of compression treatment (four layer bandage and short stretch bandage) in people with venous leg ulceration.</p>
<p><b>Design:</b> Systematic review and meta-analysis of patient level data.</p>
<p><b>Data:</b> sources Electronic databases (the Cochrane Central Register of Controlled Trials, the Cochrane Wounds Group Specialised Register, Medline, Embase, CINAHL, and National Research Register) and reference lists of retrieved articles searched to identify relevant trials and primary investigators. Primary investigators of eligible trials were invited to contribute raw data for re-analysis.</p>
<p><b>Review:</b> methods Randomised controlled trials of four layer bandage compared with short stretch bandage in people with venous leg ulceration were eligible for inclusion. The primary outcome for the meta-analysis was time to healing. Cox proportional hazards models were run to compare the methods in terms of time to healing with adjustment for independent predictors of healing. Secondary outcomes included incidence and number of adverse events per patient.</p>
<p><b>Results:</b> Seven eligible trials were identified (887 patients), and patient level data were retrieved for five (797 patients, 90% of known randomised patients). The four layer bandage was associated with significantly shorter time to healing: hazard ratio (95% confidence interval) from multifactorial model based on five trials was 1.31 (1.09 to 1.58), P=0.005. Larger ulcer area at baseline, more chronic ulceration, and previous ulceration were all independent predictors of delayed healing. Data from two trials showed no evidence of a difference in adverse event profiles between the two bandage types.</p>
<p><b>Conclusions:</b> Venous leg ulcers in patients treated with four layer bandages heal faster, on average, than those of people treated with the short stretch bandage. Benefits were consistent across patients with differing prognostic profiles.</p>
Comparison of Ankle Proprioception Between Pregnant and Non Pregnant Women
Pregnant women report falls especially during their third trimester. Physiological changes along with ligament laxity can affect the joint proprioception in this population. This study was conducted to compare the ankle proprioception between pregnant and non pregnant women. Thirty pregnant and 30 non pregnant women were included in the study and the position of ankles were recorded by a digital camera placed 60 cms away from the feet of the subject. UTHSCSA Image tool software version 3.0. was used to measure the difference between the initial and the final angle. The median repositioning error in the pregnant group was 11.6 (7.6, 12.4) degrees and the median repositioning error in the non-pregnant group was 4.2 (2.1, 6.3) degrees. There was a statistically significant difference in ankle joint proprioception between pregnant and non pregnant women
The prevention of injuries in contact flag football
American flag football is a non-tackle, contact sport with many moderate to severe contact-type injuries reported. A previous prospective injury surveillance study by the authors revealed a high incidence of injuries to the fingers, face, knee, shoulder and ankle. The objectives of the study were to conduct a pilot-prospective injury prevention study in an attempt to significantly reduce the incidence and the severity of injuries as compared to a historical cohort, as well as to provide recommendations for a future prospective injury prevention study.
A prospective injury prevention study was conducted involving 724 amateur male (mean age: 20.0 +/- A 3.1 years) and 114 female (mean age: 21.2 +/- A 7.2 years) players. Four prevention measures were implemented: the no-pocket rule, self-fitting mouth guards, ankle braces (for those players with recurrent ankle sprains) and an injury treatment information brochure. An injury surveillance questionnaire was administered to record all time-loss injuries sustained in game sessions.
There was a statistically significant reduction in the number of injured players, the number of finger/hand injuries, the incidence rate and the incidence proportion between the two cohorts (p < 0.05).
This one-season pilot prevention study has provided preliminary evidence that finger/hand injuries can be significantly reduced in flag football. Prevention strategies for a longer, prospective, randomised-controlled injury prevention study should include the strict enforcement of the no-pocket rule, appropriate head gear, the use of comfortable-fitting ankle braces and mouth guards, and changing the blocking rules of the game
A review of the effectiveness of lower limb orthoses used in cerebral palsy
To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO
Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention
Deep neural networks, including recurrent networks, have been successfully
applied to human activity recognition. Unfortunately, the final representation
learned by recurrent networks might encode some noise (irrelevant signal
components, unimportant sensor modalities, etc.). Besides, it is difficult to
interpret the recurrent networks to gain insight into the models' behavior. To
address these issues, we propose two attention models for human activity
recognition: temporal attention and sensor attention. These two mechanisms
adaptively focus on important signals and sensor modalities. To further improve
the understandability and mean F1 score, we add continuity constraints,
considering that continuous sensor signals are more robust than discrete ones.
We evaluate the approaches on three datasets and obtain state-of-the-art
results. Furthermore, qualitative analysis shows that the attention learned by
the models agree well with human intuition.Comment: 8 pages. published in The International Symposium on Wearable
Computers (ISWC) 201
Proprioceptive changes impair balance control in individuals with chronic obstructive pulmonary disease
Copyright @ 2013 Janssens et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction: Balance deficits are identified as important risk factors for falling in individuals with chronic obstructive pulmonary disease (COPD). However, the specific use of proprioception, which is of primary importance during balance control, has not been studied in individuals with COPD. The objective was to determine the specific proprioceptive control strategy during postural balance in individuals with COPD and healthy controls, and to assess whether this was related to inspiratory muscle weakness. Methods: Center of pressure displacement was determined in 20 individuals with COPD and 20 age/gender-matched controls during upright stance on an unstable support surface without vision. Ankle and back muscle vibration were applied to evaluate the relative contribution of different proprioceptive signals used in postural control. Results: Individuals with COPD showed an increased anterior-posterior body sway during upright stance (p=0.037). Compared to controls, individuals with COPD showed an increased posterior body sway during ankle muscle vibration (p=0.047), decreased anterior body sway during back muscle vibration (p=0.025), and increased posterior body sway during simultaneous ankle-muscle vibration (p=0.002). Individuals with COPD with the weakest inspiratory muscles showed the greatest reliance on ankle muscle input when compared to the stronger individuals with COPD (p=0.037). Conclusions: Individuals with COPD, especially those with inspiratory muscle weakness, increased their reliance on ankle muscle proprioceptive signals and decreased their reliance on back muscle proprioceptive signals during balance control, resulting in a decreased postural stability compared to healthy controls. These proprioceptive changes may be due to an impaired postural contribution of the inspiratory muscles to trunk stability. Further research is required to determine whether interventions such as proprioceptive training and inspiratory muscle training improve postural balance and reduce the fall risk in individuals with COPD.This work was supported by the Research Foundation – Flanders (FWO) grants 1.5.104.03, G.0674.09, G.0598.09N and G.0871.13N
- …
