17,500 research outputs found

    Energy-aware cooperative wireless networks with multiple cognitive users

    Get PDF
    In this paper, we study and analyze cooperative cognitive radio networks with arbitrary number of secondary users (SUs). Each SU is considered a prospective relay for the primary user (PU) besides having its own data transmission demand. We consider a multi-packet transmission framework that allows multiple SUs to transmit simultaneously because of dirty-paper coding. We propose power allocation and scheduling policies that optimize the throughput for both PU and SU with minimum energy expenditure. The performance of the system is evaluated in terms of throughput and delay under different opportunistic relay selection policies. Toward this objective, we present a mathematical framework for deriving stability conditions for all queues in the system. Consequently, the throughput of both primary and secondary links is quantified. Furthermore, a moment generating function approach is employed to derive a closed-form expression for the average delay encountered by the PU packets. Results reveal that we achieve better performance in terms of throughput and delay at lower energy cost as compared with equal power allocation schemes proposed earlier in the literature. Extensive simulations are conducted to validate our theoretical findings

    The origin of bursts and heavy tails in human dynamics

    Full text link
    The dynamics of many social, technological and economic phenomena are driven by individual human actions, turning the quantitative understanding of human behavior into a central question of modern science. Current models of human dynamics, used from risk assessment to communications, assume that human actions are randomly distributed in time and thus well approximated by Poisson processes. In contrast, there is increasing evidence that the timing of many human activities, ranging from communication to entertainment and work patterns, follow non-Poisson statistics, characterized by bursts of rapidly occurring events separated by long periods of inactivity. Here we show that the bursty nature of human behavior is a consequence of a decision based queuing process: when individuals execute tasks based on some perceived priority, the timing of the tasks will be heavy tailed, most tasks being rapidly executed, while a few experience very long waiting times. In contrast, priority blind execution is well approximated by uniform interevent statistics. These findings have important implications from resource management to service allocation in both communications and retail.Comment: Supplementary Material available at http://www.nd.edu/~network

    Modeling bursts and heavy tails in human dynamics

    Full text link
    Current models of human dynamics, used from risk assessment to communications, assume that human actions are randomly distributed in time and thus well approximated by Poisson processes. We provide direct evidence that for five human activity patterns the timing of individual human actions follow non-Poisson statistics, characterized by bursts of rapidly occurring events separated by long periods of inactivity. We show that the bursty nature of human behavior is a consequence of a decision based queuing process: when individuals execute tasks based on some perceived priority, the timing of the tasks will be heavy tailed, most tasks being rapidly executed, while a few experiencing very long waiting times. We discuss two queueing models that capture human activity. The first model assumes that there are no limitations on the number of tasks an individual can hadle at any time, predicting that the waiting time of the individual tasks follow a heavy tailed distribution with exponent alpha=3/2. The second model imposes limitations on the queue length, resulting in alpha=1. We provide empirical evidence supporting the relevance of these two models to human activity patterns. Finally, we discuss possible extension of the proposed queueing models and outline some future challenges in exploring the statistical mechanisms of human dynamics.Comment: RevTex, 19 pages, 8 figure
    • …
    corecore