103 research outputs found

    Low Latency Anomaly Detection with Imperfect Models

    Get PDF
    The problem of anomaly detection deals with detecting abrupt changes/anomalies in the distribution of sequentially observed data in a stochastic system. This problem applies to many applications, such as signal processing, intrusion detection, quality control, medical diagnosis, etc. A low latency anomaly detection algorithm, which is based on the framework of quickest change detection (QCD), aims at minimizing the detection delay of anomalies in the sequentially observed data while ensuring satisfactory detection accuracy. Moreover, in many practical applications, complete knowledge of the post-change distribution model might not be available due to the unexpected nature of the change. Hence, the objective of this dissertation is to study low latency anomaly detection or QCD algorithms for systems with imperfect models such that any type of abnormality in the system can be detected as quickly as possible for reliable and secured system operations. This dissertation includes the theoretical foundations behind these low latency anomaly detection algorithms along with real-world applications. First, QCD algorithms are designed for detecting changes in systems with multiple post-change models under both Bayesian and non-Bayesian settings. Next, a QCD algorithm is studied for real-time detection of false data injection attacks in smart grids with dynamic models. Finally, a QCD algorithm for detecting wind turbine bearing faults is developed by analyzing the statistical behaviors of stator currents generated by the turbines. For all the proposed algorithms, analytical bounds of the system performance metrics are derived using asymptotic analysis and the simulation results show that the proposed algorithms outperform existing algorithms

    Attack Resilience and Recovery using Physical Challenge Response Authentication for Active Sensors Under Integrity Attacks

    Get PDF
    Embedded sensing systems are pervasively used in life- and security-critical systems such as those found in airplanes, automobiles, and healthcare. Traditional security mechanisms for these sensors focus on data encryption and other post-processing techniques, but the sensors themselves often remain vulnerable to attacks in the physical/analog domain. If an adversary manipulates a physical/analog signal prior to digitization, no amount of digital security mechanisms after the fact can help. Fortunately, nature imposes fundamental constraints on how these analog signals can behave. This work presents PyCRA, a physical challenge-response authentication scheme designed to protect active sensing systems against physical attacks occurring in the analog domain. PyCRA provides security for active sensors by continually challenging the surrounding environment via random but deliberate physical probes. By analyzing the responses to these probes, and by using the fact that the adversary cannot change the underlying laws of physics, we provide an authentication mechanism that not only detects malicious attacks but provides resilience against them. We demonstrate the effectiveness of PyCRA through several case studies using two sensing systems: (1) magnetic sensors like those found wheel speed sensors in robotics and automotive, and (2) commercial RFID tags used in many security-critical applications. Finally, we outline methods and theoretical proofs for further enhancing the resilience of PyCRA to active attacks by means of a confusion phase---a period of low signal to noise ratio that makes it more difficult for an attacker to correctly identify and respond to PyCRA's physical challenges. In doing so, we evaluate both the robustness and the limitations of PyCRA, concluding by outlining practical considerations as well as further applications for the proposed authentication mechanism.Comment: Shorter version appeared in ACM ACM Conference on Computer and Communications (CCS) 201

    Security Aspects of Internet of Things aided Smart Grids: a Bibliometric Survey

    Full text link
    The integration of sensors and communication technology in power systems, known as the smart grid, is an emerging topic in science and technology. One of the critical issues in the smart grid is its increased vulnerability to cyber threats. As such, various types of threats and defense mechanisms are proposed in literature. This paper offers a bibliometric survey of research papers focused on the security aspects of Internet of Things (IoT) aided smart grids. To the best of the authors' knowledge, this is the very first bibliometric survey paper in this specific field. A bibliometric analysis of all journal articles is performed and the findings are sorted by dates, authorship, and key concepts. Furthermore, this paper also summarizes the types of cyber threats facing the smart grid, the various security mechanisms proposed in literature, as well as the research gaps in the field of smart grid security.Comment: The paper is published in Elsevier's Internet of Things journal. 25 pages + 20 pages of reference
    corecore